
A closer look at Boersma and Hayes’ Ilokano metathesis test case

Giorgio Magri and Benjamin Storme
CNRS/Univ. Paris 8 and MIT

An Error-driven learner maintains a current grammar, which represents its cur-
rent hypothesis of the target adult grammar. The learner is exposed to a stream of
data, one piece of data at the time. Whenever the current grammar is found to be
inconsistent with the current piece of data, the current grammar is slightly updated,
in a way that takes into account the nature of the failure on the current piece of data.
Boersma (1998) develops an implementation of error-driven learning within the
framework of stochastic OT, called the Gradual Learning Algorithm (henceforth:
GLA). Boersma & Hayes (2001) (henceforth: BH) report that the GLA succeeds at
learning variation in three complex realistic test cases. Furthermore, they report that
variants of the GLA (which differ only for small details of the rule used to update
the current grammar) instead fail.

The success of the GLA implementation of error-driven learning on BH’s test
cases is surprising, as nothing is built into the error-driven learning scheme to guide
the learner towards probability matching. Indeed, it is not hard to construct artificial
cases of variation where the GLA fails.1 We thus submit that the proper interpreta-
tion of BH’s successful simulation results is the following: the patterns of variation
in BH’s test cases have some special structure (hopefully shared by other cases
of variation in Natural Language) which the GLA (but not variants thereof which
adopt slightly different update rules) is crucially able to exploit. Thus interpreted,
BH’s simulation results of course raise the following question: what is this special
structure displayed by BH’s test cases (and allegedly shared by other cases of vari-
ation in Natural Language) which allows the GLA to succeed? In Magri & Storme
(in prep.) (henceforth: MS), we address this question through detailed analyses of
the behavior of the GLA (and variants thereof) on BH’s three test cases. Here, we
offer a preview of our analyses, focusing on BH’s Ilokano metathesis test case.

1 Stochastic error-driven ranking algorithms
Boersma (1998) develops the stochastic OT grammatical framework, a modification
of the standard OT framework which is able to model grammatically conditioned
language variation. Let us start with a brief review of the notion of a stochastic OT
grammar, in order to set the notation used throughout the paper. Assume that the
constraint set consists of n constraints C1, ..., Cn. A ranking vector is an n-tuple
θ = (θ1, ..., θn) of arbitrary numbers; the kth number θk is called the ranking value

1Here is one such case (see MS for details). BH’s Finnish genitive test case is based on Anttila
(1997). BH (p. 68) write: “we found that we could derive the corpus frequencies using only a
subset of [Anttila’s] constraints.” It turns out that BH’s constraint set can be further pruned of the
constraints *LAPSE, *Ó ,*Á, * Ĭ without affecting the simulation results. Yet, the GLA fails on
a minimal modification of the latter test case, which only differs because it lacks the two forms
/luettelo/ and /korjaamo/.

of constraint Ck. A noise vector is an n-tuple ε = (ε1, ..., εn) of numbers sampled
independently from each other according to some continuous distribution D; the
kth number εk is called the noise value of constraint Ck. The result of corrupting
a ranking vector θ = (θ1, ..., θn) through a noise vector ε = (ε1, ..., εn) is the new
ranking vector θ + ε = (θ1 + ε1, ..., θn + εn) obtained by corrupting each ranking
value through the corresponding error value; the kth component θk + εk is called
the corrupted ranking value of constraint Ck.

Since the noise values εk are sampled according to a distribution D which is
continuous, the probability that the corrupted ranking vector θ+ε has two identical
components is null. Thus, it represents the unique constraint ranking�θ+ε which
ranks a constraint Ck above another constraint Ch iff the corrupted ranking value
θk + εk of the former is larger than the corrupted ranking value θh + εh of the latter.
The stochastic grammar OTDθ corresponding to a ranking vector θ = (θ1, ..., θn)
and a continuous distribution D is the grammar which takes an underlying form
x and returns the candidate y = OT�θ+ε

(x) which is the winner (in the standard
OT sense) according to the constraint ranking�θ+ε corresponding to the corrupted
ranking vector θ + ε, where the noise ε has been sampled according to the distri-
bution D. Since the winner depends on the random noise vector ε, stochastic OT
grammars provide a tool to model grammatically conditioned language variation.

Within the framework of stochastic OT, the error-driven learning scheme infor-
mally sketched at the beginning of the paper can be formalized as the (stochastic)
error-driven ranking algorithm (EDRA) described in Table 1. The algorithm main-
tains a current stochastic OT grammar, represented through a current vector θ of
ranking values. These current ranking values are initialized by setting them equal
to certain initial values. Following BH, we set the initial ranking values all equal to
100. These initial ranking values are then updated by looping through four steps.
At step (I), the algorithm receives a piece of data consisting of an underlying form
x together with a corresponding intended winner candidate y. At step (II), the algo-
rithm computes the candidate z predicted to be the winner for the underlying form x
according to the stochastic grammar OTDθ corresponding to the current ranking vec-
tor θ and a certain distribution D used to sample the noise values. Following BH,
we assume that D is a gaussian distribution with zero mean and a small variance,
called the noise parameter. If the predicted winner z coincides with the intended
winner y, the current ranking vector has succeeded on the current piece of data.
The EDRA thus has nothing to learn from the current piece of data, loops back to

Initialize
the current

ranking vector θ

Step (I): get
an underlying

form x together
with a winner y

Step (II): compute the win-
ner z = OTDθ (x) predicted

for x by the stochastic
grammar corresponding
to the current vector θ

Step (III): is the
intended winner
y identical to the

predicted winner z?

