
Journal of Logic, Language and Informationl manuscript No.
(will be inserted by the editor)

A note on the GLA’s choice of the current loser from the
perspective of factorizability

Giorgio Magri

Received: date / Accepted: date

Abstract Boersma’s (1997, 1998) Gradual Learning Algorithm (GLA) per-
forms a sequence of slight re-rankings of the constraint set triggered by mis-
takes on the incoming stream of data. Data consist of underlying forms paired
with the corresponding winner forms. At each iteration, the algorithm needs
to complete the current data pair with a corresponding loser form. Tesar and
Smolensky (1998) suggest that this current loser should be set equal to the
winner predicted by the current ranking. This paper develops a new argument
for Tesar and Smolensky’s proposal, based on the GLA’s factorizability. The
underlying typology often encodes non-interacting phonological processes, so
that it factorizes into smaller typologies that encode a single process each. The
GLA should be able to take advantage of this factorizability, in the sense that
a run of the algorithm on the original typology should factorize into indepen-
dent runs on the factor typologies. Factorizability of the GLA is guaranteed
provided the current loser is set equal to the current prediction, providing new
support for Tesar and Smolensky’s proposal.

Keywords Optimality Theory · Gradual Learning Algorithm · learnability

1 introduction

The Gradual Learning Algorithm (henceforth: GLA) is an error-driven learning
algorithm for Optimality Theory (henceforth: OT; Prince and Smolensky 2004,
Kager 1999) developed in Boersma (1997, 1998). The (non-stochastic variant
of the) GLA is described in (1). The algorithm entertains a current ranking
vector θ = (θ1, . . . , θn), namely an assignment of numerical ranking values
θ1, . . . , θn to the n phonological constraints C1, . . . , Cn. This current ranking

G. Magri
SFL UMR 7023 (CNRS, University of Paris 8)
Tel.: +39 (0)6 52 85 32 32
E-mail: magrigrg@gmail.com

2 Giorgio Magri

vector is initialized to an assigned initial ranking vector θ0. And it is updated
over time by looping through the four steps (1a)-(1d).

(1)

initialization:
set the current
ranking vector

equal to θ0

��
step (a): get an

underly-
ing/winner form

data pair
(/x/, [y])

//

step (b): pick
a loser [z] for
/x/ different

from the
winner [y]

//

step (c): check
consistency of the
current ranking

vector with
(/x/, [y], [z])

OT−consistent

��

not OT−consistent

��
step (d):

demote
(promote)

loser- (winner-)
preferrers by 1OO

At step (1a), the algorithm receives a piece of data, consisting of an underly-
ing form /x/ paired with the corresponding winner form [y]. At step (1b), the
algorithm picks another candidate surface form [z] (different from the winner
[y]) for this underlying form /x/, that represents a loser candidate. At step
(1c), the algorithm checks whether the current underlying/winner/loser form
triplet1 (/x/, [y], [z]) assembled at steps (1a) and (1b) is OT-consistent with
its current ranking vector, according to condition (2). A constraint is winner-
(respectively, loser-) preferring relative to the underlying/winner/loser form
triplet (/x/, [y], [z]) iff it assigns strictly more (respectively, strictly less) vio-
lations to the loser mapping (/x/, [z]) than to the winner mapping (/x/, [y]);
see Prince (2002) for relevant discussion.

(2) There exists a constraint that is winner-preferring relative to the under-
lying/winner/loser form triplet (/x/, [y], [z]) and has a current ranking
value strictly larger than the ranking value of any constraint that is
instead loser-preferring.

If consistency holds, nothing happens: the algorithm loops back to step (1a)
and waits for another piece of data. Otherwise, the algorithm needs to slightly
update its current ranking vector in response to its failure on the current
triplet (/x/, [y], [z]). This current failure provides heuristic evidence that loser-
preferring constraints are currently ranked too high while winner-preferring
constraints are currently ranked too low. The GLA thus decreases the current
ranking values of loser-preferring constraints by a fixed amount, say 1 for
concreteness; and furthermore increases the current ranking values of winner-
preferring constraints by that same amount, as in (1d). The GLA then loops
back to step (1a), waits for more data and starts all over again.

The GLA is trained on a single piece of data at the time and does not
keep track of previously seen data, so that is does not impose unrealistic
memory requirements. Furthermore, a run of the GLA describes a sequence
of intermediate ranking vectors that offers a straightforward tool for modeling

1 As a mnemonic, I strike out the third item “[z]” of the triplet, to signal that [z] is the
intended loser candidate, while [y] is the intended winner.

A note on the GLA’s choice of the current loser 3

observed child acquisition paths. Indeed, the algorithm has been reported to
have good modeling properties; see Boersma and Levelt (2000), Curtin and
Zuraw (2002), and Boersma and Hayes (2001).

In this squib, I focus on the proper implementation of step (1b), namely on
the proper subroutine the GLA should use in order to select the current loser
form [z]. Tesar and Smolensky (1998, p. 246) make an influential proposal on
this issue in the passage quoted below.

(3) “A [winner y] is received, [corresponding to] an input x. It is natural
for the learner to compute her own [predicted winner ypred] for [the
input x], optimal with respect to her current [ranking]. If the learner’s
[predicted winner ypred] is different from the target [winner y], learn-
ing should be possible; otherwise, it isn’t. This is because if the target
[winner y] equals the learner’s [predicted winner ypred], then [y] is al-
ready optimal according to [the current ranking] [. . .] and no learning
is possible. On the other hand, if the target [winner y] is not the [winner
ypred currently predicted by the learner], then [the latter] is suboptimal
[. . .], and the [current ranking] needs to be modified [. . .]. In order for
a loser [candidate z] to be informative when paired with the winner
[candidate y], the Harmony of the loser [candidate z] (according to the
current [ranking]) must be greater than the Harmony [of the intended
winner y]; only then will [an update] occur to render [the intended
winner y] more harmonic than the loser [z]. The obvious choice for
this loser [z] is [the winner ypred currently predicted by the learner]: it
is of maximum Harmony according to the current ranking, and if any
competitor to the winner has higher Harmony according to the current
ranking, then [ypred] must.”