Step (IV): update
the current ranking

vector θ in response
to its current failure

no

yes

Table 1: Error-driven learning within stochastic OT

step (I), and waits for more data. If instead the predicted winner z differs from the
intended winner y, then the current ranking vector needs to be updated at step (IV)
in response to that failure.

The current failure says in particular that the constraints which prefer the loser z
(namely assign less violations to z than to y) are currently ranked too high while the
constraints which instead prefer the intended winner y (namely assign less viola-
tions to y than to z) are ranked too low. At step (IV), the algorithm tries to remedy to
this situation by slightly modifying the current ranking values. In the general case,
this re-ranking rule has two components. It has a demotion component, which de-
creases the ranking values of at least certain loser-preferring constraints by a certain
demotion amount, say 1 for concreteness. Furthermore, it has a promotion compo-
nent which increases the ranking values of the winner-preferring constraints by a
certain promotion amount p ≥ 0, which can be null or positive. The demotion and
promotion amounts can be rescaled by a positive small constant, called plasticity.

Four implementations of this update scheme have been considered in the litera-
ture, summarized in Table 2. The GLA re-ranking rule demotes all loser-preferring
constraints. The other three re-ranking rules instead only demote the undominated
loser-preferring constraints, namely those loser-preferrers that indeed need to be
demoted, because their current corrupted ranking values are not smaller than the
current corrupted ranking value of some winner-preferring constraint. Furthermore,
the EDCD re-ranking rule performs no constraint promotion at all, namely assumes
a null promotion amount: p = 0. The GLA and minGLA re-ranking rules perform
as much constraint promotion as demotion, namely assume a promotion amount
equal to the demotion amount: p = 1. And the CEDRA re-ranking rule assumes
a promotion amount strictly smaller than the inverse of the number w of winner-
preferring constraints promoted.2

Name of the update rule Promotion Which constraints
amount are demoted

Error-Driven Constraint Demotion p = 0 only the undominated loser-
(EDCD; Tesar & Smolensky 1998): preferring constraints

Gradual Learning Algorithm p = 1 all loser-
(GLA; Boersma 1998) preferring constraints

minimal Gradual Learning Algorithm p = 1 only the undominated loser-
(minGLA; Boersma 1998) preferring constraints

Calibrated error-driven ranking algorithm p < 1/w only the undominated loser-
(CEDRA; Magri 2012): preferring constraints

Table 2: Four re-ranking rules considered in the literature

2 The Ilokano metathesis test case
One of BH’s test cases concerns two areas of free variation in Ilokano: an optional
process of metathesis and variation in the form of the reduplicates. In this paper,

2For the CEDRA simulations reported below, we have used the promotion amount p = 1
w+1 .

Underlying forms Candidates Probabilities
of the candidates

/paPlak/ [paP.lak] 0.0
[pa.lak] 1.0
[pa.Plak] 0.0
[pal.Pak] 0.0

/Pajo-en/ [Pa.jo.en] 0.0
[Paj.wen] 1.0
[Pa.jo.Pen] 0.0
[Pa.jen] 0.0

/basa-en/ [ba.sa.en] 0.0
[bas.a

“
en] 0.0

[bas.wen] 0.0
[ba.sa.Pen] 1.0
[ba.sen] 0.0

/taPo-en/ ta.Po.en 0.0
taP.wen 0.5
taw.Pen 0.5
ta.wen 0.0
ta.Pwen 0.0
ta.Po.Pen 0.0
ta.Pen 0.0

Constraints

ONSET
MAXIO(V)
*LOWGLIDE
IDENTIO(LOW)
DEPIO(P)
IDENTIO(SYLLABIC)
*[PC
MAXOO(P)
LINEARITY
*P]
MAXIO(P)

Table 3: BH’s Ilokano metathesis test case

we focus on the metathesis test case, summarized in Table 3.3 There are four under-
lying forms, listed in the left column of the table; BH assume they have the same
frequency. The corresponding candidates are listed together with their probabil-
ity of being a winner (conditioned on the underlying form). The underlying form
/paPlak/ illustrates the fact that Ilokano bans glottal stops in coda position, which
happen to undergo deletion. The concatenation of the stems /Pajo/ and /basa/ with
the suffix /en/ cannot surface faithfully, because Ilokano does not allow onsetless
syllables. When the stem-final vowel is /o/, Ilokano glides that vowel and syllabi-
fies the glide as the missing onset. When the stem-final vowel is instead /a/, Ilokano
epenthesizes an onset glottal stop. The processes just described are deterministic:
only one candidate wins, with probability 1.0. These processes interact when the
onsetless suffix /-en/ is concatenated with the stem /taPo/ containing a glottal stop.
Again, Ilokano repairs the missing onset by gliding the stem-final vowel /o/ and
then syllabifies that glide as the missing onset. Unfortunately, this repair strategy
stands the glottal stop of the stem in coda position. As seen above, in an underived
environment such as /paPlak/, coda glottal stops are deleted. But in the derived en-
vironment /taPo-en/, Ilokano displays free variation between faithful production of
the coda glottal stop and metathesis with the following glide. BH assume that the
two candidates [taP.wen] and [taw.Pen] win with equal probability of 0.5. BH offer
a detailed account of these phonological patterns within stochastic OT in terms of
the constraints listed in the right column of Table 3.

3We have made small modifications with respect to BH, which have no impact neither on the
simulation results nor on the analysis of those results; see MS for discussion.

We can now study the behavior of the stochastic EDRA on the Ilokano metathe-
sis test case. In Table 4, we report the final ranking values learned by the algorithm,
for each of the four re-ranking rules listed in Table 2. We have used the same imple-
mentation details used by BH (p. 79): a learning simulation consists of three stages
of 7,000 iterations each, with deceasing plasticity (2.0, 0.2, and 0.02) and decreas-
ing noise (10.0, 2.0, and 2.0). The final ranking vector reported here for the GLA is
almost identical to the one reported by BH. BH note that multiple runs of the GLA
yield almost identical final ranking values; the same holds for the other update rules;
the values reported are thus characteristic of the behavior of the algorithm.

The quality of the final ranking vectors reported in Table 4 is evaluated in Ta-
ble 5. In the first two columns of the table, we list all pairs of an underlying form
and a corresponding candidate together with their actual probabilities. In the four
remaining columns, we provide the frequencies of that mapping predicted by the fi-
nal ranking vectors reported in Table 4 (noise: 2.0; number of repetitions: 100,000).
We see that all four algorithms manage to learn the stochastic behavior of the un-
derlying form /taPo-en/. Furthermore, all four algorithms also manage to learn the
deterministic behavior of the underlying forms /Pajo-en/ and /basa-en/. The critical
test case is the underlying form /paPlak/ at the top of the table: both the GLA and
GLAmin succeed at learning its deterministic behavior, while the CEDRA comes
short on the task and EDCD fails. What makes /paPlak/ hard to learn? How do the
GLA and GLAmin succeed? Why is it that EDCD and CEDRA instead fail? In the
rest of this paper, we provide an analytical answer to these questions.

3 Simplifying the Ilokano metathesis test case
To start, we describe the Ilokano metathesis test case in ERC (elementary ranking
condition; Prince 2002) notation, as in Table 6a. We consider all possible triplets
of an underlying form, a corresponding winner (namely any candidate for that un-
derlying form which has a non-null probability of winning) and any other candidate
different from that winner, which therefore counts as a loser. For instance, the first
triplet (/paPlak/, [pa.lak], [pa.Plak]) consists of the underlying form /paPlak/, its
unique winner [pa.lak], and one of its loser candidates, in this case [pa.Plak]. We
adopt the convention of striking out the loser in each triplet, in order to distinguish
it from the winner. The remaining triplets in the first block are obtained by consid-
ering all possible loser candidates for this underlying form. The next two blocks
corresponding to the underlying forms /Pajo-en/ and /basa-en/ are constructed anal-
ogously. Finally, the underlying form /taPo-en/ comes with two winners, namely
[taw.Pen] and [taP.wen]. Hence, it corresponds to two blocks of triplets, each cor-
responding to this underlying form, one of the two winners and all remaining loser
candidates. Each such underlying/winner/loser form triplet sorts the constraints into
winner-preferring (i.e. those which assign less violations to the winner than to the
loser), loser-preferring (i.e. those which assign less violations to the loser than to
the winner), and even (i.e. those which assign the same number of violations to the
loser and to the winner). We thus classify each constraint accordingly, by writing
W (or L) in correspondence of winner-preferring (or loser-preferring, respectively)
constraints (while the entry corresponding to even constraints is left empty). To il-
lustrate, the entry corresponding to the first ERC (/paPlak/, [pa.lak], [pa.Plak]) and

GLA GLAmin
IDENTIO([LOW]) 142.0
MAXIO(V) 140.0
ONSET 138.0
*LOWGLIDE 138.0
*[PC 114.0
MAXOO(P) 110.0
DEPIO(P) 98.0
LINEARITY 67.0
*P] 66.9
MAXIO(P) 24.0
IDENIO([SYL]) 24.0

MAXIO(V) 148.0
*LOWGLIDE 146.0
ONSET 144.0
IDENTIO([LOW]) 144.0
*[PC 118.0
MAXOO(P) 116.0
DEPIO(P) 106.0
LINEARITY 76.1
*P] 75.8
IDENIO([SYL]) 64.0
MAXIO(P) 34.0

EDCD CEDRA
ONSET 100.0
MAXOO(P) 100.0
MAXIO(V) 100.0
IDENTIO([LOW]) 100.0
*[PC 100.0
*LOWGLIDE 100.0
DEPIO(P) 50.0
IDENIO([SYL]) 10.0
*P] -897.9
LINEARITY -898.0
MAXIO(P) -900.8

ONSET 113.0
IDENTIO([LOW]) 111.3
MAXIO(V) 111.0
*LOWGLIDE 108.6
*[PC 103.0
MAXOO(P) 100.0
DEPIO(P) 64.0
IDENIO([SYL]) 22.0
*P] -304.3
LINEARITY -304.5
MAXIO(P) -309.1

Table 4: Ranking values learned by the EDRA trained on the Ilokano test case

the markedness constraint *[PC is set equal to W because that constraint is winner-
preferring, as it is violated by the loser [pa.Plak] but not by the winner [pa.lak]. The
ERC matrix thus obtained provides a summary of all the actions that the EDRA can
take. In fact, each update is triggered by one of these ERCs and the update can be
described in terms of the corresponding pattern of W’s and L’s: promote constraints
which have a W and demote constraints which have an (undominated) L.