Based on this reasoning, Tesar and Smolensky as well as Boersma define the
subroutine for the choice of the loser form as follows:

(4) At step (1b), the GLA sets the current loser [z] equal to the winner
[ypred] predicted by the current ranking vector for the current under-
lying form /x/

Statement (4) needs to be qualified as follows. In the passage quoted in (3),
Tesar and Smolensky assume that the learner represents its current hypothesis
on the target adult grammar in the form of a ranking, as it is standard in OT.
The GLA instead represents its current hypothesis in the form of a numerical
ranking vector. If a ranking vector has pairwise distinct ranking values, then
it can be identified with the unique ranking that ranks a constraint above
another constraint iff the ranking value of the former constraint is larger than
the ranking value of the latter. If a ranking vector has instead two or more
identical components, then it can be identified with multiple rankings, that
resolve the ties in different ways and are thus called refinements of the given
ranking vector. To illustrate, the ranking vector in (5a) admits the unique
refinement C1 � C2 � C3, while the ranking vector in (5b) admits the two

4 Giorgio Magri

refinements C1 � C2 � C3 and C1 � C3 � C2, as there are two different
ways to break the tie between the two ranking values of C2 and C3.

(5) a.
C1 100

C2 70
C3 50

 b.
C1 100

C2 50
C3 50

A ranking vector is consistent with an underlying/winner/loser form triplet
according to condition (2) provided each one of its refinements is consistent
with that triplet in the usual OT sense. From now on, the expression “the
winner ypred predicted by the current ranking vector” in (4) is to be intended
as a short hand for the more careful expression “the winner ypred predicted by
an arbitrary refinement of the current ranking vector” in the usual OT sense
(see Boersma 2009 for relevant discussion).

Tesar and Smolensky’s reasoning quoted in (3) has two steps. In the general
case, some of the loser candidates [z] will give rise to an underlying/winner/loser
form triplet (/x/, [y], [z]) that is consistent with the current ranking vector
while some other loser candidates will give rise to a triplet that is instead in-
consistent. The latter case is more advantageous than the former case. In fact,
an inconsistent triplet prompts the algorithm to update its current ranking vec-
tor and thus to learn from the current piece of data (x/, [y]). On the contrary,
a consistent triplet just keeps the algorithm waiting for more data, impeding
any learning from the current piece of data. As a first step of their reasoning,
Tesar and Smolensky thus suggest that the algorithm should choose the cur-
rent loser [z] in such a way that the corresponding underlying/winner/loser
form triplet (/x/, [y], [z]) is inconsistent with the current ranking vector, when-
ever possible. It turns out that is possible only in case the candidate [ypred]
predicted by the current ranking vector is different from the current intended
winner [y]. As a second step of their reasoning, Tesar and Smolensky thus refine
their initial suggestion, setting the current loser [z] always equal to the current
prediction [ypred]. The first step of Tesar and Smolensky’s reasoning seems to
me compelling. But the second step doesn’t. Plausibly, computing the current
optimum [ypred] is computationally more demanding than just picking an ar-
bitrary inconsistent loser. And Tesar and Smolensky provide no justification
for this extra computational cost. Unless such a learning theoretic justifica-
tion can be provided, their proposal (4) for the choice of the current loser thus
remains unwarranted.

This paper provides such a justification, based on the notion of factorizabil-
ity. It is standard practice in phonological analyses to focus on a restricted set
of phonological processes. This practice is motivated by the intuition that in-
teractions among different phonological processes are in some sense sparse. For
instance, vowel round harmony and final obstruent devoicing are largely inde-
pendent processes that can be studied separately. Section 2 straightforwardly
formalizes this intuition into an explicit notion of factorizable OT typologies,
namely typologies that describe independent processes and can therefore be
factorized into smaller, independent factor typologies. Section 3 argues that the
GLA should be able to take advantage of the factorizability of the underlying

A note on the GLA’s choice of the current loser 5

OT typology. In the sense that a run of the GLA on the original factorizable
typology should factorize into independent runs on the multiple factor typolo-
gies. Section 4 then looks at conditions that ensure factorizability of the GLA.
It turns out that factorizability requires the current underlying/winner/loser
form triplets to be constructed properly. In particular, setting the current
loser [z] equal to the current prediction [ypred] at step (1b) suffices to ensure
factorizability, thus providing the needed argument in support of Tesar and
Smolensky’s proposal (4).

2 Factorizable typologies

It is standard practice in phonological analyses to focus on a restricted set of
phonological processes. This practice is motivated by the intuition that inter-
actions among different phonological processes are in some sense sparse. This
Section formalizes this intuition into the notion of factorizable OT-typologies.

To start with an example, consider the set of (underlying and surface)
forms in (6a), that consists of low, mid and high vowels, both rounded and
unrounded. Consider next the constraint set in (6b), that consists of the three
faithfulness constraints C1, C3 and C5 for height and roundness as well as
the markedness constraints C2, C4 and C6 that punish round, high and mid
vowels, respectively.

(6) a.

{
y ø Œ
i e æ

}
b.

{
C1 =Ident[round] C3 =Ident[high] C5 =Ident[low]
C2 =*[+round] C4 =*[+high] C6 =*[−high, −low]

}
Crucially, there is no constraint that targets at the same time height and
roundness, that therefore do not interact in the OT typology (6). This fact
has important consequences. Indeed, split up the original constraint set (6b)
into the subset (7b) consisting of the constraints for roundness and the subset
(8b) consisting of the constraints for height.