The constraints corresponding to the six left-most columns of Table 6a are spe-
cial in the sense that they only have W’s but no L’s. This means that these con-
straints will never be demoted and thus will never drop below their initial ranking
value. Focus on the ERCs that have a W corresponding to one of these constraints.
The following proposition I guarantees that these ERCs can trigger only very “few”
updates (see MS for a more explicit formulation of this proposition and a proof). In
other words, this proposition guarantees that the learning dynamics is governed in
the long run by the remaining ERCs, which are listed in Table 6b.
Proposition I. Consider an arbitrary run of the stochastic EDRA on the Ilokano
metathesis text case. Assume that all constraints start with the same initial ranking
value, that the additive error is sampled according to a gaussian distribution with
small variance, and that the re-ranking rule is one of those listed in Table 2. With
high probability, each of the ERCs in Table 6a which has a W corresponding to the
six left-most constraints can trigger only very few updates. �

We can now repeat the same reasoning a second time. Constraint DEPIO(P) is

actual GLA GLAmin EDCD CEDRA
(/paPlak/, [pa.lak]) 1.0 1.0 1.0 0.7558 0.9128

(/paPlak/, [paP.lak]) 0.0 0.0 0.0 0.1201 0.0372
(/paPlak/, [pal.Pak]) 0.0 0.0 0.0 0.1241 0.05
(/paPlak/, [pa.Plak]) 0.0 0.0 0.0 0.0 0.0

(/Pajo-en/, [Paj.wen]) 1.0 1.0 1.0 1.0 1.0
(/Pajo-en/, [Pa.jen]) 0.0 0.0 0.0 0.0 0.0

(/Pajo-en/, [Pa.jo.Pen]) 0.0 0.0 0.0 0.0 0.0
(/Pajo-en/, [Pa.jo.en]) 0.0 0.0 0.0 0.0 0.0

(/basa-en/, [ba.sa.Pen]) 1.0 1.0 1.0 1.0 1.0
(/basa-en/, [bas.a

“
en]) 0.0 0.0 0.0 0.0 0.0

(/basa-en/, [ba.sen]) 0.0 0.0 0.0 0.0 0.0
(/basa-en/, [ba.sa.en]) 0.0 0.0 0.0 0.0 0.0
(/basa-en/, [bas.wen]) 0.0 0.0 0.0 0.0 0.0
(/taPo-en/, [taP.wen]) 0.5 0.4958 0.5464 0.4929 0.4547
(/taPo-en/, [taw.Pen]) 0.5 0.5042 0.4536 0.5071 0.5453
(/taPo-en/, [ta.Po.en]) 0.0 0.0 0.0 0.0 0.0

(/taPo-en/, [ta.Pen]) 0.0 0.0 0.0 0.0 0.0
(/taPo-en/, [ta.wen]) 0.0 0.0 0.0 0.0 0.0

(/taPo-en/, [ta.Pwen]) 0.0 0.0 0.0 0.0 0.0
(/taPo-en/, [ta.Po.Pen]) 0.0 0.0 0.0 0.0 0.0

Table 5: Stochastic OT grammars corresponding to the ranking values in Table 4

winner-preferring but never loser-preferring according to the ERCs listed in Table
6b. Thus, this constraint is never demoted. Proposition II guarantees that those
ERCs that have a W corresponding to this constraint can only trigger a very small
number of updates (see MS for a more explicit formulation of this proposition and
a proof). In other words, this proposition guarantees that the learning dynamics is
governed in the long run by the remaining ERCs, listed in Table 6c (here, we have
gotten rid of the seven constraints that are always even in the ERCs which are not
guaranteed to only trigger very few updates by the two propositions I and II).
Proposition II. Consider an arbitrary run of the stochastic EDRA on the Ilokano
metathesis text case. Assume that all constraints start with the same initial ranking
value, that the additive error is sampled according to a gaussian distribution with
small variance, and that the re-ranking rule is one of those listed in Table 2. With
high probability, each of the three ERCs in Table 6b which has a W corresponding
to the constraint DEPIO(P) can trigger only very few updates. �

In conclusion, Table 6c displays the computational core of the Ilokano metathe-
sis test case. This test case requires the two constraints LINEARITY and *P] to
have the same ranking values, in order to model the free variation between the two
forms [taw.Pen] and [taP.wen]. Furthermore, the constraint MAXIO(P) must have
a smaller ranking value, in order to prevent the additive noise from being able to
switch the relative ranking between MAXIO(P) and the other two constraints, thus
ensuring that [pal.Pak] never beats [pa.lak]. In the next two sections, we analyze
the behavior of the stochastic EDRA on this case study, depending on the choice of
the re-ranking rule. As the ERC matrix in Table 6c contains ERCs that all have a
single L, the GLA and GLAmin re-ranking rules collapse; we thus ignore the latter.

(a)

ONSET

M
AX IO

(V
)

*LOW
GLID

E

ID
ENT IO

(L
OW

)

*[P
C

M
AX O

O
(P

)

DEP IO
(P

)

ID
ENT IO

(S
YL)

LIN
EARIT

Y

*P
]

M
AX IO

(P
)

(/paPlak/, [pa.lak], [pa.Plak]) W L
(/paPlak/, [pa.lak], [pal.Pak]) W L
(/paPlak/, [pa.lak], [paP.lak]) W L

(/Pajo-en/, [Paj.wen], [Pa.jen]) W L
(/Pajo-en/, [Paj.wen], [Pa.jo.en]) W L

(/Pajo-en/, [Paj.wen], [Pa.jo.Pen]) W L
(/basa-en/, [ba.sa.Pen], [bas.a

“
en]) W L W

(/basa-en/, [ba.sa.Pen], [bas.wen]) W L W
(/basa-en/, [ba.sa.Pen], [ba.sen]) W L

(/basa-en/, [ba.sa.Pen], [ba.sa.en]) W L
(/taPo-en/, [taw.Pen], [taP.wen]) L W
(/taPo-en/, [taw.Pen], [ta.wen]) W L W
(/taPo-en/, [taw.Pen], [ta.Pen]) W L L

(/taPo-en/, [taw.Pen], [ta.Po.en]) W L L
(/taPo-en/, [taw.Pen], [ta.Po.Pen]) W L L
(/taPo-en/, [taw.Pen], [ta.Pwen]) W L
(/taPo-en/, [taP.wen], [taw.Pen]) W L
(/taPo-en/, [taP.wen], [ta.wen]) W L W
(/taPo-en/, [taP.wen], [ta.Pen]) W L L

(/taPo-en/, [taP.wen], [ta.Po.en]) W L L
(/taPo-en/, [taP.wen], [ta.Po.Pen]) W L L
(/taPo-en/, [taP.wen], [ta.Pwen]) W L

(b)

ONSET

M
AX IO

(V
)

*LOW
GLID

E

ID
ENT IO

([L
OW

])

*[P
C
M

AX O
O
(P

)

DEP IO
(P

)

ID
EN IO

([S
YL])

LIN
EARIT

Y

*P
]

M
AX IO

(P
)

(/paPlak/, [pa.lak], [pal.Pak]) W L
(/paPlak/, [pa.lak], [paP.lak]) W L

(/Pajo-en/, [Paj.wen], [Pa.jo.Pen]) W L
(/taPo-en/, [taw.Pen], [taP.wen]) L W

(/taPo-en/, [taw.Pen], [ta.Po.Pen]) W L L
(/taPo-en/, [taP.wen], [taw.Pen]) W L

(/taPo-en/, [taP.wen], [ta.Po.Pen]) W L L

(c)

LIN

EARIT
Y

*P
]

M
AX IO

(P
)

ERC1 = (/paPlak/, [pa.lak], [pal.Pak]) W L
ERC 2 = (/paPlak/, [pa.lak], [paP.lak]) W L

ERC 3 = (/taPo-en/, [taw.Pen], [taP.wen]) W L
ERC 4 = (/taPo-en/, [taP.wen], [taw.Pen]) L W

Table 6: The Ilokano metathesis test case in ERC notation: (a) original description;
(b) description after the first round of simplifications; (c) description after the second
round of simplifications.

(a) Constraint final RV
LINEARITY 117.06
*P] 116.94
MAXIO(P) 66.0

(b)

0 0.5 1 1.5 2

·104

60

80

100

120 Linearity

*P]

MaxIO(P)

stage I stage II stage III

·104

1

(c)

0 0.5 1 1.5 2

·104

60

80

100

120
Linearity

*P]

MaxIO(P)

stage I stage II stage III

·104

1

(d)

0 0.5 1 1.5 2

·104

90

95

100

105

110

Linearity

*P]

stage I stage II stage III

·104

1

(e) ERCs #U LU LI
ERC1 = (/paPlak/, [pa.lak], [pal.Pak]) 11 1329 5278
ERC 2 = (/paPlak/, [pa.lak], [paP.lak]) 6 1390 5562
ERC 3 = (/taPo-en/, [taw.Pen], [taP.wen]) 2631 5228 20992
ERC 4 = (/taPo-en/, [taP.wen], [taw.Pen]) 2581 5229 20999

Table 7: Behavior of the GLA on the core Ilokano metathesis test case in Table 6c

4 Why the GLA succeeds
We report in Table 7a the final ranking values learned by the GLA in a simulation on
the simplified Ilokano metathesis test case described in Table 6c. Again, we use the
same implementation details as in BH: a simulation consists of three stages of 7,000
iterations each, with deceasing plasticity (2.0, 0.2, and 0.02) and decreasing noise
(10.0, 2.0, and 2.0). These ranking values enforce the desired ranking conditions.
The corresponding dynamics of the three ranking values is plotted in Table 7b. The
two constraints LINEARITY and *P] raise to roughly their final ranking value in the
very initial portion of the first learning stage and then just keep oscillating without
moving away from that value. In the meanwhile, the constraint MAXIO(P) drops
quickly within the first learning stage and then stays put, well separated underneath
the other two constraints. We want to understand this learning dynamics and thus
explain how the GLA manages to succeed on this test case.

To gain some intuition into the GLA’s learning dynamics in Table 7b, suppose
that the GLA were only trained on the underlying form /taPo-en/. The two corre-
sponding ERCs 3 and 4 completely disagree with each other: the former promotes

LINEARITY and demotes *P] while the latter does just the opposite. Crucially, the
GLA promotes and demotes winner- and loser-preferring constraints by exactly the
same amount. This means that one of these two ERCs will completely undo the
work of the other: one of these two ERCs promotes LINEARITY and demotes *P]
and the other ERC will displace them back to their original position. If the two con-
straints start with the same initial ranking value, then these two ERCs will never be
able to displace them away from that initial ranking value and will just keep them
oscillating around that value. This is illustrated by the ranking dynamics plotted in
Table 7c, which is indeed the ranking dynamics obtained when the GLA is trained
only on the underlying form /taPo-en/ corresponding to the two ERCs 3 and 4. Of
course, the amplitude of the oscillations of the two constraints LINEARITY and *P]
decreases through the three learning stages as a consequence of the decreasing plas-
ticities, perfectly matching the oscillations of these two constraints LINEARITY and
*P] plotted in the original ranking dynamics in Table 7b.