(7) a.

{
y ø Œ
i e æ

}
b.

{
C1 =Ident[round]
C2 =*[+round]

}
(8) a.

{
y ø Œ
i e æ

}
b.

{
C3 =Ident[high] C5 =Ident[low]
C4 =*[+high] C6 =*[−high, −low]

}
Since there are no constraints that target both roundness and height, these
two constraint subsets (7b) and (8b) partition the original constraint set (6b).
Starting from the original typology (6), I have thus constructed the two factor
typologies (7) and (8).

The ranking (9a) over the original constraint set (6b) is consistent with the
mapping of the underlying form /y/ into the winner surface form [i], in the
usual OT sense. This ranking (9a) over the original constraint set (6b) induces
the factor rankings (9b) and (9c) over the constraint subsets (7b) and (8b).

6 Giorgio Magri

(9) a. ∗[+round]

∗[−high, −low]

Ident[round]

Ident[high]

Ident[low]

∗[+high]

b. ∗[+round]

Ident[round]

c. ∗[−high, −low]

Ident[high]

Ident[low]

∗[+high]

Because of lack of interaction between roundness and height, each of these two
factor rankings is by itself consistent with the mapping of /y/ into [i]. As the
latter property holds for any mapping and any ranking, I say that the original
typology (6) factorizes into the two factor typologies (7) and (8).

A ranking generates a language, namely the corresponding set of licit sur-
face forms. Factorizability has of course straightforward consequences at the
level of languages. Consider for instance the language (10a), that bans mid
vowels and round vowels. This language belongs to the original typology (6),
as it corresponds for instance to the constraint ranking (9a). The languages
corresponding to the two factor rankings (9b) and (9c) in the two factor ty-
pologies (7) and (8) are provided in (10b) and (10c), and will be called the
factor languages. They consist, respectively, of all unrounded vowels and of all
non-mid vowels.

(10) a.

{
i æ

}
b.

{
i e æ

}
c.

{
y Œ
i æ

}
Because of lack of interaction between roundness and height, the original lan-
guage (10a) coincides with the intersection of the two factor languages (10b)
and (10c) and can therefore be reconstructed from the factor languages.

These considerations can be generalized straightforwardly, as follows. Con-
sider an OT typology τ = (X ,Y, Gen, C), namely a set of underlying forms
X , a set of surface forms Y, a generator function Gen and a constraint set
C. Consider a partition C′, C′′ of the constraint set C, namely a pair C′, C′′
of disjoint subsets of C whose union coincides with C.2 The two typologies
τ ′ = (X ,Y, Gen, C′) and τ ′′ = (X ,Y, Gen, C′′) corresponding to these two
constraint subsets are called the factor typologies of the original typology τ .
Furthermore, the restrictions �′ and �′′ to the constraint subsets C′ and C′′
of an arbitrary ranking � on C are called the factor rankings of the origi-
nal ranking �. The original ranking � provides three types of information:
information on the relative ranking of constraints in C′; information on the rel-
ative ranking of constraints in C′′; and information on the relative ranking of
a constraint in C′ and one in C′′. The two factor rankings�′ and�′′ preserve
the first two pieces of information but lose the latter piece of information. A

2 I limit myself to partitions of the constraint set into two subsets C′, C′′, but the reasoning
straightforwardly extends to partitions into an arbitrary finite number of subsets.

A note on the GLA’s choice of the current loser 7

typology is factorizable provided that the latter piece of information is indeed
irrelevant, in the sense that the following condition holds: for every underlying
form /x/ ∈ X , every candidate [y] ∈ Gen(x), and every ranking�, if the orig-
inal ranking � on C is consistent with the mapping of /x/ into [y] according
to the original typology τ , then both factor rankings �′ and �′′ on C′, C′′ are
consistent with that mapping as well.3

Let L = L(τ,�) be the language in the original typology τ correspond-
ing to the original ranking �, namely the range of the corresponding OT-
grammar. Factorizability entails that this language L coincides with the inter-
section of the two languages L′ = L(τ ′,�′) and L′′ = L(τ ′′,�′′) corresponding
to the two factor rankings �′ and �′′ in the two factor typologies τ ′ and τ ′′,
as stated in (11).

(11) L = L′ ∩ L′′

The two languages L′ = L(τ ′,�′) and L′′ = L(τ ′′,�′′) are called the two
factor languages of the original language L = L(τ,�).

Feature based typologies provide a simple example of factorizable typolo-
gies. Let me say that an OT typology τ is based on N partial binary phono-
logical features ϕ1, . . . , ϕN provided that forms can be identified with vectors
or sequences of vectors of values of these features; and the constraints are all
stated in terms of these features as well. A feature based typology factors rel-
ative to a partition C′, C′′ of the constraint set provided that the features can
be split into two disjoint subsets Φ′, Φ′′ in such a way that constraints in C′
(respectively, C′′) only target features in Φ′ (respectively, Φ′′). For instance,
the OT typology (6) is based on the three features ϕ1 = round, ϕ2 = high,
and ϕ3 = low. That typology indeed factors relative to the partition of the
constraint set into (7b) and (8b), that corresponds to the partition of the
features into Φ′ = {ϕ1} and Φ′′ = {ϕ2, ϕ3}.

3 Why the GLA should factorize

This Section shows how to take advantage of the factorizability of the original
typology in the analysis of the GLA, by factorizing the challenging analysis of
the algorithm on the original typology with a large constraint set into simpler
analyses on non-interacting factor typologies with smaller constraint sets each.

To start with an example, let θ = (θ1, . . . , θ6) denote the generic ranking
vector for the constraint set {C1, . . . , C6} described in (6b). A possible update
at the tth iteration in a run of the GLA on the OT typology (6) is described
in (12). Let me explain this update in some detail.