Suppose next that the GLA were only trained on the other underlying form
/paPlak/. The two corresponding ERCs 1 and 2 agree with each other: they both
promote the winner-preferring constraints LINEARITY and *P] and demote the
loser-preferring constraint MAXIO(P). After only a few updates, the two former
winner-preferring constraints will be separated from the latter loser-preferring con-
straint by a distance large enough that the additive error will not be able to swap
their relative ranking (the gaussian distribution is concentrated around zero and
thus the additive noise values are small with high probability). This is illustrated be
the ranking dynamics plotted in Table 7d, which is indeed the ranking dynamics ob-
tained when the GLA is trained only on the underlying form /paPlak/ corresponding
to the two ERCs 1 and 2. Ignoring the oscillations, the shape of the original rank-
ing dynamics plotted in Table 7b coincides with the ranking dynamics obtained in
Table 7d by training the GLA on the underlying form /paPlak/ only.

We are now ready to put the pieces together. Training on the two ERCs 3 and
4 corresponding to the stochastic underlying form /taPo-en/ contributes to the os-
cillations of the original ranking dynamics in Table 7b but not to its shape. Train-
ing on the two ERCs 1 and 2 corresponding to the deterministic underlying form
/paPlak/ of course does not contribute to the oscillations, but determines the shape
of the original ranking dynamics. In other words, the original ranking dynamics
obtained in Table 7b when the GLA is trained on both underlying forms /taPo-en/
and /paPlak/ simultaneously is the “sum” of the two ranking dynamics obtained
in Tables 7c-d when the GLA is trained on the two underlying forms separately.
This is not an obvious fact. Indeed, the two ERCs 1 and 2 corresponding to the
underlying form /paPlak/ partially disagree with the two other ERCs 3 and 4 corre-
sponding to the underlying form /taPo-en/: ERCs 1 and 4 (ERCs 2 and 3) disagree
on the constraint LINEARITY (on the constraint *P], respectively). When the GLA
is trained simultaneously on both underlying forms, we might thus expect complex
interactions between the forces exerted by the two underlying forms. Because of
these interactions, the ranking dynamics of the GLA trained simultaneously on both
underlying forms might in principle be quite different from the “sum” of the two
ranking dynamics obtained when the GLA is trained on the two underlying forms
separately. As we will see in the next section, that is indeed the case for EDCD
and the CEDRA. Intuitively, the reason for why the case of the GLA is different

is that in the case of the GLA (but not in the case of EDCD and the CEDRA) the
promotion and demotion amounts coincide and thus ERCs 3 and 4 do not displace
the constraints and therefore do not contribute to the shape of the ranking dynamics.
This intuition is formalized in the proof of the following proposition III, provided
in MS. Indeed, this proposition says that the two ERCs 1 and 2 corresponding to
the underlying form /paPlak/ trigger few updates, exactly as in the case where the
GLA is trained on that underlying form alone. In other words, the presence of the
two ERCs 3 and 4 corresponding to the stochastic underlying form /taPo-en/ has no
effects on the deterministic underlying form /paPlak/.

Proposition III. Consider a run of the GLA on the core Ilokano metathesis test case
described in Table 6c. Assume that all constraints start with the same initial ranking
value and that the additive error is sampled according to a gaussian distribution
with small variance. With high probability, the two ERCs 1 and 2 corresponding to
the underlying form /paPlak/ can trigger only very few updates. �

Proposition III is confirmed by a closer look at the simulation results plotted in
Table 6b. The column headed by “#U” in Table 6e provides the number of updates
triggered by each of the four ERCs, showing that ERCs 1 and 2 indeed trigger just
a few updates. These updates furthermore happen towards the beginning of the
run, as shown by the last two columns of the table, which provide respectively the
number of updates (column headed “LU” for “last update”) by and the number of
iterations (column headed by “LI” for “last iteration”) at the time when each single
ERC has triggered its last update.

In conclusion, proposition III provides the key to a formal understanding of
the behavior of the GLA on the core Ilokano metathesis test case. Since ERCs
1 and 2 corresponding to the underlying form /paPlak/ can trigger only few up-
dates, their two winner-preferring constraints LINEARITY and *P] raise and their
loser-preferring constraint MAXIO(P) drops quickly, ensuring the needed separa-
tion. From that moment on, the underlying form /paPlak/ cannot trigger any further
update. The learning dynamics is thus driven by the other underlying form /taPo-
en/. Since the promotion and demotion amounts coincide, its two corresponding
ERCs 3 and 4 do not displace their active constraints LINEARITY and *P], but just
keep them oscillating up and down. The ranking dynamics in Table 7b is thus com-
pletely explained.