3 The reverse implication always, trivially holds: if the two factor rankings �′ and �′′
are each consistent with a certain mapping, then the original ranking � is consistent with
that mapping as well.

8 Giorgio Magri

(12) current vector θt−1 updated vector θt

| |
C1=Ident[round] 20
C2=*[+round] 30
C3=Idend[high] 17
C4=*[+high] 15

C5=Idend[low] 5
C6=*[−high, −low] 3

(/y/, [y], [i]) //

21
29
17
15
5
3

At step (1a), the GLA is fed the piece of data (/y/, [y]), whereby the underly-
ing form /y/ is faithfully mapped to itself.4 The current ranking vector θt−1
(assembled at the end of the preceding (t−1)th iteration) admits a unique re-
finement, namely the ranking C2 � C1 � C3 � C4 � C5 � C6. The winner
predicted by this ranking � for the underlying form /y/ is [i], as shown by
the tableau in (13).

(13)
/y/ C 2

=
∗[+

ro
un
d]

C 1
=
Id
en
t[
ro
un
d]

C 3
=
Id
en
t[
hi
gh
]

C 4
=
∗[+

hi
gh
]

C 5
=
Id
en
t[
lo
w
]

C 6
=
∗[-
hi
gh
, -
lo
w
]

a. [y] ∗! ∗
b. [ø] ∗! ∗ ∗
c. [Œ] ∗! ∗ ∗
d. + [i] ∗ ∗
e. [e] ∗ ∗! ∗
f. [æ] ∗ ∗! ∗

Following Tesar and Smolensky’s proposal (4), assume that at step (1b) the
GLA sets the current loser equal to the incorrect predicted winner [i], thus ef-
fectively assembling the current underlying/winner/loser form triplet (/y/, [y],
[i]). At step (1d), the GLA thus demotes the loser-preferrer C2 = ∗[+round]
by 1 and promotes the winner-preferrer C1 = Ident[round] by 1, leading
to the updated ranking vector θt. How can a sequence of updates like (12)
performed by the GLA in the original run be analyzed? Here is a way to go.

Let φ denote the generic ranking vector for the factor constraint set {C1, C2}
in (7b). Furthermore, let ϕ denote the generic ranking vector for the factor
constraint set {C3, C4, C5, C6} in (8b). Two possible updates at the tth iter-
ation in two runs of the GLA on the two factor typologies (7) and (8) are
described in (14a) and (14b).

4 The assumption that the underlying and winner forms coincide is made here for illus-
trative purposes only. It does not bear in any way on the main point of the paper, which
is indeed independent of any assumptions on the underlying/winner data pairs fed to the
algorithm.

A note on the GLA’s choice of the current loser 9

(14) a. current vector φt−1 updated vector φt

| |[
C1=Ident[round] 20
C2=*[+round] 30

]
(/y/, [y], [i]) //

[
21
29

]
b. current vector ϕt−1 updated vector ϕt

| |
C3=Idend[high] 17
C4=*[+high] 15

C5=Idend[low] 5
C6=*[−high, −low] 3

 (/y/, [y], [i]) //

17
15
5
3

Assume that in both updates, the GLA receives the data pair (/y/, [y])
at step (1a), whereby the underlying form /y/ is faithfully mapped into it-
self. Assume furthermore that the GLA picks the loser form [i] at step (1b),
thus again assembling the underlying/winner/loser form triplet (/y/, [y], [i]).
Within the factor constraint set {C1, C2} in (7b), C2 = ∗[+round] is loser-
preferring while C1 = Ident[round] is winner-preferring. The former out-
ranks the latter according to the current ranking vector φt−1 in (14a). The
loser-preferrer C2 = ∗[+round] is thus demoted by 1 and the winner-preferrer
C1 = Ident[round] is promoted by 1, yielding φt. Within the factor con-
straint set {C3, C4, C5, C6} in (8b), there are no loser-preferrers. Thus, no
update is performed in (14b), and ϕt coincides with ϕt−1.

The current ranking vector θt−1 in (12) can be assembled from the two
current ranking vectors φt−1 and ϕt−1 in (14): the ranking values assigned by
θt−1 to constraints in {C1, C2} and {C3, C4, C5, C6} coincide with the ranking
values assigned by φt−1 and ϕt−1, respectively. Crucially, the update pre-
serves this property. In fact, also the updated ranking vector θt in (12) can
be assembled from the two corresponding ranking vectors φt and ϕt in (14):
the ranking values assigned by θt again coincide with the ranking values as-
signed by φt and ϕt. I will thus say that the original iteration (12) factorizes
into the two factor iterations (14). If each iteration in a run of the GLA on
the original typology (6) factorizes, that run can be reconstructed from the
two corresponding factor runs on the two factor typologies (7) and (8). The
“difficult” problem of analyzing the run of the GLA on the original typology
(6) with a large number of constraints can thus be broken down into the two
“easier” problems of analyzing the algorithm on the two factor typologies (7)
and (8) with a smaller number of constraints.

These considerations can be generalized straightforwardly, as follows. Con-
sider a run (15) of the GLA on a typology τ = (X ,Y, Gen, C) starting from
an initial ranking vector θ0. Here, I denote compactly by dt the underly-
ing/winner/loser form data triplet constructed by the GLA at the tth iteration
of its loop (1a)-(1d). Furthermore, I denote by θt the current ranking vector
entertained by the GLA at the end of the tth iteration. If the current ranking
vector θt−1 at the end of the preceding (t − 1)th iteration is consistent with
the current data triplet dt considered at the tth iteration, then no update is

10 Giorgio Magri

performed at the tth iteration and the two current ranking vectors θt−1 and θt
entertained at the end of the two consecutive iterations coincide. Otherwise,
θt is obtained from θt−1 by demoting (promoting) by 1 those constraints in C
that are loser- (winner-) preferring relative to dt.

(15) θ0
d1, C // θ1

d2, C // θ2
d3, C // . . .

dt−1, C// θt−1
dt, C // θt

dt+1, C// . . .

Consider a partition C′, C′′ of the constraint set C, namely C′ and C′′ are dis-
joint subsets of C whose union coincides with C. Let me denote by φ and ϕ
the generic ranking vectors for the constraint subsets C′ and C′′, respectively.
Consider the runs (16a) and (16b) of the GLA of the two corresponding factor
typologies τ ′ and τ ′′. At each iteration, the GLA constructs the same under-
lying/winner/loser form triplet dt constructed in the original run (15). If the
current ranking vector φt−1 (respectively, ϕt−1) entertained at the end of the
preceding (t− 1)th iteration is consistent with the triplet dt considered at the
tth iteration, then no update is performed. Otherwise, φt (respectively, ϕt) is
obtained from φt−1 (respectively, ϕt−1) by demoting (promoting) by 1 those
constraints in C′ (respectively, C′′) that are loser- (winner-) preferring relative
to the current triplet dt.

(16) a. φ0

d1, C′ // φ1

d2, C′ // φ2

d3, C′ // . . .
dt−1, C′// φt−1

dt, C′ // φt

dt+1, C′// . . .

b. ϕ0

d1, C′′ // ϕ1

d2, C′′ // ϕ2

d3, C′′ // . . .
dt−1, C′′// ϕt−1

dt, C′′ // ϕt

dt+1, C′′// . . .

For any ranking vector θ on the original constraint set C, let me denote by
θ′ and θ′′ the sub-vector of ranking values assigned by θ to the constraints
in C′ and C′′, respectively. Let me say that the original run (15) of the GLA
factorizes into the two factor runs (16) provided that the two factor runs
“mimic” the original run, in the following sense. Assume that the original run
(15) starts from an initial ranking vector θ0 that assigns to the constraints in
C′ and C′′ the same ranking values as the initial ranking vectors φ0 and ϕ0 of
the two factor runs (16), as stated in (17a). Then, the current ranking vector
θt at any time t in the original run (15) assigns to the constraints in C′ and
C′′ the same ranking values as the ranking vectors φt and ϕt entertained at
that same time t in the two factor runs (16), as stated in (17b).

(17) a. θ′0 = φ0 and θ′′0 = ϕ0;

b. θ′t = φt and θ′′t = ϕt at any time t.

In other words, the two factor runs completely describe the original run, as
the current ranking vector in the original run can be assembled from the two
corresponding current ranking vectors in the two factor runs.

Factorizability plays a crucial role in the analysis of the GLA. Here is a
concrete way to appreciate this point. Child language acquisition is gradual:
the target adult grammar is approached through a path of intermediate stages.
The GLA describes a sequence of ranking vectors that can be matched with

A note on the GLA’s choice of the current loser 11

child acquisition paths, thus providing a tool to model child acquisition grad-
ualness; see for instance Boersma and Levelt (2000) and Curtin and Zuraw
(2002). Formal analyses of the sequences of ranking vectors predicted by the
GLA are thus needed in order to provide solid ground for this modeling en-
terprise. For instance, a macroscopic property of child acquisition paths is re-
strictiveness: the intermediate acquisition stages entertained by the child tend
to correspond to a more restrictive phonotactics than the target adult one.
In order for the GLA to provide a proper model of child acquisition, it thus
needs to enforce restrictiveness. This modeling requirement can be formalized
by requiring condition (18) to hold at any time t in the run considered. Here,
L(τ,�t) is the language in the original typology τ corresponding to an arbi-
trary refinement �t of the current ranking vector θt entertained by the GLA
at the tth iteration. Condition (18) requires this current language predicted
by the GLA to be always smaller than (i.e. a subset of) the target language
Ltarget the algorithm is being trained on.

(18) L(τ,�t) ⊆ Ltarget

Formal analyses of the sequences of ranking vectors predicted by the GLA
should thus in particular be able to assess how well the algorithm enforces
this restrictiveness condition (18). Yet, these analyses are really only viable
when the underlying constraint set C is somewhat small (see for instance Magri
2012). Factorizability now enters the scene. Consider a partition C′, C′′ of the
original large constraint set C. As the factor constraint subsets C′ and C′′ are
smaller than the original constraint set C, formal analyses of the GLA on
the corresponding factor typologies τ ′ and τ ′′ should be possible, or at least
easier. Suppose that the GLA can indeed be shown to be restrictive when
run on each factor typology τ ′, τ ′′ separately. What can be said about the
GLA’s restrictiveness on the original typology τ? The answer is provided by the
following Theorem, that illustrates the importance of the GLA’s factorizability.

Theorem 1 If both the underlying typology and the GLA factorize relative
to a partition of the constraint set, then restrictiveness of the GLA on the
two corresponding factor typologies entails restrictiveness of the GLA on the
original typology. �

Proof Let θt be the current ranking vector entertained by the GLA at the
end of the tth iteration of the original run (15) on the original constraint set
C. Let �t be an arbitrary refinement of θt. Let L(τ,�t) be the language in
the original typology τ corresponding to this ranking�t. Consider a partition
C′, C′′ of the constraint set C and let �′t and �′′t be the two factor rankings
induced by this refinement �t on the two constraint subsets C′ and C′′. Let
L(τ ′,�′t) and L(τ ′′,�′′t) be the two factor languages of the language L(τ,�t),
namely the languages in the two factor typologies τ ′ and τ ′′ corresponding to
the factor rankings�′t and�′′t , respectively. The hypothesis that the original
typology τ factorizes means that the language L(τ,�t) coincides with the
intersection of the two corresponding factor languages L(τ ′,�′t) and L(τ ′′,�′′t
), as stated in (19).