4.1 Why EDCD and the CEDRA fail
The case of EDCD and the CEDRA is completely different. As we will see in this
section, this is crucially due to the fact that these algorithms do not promote by the
same amount they demote, contrary to the GLA. We report in Table 8a the final
ranking values learned by EDCD in a simulation on the core Ilokano metathesis
test case described in Table 6c. These ranking values are all roughly the same. This
means that the algorithm has failed to learn that the constraint MAXIO(P) needs to
be ranked at a safe distance underneath both constraints LINEARITY and *P]. As
shown by the ERC matrix in Table 6c, the latter ranking condition is needed in order
to account for the fact that the underlying form /paPlak/ is deterministically mapped
to [pa.lak]. The fact that EDCD fails to learn this ranking condition explains the

(a) Constraint final RV
LINEARITY -1877.38
*P] -1877.72
MAXIO(P) -1880.34

(b)

0 0.5 1 1.5 2

·104

�2,000

�1,500

�1,000

�500

0

Linearity
*P]

MaxIO(P)

stage I stage II stage III

·104

1

(c)

0 0.5 1 1.5 2

·104

60

80

100
Linearity

*P]

MaxIO(P)

stage I stage II stage III

·104

1

(d)

0 0.5 1 1.5 2

·104

�4,000

�3,000

�2,000

�1,000

0

Linearity
*P]

MaxIO(P)

stage I stage II stage III

·104

1

(e) ERC #U LU LI
ERC1 = (/paPlak/, [pa.lak], [pal.Pak]) 1282 7791 20998
ERC 2 = (/paPlak/, [pa.lak], [paP.lak]) 1282 7786 20991
ERC 3 = (/taPo-en/, [taw.Pen], [taP.wen]) 2614 7784 20983
ERC 4 = (/taPo-en/, [taP.wen], [taw.Pen]) 2613 7790 20996

Table 8: Behavior of EDCD on the core Ilokano metathesis test case in Table 6c

failure of EDCD on this underlying form, diagnosed in Table 5. The corresponding
ranking dynamics is plotted in Table 8b. All three constraints drop in a free fall,
without EDCD being able to enforce any separation between LINEARITY and *P]
on the one hand and MAXIO(P) on the other hand. We want to understand in detail
this learning dynamics and thus explain why EDCD fails on this test case.

Again, it is useful to start by investigating the learning dynamics of EDCD
when trained on the two underlying forms separately. Let me start with the case
where EDCD is trained on the deterministic underlying form /paPlak/ alone. Since
EDCD performs no constraint promotion, the two corresponding ERCs 1 and 2
do not re-rank the two winner-preferring constraints LINEARITY and *P]. But they
both demote the loser-preferring constraint MAXIO(P). After a few updates, the
latter loser-preferring constraint has dropped underneath the two former winner-
preferring constraints at a distance large enough that the additive error cannot swap
the constraints. This is illustrated by the ranking dynamics plotted in Table 8c,
which is indeed the ranking dynamics obtained when EDCD is trained only on the

underlying form /paPlak/ corresponding to the two ERCs 1 and 2. Overall, EDCD’s
ranking dynamics in Table 8c is not substantially different from the GLA’s ranking
dynamics in Table 7c: when trained on the underlying form /paPlak/ alone, the two
algorithms behave roughly in the same way.

The crucial difference between the GLA and EDCD comes up when the two
algorithms are trained on the stochastic underlying form /taPo-en/. The two cor-
responding ERCs 3 and 4 completely disagree with each other: LINEARITY and
*P] are winner-preferring in one of the two ERCs and loser-preferring in the other.
Crucially, EDCD performs constraint demotion but no constraint promotion. This
means that when trained on these two ERCs 3 and 4, EDCD will force the two
constraints LINEARITY and *P] in a free fall, dragging them away from their initial
ranking value indefinitely, for as long as learning continues. This is illustrated by
the ranking dynamics plotted in Table 8d, which is indeed the ranking dynamics
obtained when EDCD is trained only on the underlying form /taPo-en/ correspond-
ing to the two ERCs 3 and 4. The difference with the ranking dynamics in Table
7d obtained when the GLA is trained on this underlying form is striking. Since the
GLA promotes and demotes by the same amount, it keeps the two constraints LIN-
EARITY and *P] oscillating up and down without effectively displacing them. Since
EDCD instead performs constraint demotion but no promotion, it forces these two
constraints LINEARITY and *P] into a free fall.

It is now easy to put the pieces together. In the case of EDCD, the two ERCs
3 and 4 corresponding to the underlying form /taPo-en/ force the two constraints
LINEARITY and *P] into a free fall. Since the two underlying forms are sampled
with the same frequency, these two constraints fall too fast in order for the other two
ERCs 1 and 2 corresponding to the other underlying form /paPlak/ to be able to slide
the constraint MAXIO(P) underneath them. Indeed in the case of the GLA, ERCs 1
and 2 trigger few updates and only in the initial segment of the run, as reported in
Table 7e. The situation is very different in the case of EDCD, as reported in Table
8e: all ERCs trigger a very high number of updates and they all keep triggering
updates until the very end of the run.

The case of the CEDRA is completely analogous to that of EDCD just con-
sidered. Instead of performing no constraint promotion as EDCD, the CEDRA
performs little promotion: crucially it promotes less than it demotes. Hence, we ex-
pect exactly the same free-fall ranking dynamics, only slower. And this is what we
get, as illustrated in Table 9b. As the demotion amount is larger than the promotion
amount, the fight between *P] and LINEARITY triggered by ERCs 3 and 4 again
forces them in a free fall, only a slower fall than in the case of EDCD. And again
ERCs 1 and 2 hardly cope with keeping MAXIO(P) underneath *P] and LINEAR-
ITY, as reveled by the final ranking values reported in Table 9a. Again, all ERCs
remain active until the end of the run, as revealed by Table 9c.