12 Giorgio Magri

(19) Step I:
L(τ,�t) = L(τ ′,�′t) ∩ L(τ ′′,�′′t).

Let θ′t,θ
′′
t be the sub-vectors of ranking values assigned by θt to the constraints

in C′, C′′. Since�t is a refinement of θt and�′t,�′′t are the restrictions of�t

to C′, C′′, then �′t,�′′t are refinements of θ′t,θ
′′
t , as stated in (20).

(20) Step II:
the rankings �′t,�′′t are refinements of the ranking vectors θ′t,θ

′′
t .

Let φt,ϕt be the ranking vectors on C′, C′′ entertained by the GLA at the end
of the tth iteration of the two corresponding factor runs (16) on the factor
typologies τ ′, τ ′′. The hypothesis that the GLA factorizes means that θ′t = φt

and θ′′t = ϕt. Fact (20) thus entails that�′t,�′′t are also refinements of φt,ϕt,
as stated in (21).

(21) Step III:
the rankings �′t,�′′t are refinements of the ranking vectors φt,ϕt.

By (21), the languages L(τ ′,�′t) and L(τ ′′,�′′t) are also the languages en-
tertained at the tth iteration in the two factor runs. Suppose that the GLA
is trained on a target language Ltarget in the original run. Then in the two
factor runs it is trained on the two factor languages L′target and L′′target. The
hypothesis that the GLA satisfies restrictiveness on the two factor typologies
thus entails that L(τ ′,�′t) and L(τ ′′,�′′t) are subsets of the factor languages
L′target and L′′target, as stated in (22).

(22) Step IV:
L(τ ′,�′t) ⊆ L′target and L(τ ′′,�′′t) ⊆ L′′target.

Finally, factorizability of the underlying typology plays a role again, as it
ensures that the intersection of the two factor languages L′target and L′′target
coincides with the target language Ltarget the algorithm is trained on in the
original run, as stated in (23).

(23) Step V:
Ltarget = L′target ∩ L′′target.

I can now put the pieces together as in (24), where (24a) holds by Step I, (24b)
holds by Step IV, and (24c) holds by Step V.

(24) a. L(τ,�t) = L(τ ′,�′t) ∩ L(τ ′′,�′′t)

b. ⊆ L′target ∩ L′′target
c. = Ltarget

In the end, (24) provides the desired inclusion L(τ,�t) ⊆ Ltarget, that shows
that the GLA is restrictive on the original typology. �

A note on the GLA’s choice of the current loser 13

4 How to get the GLA to factorize

Theorem 1 motivates the following question: under which conditions can the
GLA be guaranteed to factorize when run on a factorizable typology? This
Section addresses this question, and shows that the proper definition (4) of
the subroutine for the choice of the current loser form bears on the issue.

To appreciate the problem, consider the following slight variant (25) of the
original factorizable iteration (12).

(25) current vector θt−1 updated vector θt

| |
C1=Ident[round] 20
C2=*[+round] 30
C3=Idend[high] 17
C4=*[+high] 15

C5=Idend[low] 5
C6=*[−high, −low] 3

(/y/, [y], [æ]) //

21
29
18
14
6
3

Again, at step (1a) the algorithm is fed the piece of data (/y/, [y]) that pairs
the underlying form /y/ with the faithful winner [y]. Yet, suppose that the
algorithm now picks the loser form [æ] at step (1b), rather than the loser form
[i] prescribed by Tesar and Smolensky’s (1998) subroutine (4) for the choice of
the current loser form. The three faithfulness constraints C1 = Ident[round],
C3 = Ident[high] and C5 = Ident[low] are all winner-preferring relative
to the underlying/winner/loser form triplet (/y/, [y], [æ]). The markedness
constraints C2 = *[+round] and C4 = *[+high] are instead loser-preferring.
As the loser-preferrer C2 is ranked above all three winner preferrers C1, C3, C5

according to the current ranking vector θt−1, update is triggered. The loser-
preferrers C2 and C4 are demoted by 1 and the winner-preferrers C1, C3, and
C5 are promoted by 1, yielding the updated ranking vector θt.

Let φ and ϕ denote the generic ranking vectors for the two factor con-
straint sets {C1, C2} and {C3, C4, C5, C6} in (7b) and (8b), respectively. The
tth iteration in two possible runs of the GLA on the factor typologies (7) and
(8) are provided in (26a) and (26b).

(26) a. current vector φt−1 updated vector φt

| |[
C1=Ident[round] 20
C2=*[+round] 30

]
(/y/, [y], [æ]) //

[
21
29

]
b. current vector ϕt−1 updated vector ϕt

| |
C3=Idend[high] 17
C4=*[+high] 15

C5=Idend[low] 5
C6=*[−high, −low] 3

 (/y/, [y], [æ]) //

17
15
5
3

14 Giorgio Magri

Within the factor constraint subset {C1, C2}, the markedness constraint C2 =
*[+round] is loser-preferring and ranked above the winner-preferring C1 =
Ident[round] according to the current ranking vector φt−1 in the factor
run (26a). Thus update is performed, yielding the ranking vector φt. Within
the factor constraint set {C3, C4, C5, C6}, the markedness constraint C4 =
∗[+high] is loser-preferring, but it is already ranked underneath the winner-
preferring constraint C3 = Idend[high] according to the current ranking vec-
tor ϕt−1, so that no update is performed in the factor run (26b).

The current ranking vector θt−1 in (25) can be assembled from the two
current ranking vectors φt−1 and ϕt−1 in (26): the ranking values assigned by
θt−1 to constraints in {C1, C2} and {C3, C4, C5, C6} coincide with the ranking
values assigned by φt−1 and ϕt−1, respectively. Crucially, the update does
not preserves this property. In fact, the updated ranking vector θt in (25)
assigns to the constraints in {C3, C4, C5, C6} ranking values that are different
from those assigned by ϕt. In other words, the original iteration (25) does
not factorize, namely it cannot be reconstructed from the two corresponding
factor iterations. The crucial difference between the factorizable iteration (12)
and the non factorizable iteration (25) has to do with the choice of the loser
form. The following theorem says that setting the current loser equal to the
current prediction as prescribed by Tesar and Smolensky’s (1998) subroutine
(4) ensures the GLA’s factorizability. This result thus provides a justification
of this subroutine from the perspective of factorizability.

Theorem 2 The GLA factorizes when run on a factorizable OT typology pro-
vided that the subroutine for the choice of the loser form at step (1b) always
picks the form predicted by (an arbitrary refinement of) the current ranking
vector, as prescribed by (4). �

Proof Consider the original run (15) of the GLA on the original typology
τ = (X ,Y, Gen, C), whose current ranking vector is denoted by θt. Assume
that the typology τ factorizes relative to a partition C′, C′′ of the constraint set
C. Consider the corresponding factor runs (16), whose current ranking vectors
are denoted by φt and ϕt. I will prove the factorizability identities (17b) by
induction on time t. Assume that they hold at the end of the (t−1)th iteration,
namely that θ′t−1 = φt−1 and θ′′t−1 = ϕt−1. Assume furthermore that the
underlying/winner/loser form triplet dt = (/x/, [y], [z]) considered at the tth
iteration has the property that the loser [z] is the winner form predicted for
the underlying form /x/ by (an arbitrary refinement of) the current ranking
vector θt−1, as prescribed by (4). I will then prove that the factorizability
identities (17b) also hold at time t, namely that θ′t = φt and θ′′t = ϕt.

To start, suppose that the current underlying/winner/loser form triplet
dt is consistent with the current ranking vector θt−1, so that no update is
performed in the original run, and θt therefore coincides with θt−1. In this
case, it is sufficient to show that also the corresponding ranking vectors φt−1
and ϕt−1 in the factor runs are consistent with the current triplet dt so that
no update is performed in the two factor runs either. To this end, consider two
arbitrary refinements�′t−1 and�′′t−1 of φ′t−1 and ϕ′′t−1, and let me show that

A note on the GLA’s choice of the current loser 15

both refinements are consistent with dt. The hypothesis that the factorizability
identities hold at time t−1 means that θ′t−1 = φt−1 and θ′′t−1 = ϕt−1. Thus in
particular,�′t−1 and�′′t−1 are also refinements of θ′t−1 and θ′′t−1, respectively.
This means in turn that �′t−1 and �′′t−1 are the restriction to C′ and C′′ of
some ranking �t−1 that is a refinement of θt−1. The hypothesis that θt−1 is
consistent with the current triplet dt entails in particular that this refinement
�t−1 is consistent with dt. Factorizability of the underlying typology then
entails that also �′t−1 and �′′t−1 are consistent with dt, as desired.

Suppose next that the current ranking vector θt−1 is not consistent with the
current underlying/winner/loser form triplet dt, so that update is performed in
the original run. I will now prove that θ′t = φt; the other factorizability identity
θ′′t = ϕt is proven analogously. If all constraints in C′ are even relative to dt

(namely assign the same number of violations to the winner and the loser), then
of course none of the constraints in C′ will be updated neither in the original
nor in the corresponding factor update, as the GLA only re-ranks winner- and
loser-preferring constraints. In this case, the factorizability identity θ′t−1 =
φt−1 at time t−1 immediately entails the desired factorizability identity θ′t =
φt at time t.

Suppose now that there is a at least a constraint in C′ which is either
winner- or loser-preferring according to the current triplet dt. If C′ contains
no winner-preferring constraint, then it has got to contain at least a loser-
preferring constraint, otherwise all the constraints in C′ would be even. Since
C′ contains a loser-preferring constraint but no winner-preferring constraint,
then no ranking vector on C′ can ever be consistent with dt. This means in turn
that the current ranking vector φt−1 in the first factor run is not consistent
with the current triplet dt and it will therefore be updated. As θ′t−1 and φt−1
coincide, as they are both updated, and as they are updated in the same way
(winner-preferrers go up and loser-preferrers go down by 1), then the updated
ranking vectors θ′t and φt coincide as well.

Finally, consider the remaining case, where C′contains some constraint that
is winner-preferring according to the current triplet dt = (/x/, [y], [z]). Recall
that the current loser [z] has been selected according to (4). This means that
there is some ranking �t−1 that is a refinement of the current ranking vector
θt−1 and incorrectly maps /x/ to [z]. In particular, this ranking �t−1 must
therefore be consistent with the underlying/winner/loser form triplet d =
(/x/, [z], [y]) obtained from dt by swapping the winner [y] with the loser [z],
as stated in (27).

(27) Step I:
The current ranking vector θt−1 admits a refinement �t−1 that is
consistent with the swapped underlying/winner/loser form triplet d.

As the winner form and the loser form in the two triplets dt and d have beed
swapped, every constraint that is winner-preferring relative to dt is loser-
preferring relative to d and vice versa. The hypothesis that C′ contains some
constraint that is winner-preferring relative to dt thus entails that it contains
some constraint that is loser-preferring relative to d, as stated in (28).

16 Giorgio Magri

(28) Step II:
The constraint subset C′ contains some constraint that is loser-preferring
relative to the swapped triplet d.