5 Conclusion
BH report that the GLA implementation of error-driven learning within stochastic
OT succeeds at learning variation on three complex, naturalistic test cases. Minimal
variants of the GLA (namely, EDCD, the minGLA, and the CEDRA; see Table 2)
instead fail on these test cases. As suggested at the beginning of the paper, we

(a) Constraint final RV
LINEARITY -674.37
*P] -674.39
MAXIO(P) -678.68

(b)

0 0.5 1 1.5 2

·104

�600

�400

�200

0

Linearity
*P]

MaxIO(P)

stage I stage II stage III

·104

1

(c) ERC #U LU LI
ERC1 = (/paPlak/, [pa.lak], [pal.Pak]) 496 6166 20900
ERC 2 = (/paPlak/, [pa.lak], [paP.lak]) 476 6190 20987
ERC 3 = (/taPo-en/, [taw.Pen], [taP.wen]) 2621 6196 21000
ERC 4 = (/taPo-en/, [taP.wen], [taw.Pen]) 2603 6194 20996

Table 9: Behavior of the CEDRA on the core Ilokano metathesis test case

interpret these simulation results as showing that BH’s test cases have some special
structure which the GLA is crucially able to exploit, while variants of the GLA
are not. What is this special structure? In MS, we address this question through a
detailed analysis of BH’s simulations. As a preview, in this paper we have looked at
one of BH’s test cases, namely the Ilokano metathesis test case. Our analysis shows
that the crucial property of this test case is the fact that variation boils down to a
pair of ERCs with the shape in (1).

(1) [Ch Ck

(/x/, [y], [z]) . . . W . . . L . . .

(/x/, [z], [y]) . . . L . . . W . . .

]
The winner and the loser are swapped in the two ERCs. Thus, a constraint is winner-
preferring relative to one of the two ERCs if and only if it is loser-preferring relative
to the other ERC. In other words, these two ERCs are one the negation of the other
(one has a W corresponding to a certain constraint if and only if the other has an L).

The GLA promotes and demotes by the same amount. Hence, the mutually con-
tradicting stochastic ERCs (1) keep “fighting each other” (namely force the active
constraints to oscillate up and down), without effectively “getting anything done”
(namely without effectively displacing their active constraints and thus without con-
tributing to the ranking dynamics). Since variation in the Ilokano metathesis test
case reduces to a pair of these mutually contradicting stochastic ERCs (1) and since
these contradicting ERCs get nothing done in the case of the GLA, then the GLA
is in some sense “insensitive” to variation: if the stochastic ERCs are dropped, the
oscillations are of course lost, but the shape of the ranking dynamics is unaffected.

The case of EDCD and the CEDRA is completely different. As these algo-
rithms perform less constraint promotion than demotion (EDCD actually performs

no promotion at all), then these stochastic contradicting ERCs (1) get “a lot done”,
namely they manage to force their active constraints into a free fall. And the al-
gorithms thus fail at sliding any constraint underneath the constraints forced into a
free fall. These stochastic ERCs thus have a drastic effect on the ranking dynamics
in the case of EDCD and the CEDRA.

In MS, we develop an analogous account for the success of the GLA on BH’s
Finnish genitive test case and the English dark [l] test case. Also in these test
cases, stochasticity boils down to pairs of mutually contradicting stochastic ERCs
corresponding to the same pair of candidates [y] and [z]. Again, the GLA is not sub-
stantially affected by these stochastic ERCs, because it promotes and demotes by
the same amount. While in the case of EDCD and the CEDRA we get a free falling
ranking dynamics, which washes away any effort of the algorithm at establishing
any ranking condition.

Now that we have been able to pinpoint at the structure which allows the GLA
to succeed on BH’s test case, we are in a better position to investigate whether
that structure might indeed be characteristic of patterns of grammatically-induced
variation in Natural Language. Here is a specific strategy to probe into this question,
that we are currently investigating. Part of what is crucially helping the GLA in
BH’s test cases is the fact that variation is always between two candidates [y] and [z]
for a given underlying form, leading to pairs of ERCs such as (1), which completely
mutually contradict each other because of the fact that the winner and the loser
are swapped. What about cases of variation among three candidates for a given
underlying form? Do these cases lead to stochastic ERCs with a different structure
from the one in (1)? How does the GLA cope with that structure?

References

Anttila, Arto. 1997. Deriving variation from grammar: A study of Finnish genitives. In
Variation, change and phonological theory, ed. by Frans Hinskens, Roeland van Hout,
& Leo Wetzels, 35–68. Amsterdam: John Benjamins. Rutgers Optimality Archive
ROA-63, http://ruccs.rutgers.edu/roa.html.

Boersma, Paul. Functional Phonology. University of Amsterdam, The Netherlands dis-
sertation. The Hague: Holland Academic Graphics.

——, & Bruce Hayes. 2001. Empirical tests for the Gradual Learning Algorithm. Lin-
guistic Inquiry 32.45–86.

Magri, Giorgio. 2012. Convergence of error-driven ranking algorithms. Phonology
29.213–269.

——, & Benjamin Storme, in prep. A closer look at Boersma and Hayes’ (2001) simula-
tions.

Prince, Alan, 2002. Entailed ranking arguments. Ms., Rutgers University,
New Brunswick, NJ. Rutgers Optimality Archive, ROA 500. Available at
http://www.roa.rutgers.edu.

Tesar, Bruce, & Paul Smolensky. 1998. Learnability in Optimality Theory. Linguistic
Inquiry 29.229–268.