Let�′t−1 be the factor ranking induced by the ranking�t−1 on the constraint
subset C′. Assume that the underlying typology factorizes. Thus, the fact (27)
that the ranking �t−1 is consistent with the swapped triplet d entails that
the factor ranking �′t−1 is consistent with it as well, as stated in (29).

(29) Step III:
The current ranking vector θt−1 admits a refinement �t−1 whose re-
striction �′t−1 to C′ is consistent with the swapped triplet d.

Since the factor ranking �′t−1 on C′ is consistent with d by (29) and since

furthermore C′ contains a loser-preferring constraint relative to d by (28),
then it must be the case that C′ contains some constraint C ∈ C′ that is
winner-preferring relative to d and ranked by �′t−1 above every constraint

that is loser-preferring relative to d, as stated in (30).

(30) Step IV:
The current ranking vector θt−1 admits a refinement �t−1 whose re-
striction �′t−1 to C′ has the following property: �′t−1 ranks a con-

straint of C′ that is winner-preferrer relative to d above every constraint
in C′ that is instead loser-preferring relative to d.

Switching back from the swapped triplet d to the original triplet dt, every
winner- (respectively, loser-) preferring constraint becomes loser- (respectively,
winner-) preferring. Fact (30) thus entails the following fact (31).

(31) Step V:
The current ranking vector θt−1 admits a refinement �t−1 whose re-
striction �′t−1 to C′ has the following property: �′t−1 ranks a con-
straint of C′ that is loser-preferring relative to dt above every constraint
in C′ that is instead winner-preferring relative to dt.

In other words, (31) says that the ranking sub-vector θ′t−1 is not consistent
with the current triplet dt. As φt−1 coincides with θ′t−1 by the inductive
hypothesis, then φt−1 is not consistent with dt either, and thus an update
is triggered at the tth iteration in the factor run as well. As θ′t−1 and φt−1
coincide, as both are updated, and as they are updated in the same way, then
the updated ranking vectors θ′t and φt coincide as well. �

5 Conclusion

OT is a inherently comparative model of grammar: an underlying form is
mapped to that surface form that wins the competition against all other loser
forms. Assuming that the GLA is provided at each iteration with the desired
mapping of an underlying form into the corresponding winner, the algorithm

A note on the GLA’s choice of the current loser 17

needs to pick a corresponding loser in order to test its current grammar. When-
ever possible, the GLA should pick an informative loser, namely one that is
not already condemned by the current grammar, so that the GLA will be able
to learn something from the current piece of data. Tesar and Smolensky sug-
gest a specific implementation of this idea: the GLA should picks that specific
informative loser that consists of the incorrect prediction made by the current
grammar. Yet, the choice of this specific loser over any other informative loser
requires some extra computation, and needs therefore some careful motivation.
In this paper, I have provided one such motivation, from the perspective of
factorizability. I have shown that Tesar and Smolensky’s specific choice of the
current loser allows a run of the GLA to factorize, whenever the underlying
typology factorizes (Theorem 2). This means that, if the underlying typology
encodes independent processes and can therefore be factorized into smaller in-
dependent typologies, then a run of the GLA on the original typology can be
mimicked by corresponding runs on the factor typologies. And I have argued
that factorizability is a desirable property of error-driven ranking algorithms
such as the GLA, as it allows the analysis of the algorithm on the original large
typology to be reduced to the simpler analyses on the smaller factor typologies
(Theorem 1).

Acknowledgements I wish to thank Adam Albright for lots of help and discussion. I
also wish to thank Paul Boersma, Alan Prince, Paul Smolensky, Donca Steriade, and Bruce
Tesar, as well as an anonymous JLLI reviewer. This work has been supported in part by
a grant from the Fyssen Research Foundation (“Child acquisition of sound patterns: a
computational modeling approach”).

References

Boersma P (1997) How we learn variation, optionality and probability. In: van Son R (ed)
Proceedings of the Institute of Phonetic Sciences (IFA) 21, Institute for Phonetic Sci-
ences, University of Amsterdam, pp 43–58

Boersma P (1998) Functional phonology. PhD thesis, University of Amsterdam, The Nether-
lands, the Hague: Holland Academic Graphics

Boersma P (2009) Some correct error-driven versions of the constraint demotion algorithm.
Linguistic Inquiry 40:667–686

Boersma P, Hayes B (2001) Empirical tests for the Gradual Learning Algorithm. Linguistic
Inquiry 32:45–86

Boersma P, Levelt C (2000) Gradual constraint-ranking learning algorithm predicts acquisi-
tion order. In: Clark EV (ed) Proceedings of the 30th Child Language Research Forum,
CSLI, Stanford University, pp 229–237, corrected version available as ROA 361

Curtin S, Zuraw K (2002) Explaining constraint demotion in a developing system. In: Skara-
bela B, Fish S, Do AHJ (eds) Boston University Conference on Language Development
(BUCLD) 26, Cascadilla Press, vol 1, pp 118–129

Kager R (1999) Optimality Theory. Cambridge University Press, Cambridge, United King-
dom

Magri G (2012) Robust analysis of error-driven ranking algorithms and its implications
for modeling the child acquisition of phonotactics, accepted subject to revisions at the
Journal of Logic and Computation

Prince A (2002) Entailed ranking arguments, ms., Rutgers University. Also available as ROA
500

18 Giorgio Magri

Prince A, Smolensky P (2004) Optimality Theory: Constraint Interaction in Generative
Grammar. Blackwell, as Technical Report CU-CS-696-93, Department of Computer Sci-
ence, University of Colorado at Boulder, and Technical Report TR-2, Rutgers Center for
Cognitive Science, Rutgers University, New Brunswick, NJ, April 1993. Also available
as ROA 537 version

Tesar B, Smolensky P (1998) Learnability in Optimality Theory. Linguistic Inquiry 29:229–
268

