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Abstract 
A factorial typology is a set of grammars. We are not given the grammars directly, but must 
deduce them from the way that the posited constraints deal with the posited structures. How do we 
know that we have examined enough candidate sets to discriminate all the grammars that are 
allowed by our assumptions? This is the problem of finding a universal support for a typology. 
Without a universal support, we don’t have the typology, and without the typology, many types of 
systematic claims about it must languish unjustified. 
 
Here we show how the universal status of a proposed support may be established when we have 
exact descriptions of the types of optima allowed in the grammars. If a typology is factored into 
(intensional) ranking properties in the sense of Alber & Prince (in prep.), and if the property 
values are associated with (extensional) characteristics carried by optima, then a grammar as a 
combination of values is associated with a description of its optima as a conjunction of the 
characteristics associated with the values. If the descriptions thereby obtained uniquely denote 
single candidates, then the grammars cannot be further refined, and the support that produced the 
grammars must be universal. 
 
This method of associating extensional characteristics with ranking patterns answers a much more 
general question: what do the languages of a typology look like? Since a typology is generated 
from a finite sample of candidate sets, we cannot in general be satisfied with remarking about the 
distribution of characteristics in the sample. We must use the grammars to project over the entire 
set of optima. The grammatical structure relevant to this enterprise is encoded in the ranking 
properties that combine to give the grammars. 
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§0.0  Introduction 
 
An OT system S is defined by specification of GENS and CONS. The typology of S is the 
collection of all grammars admitted by that definition. A typology is always determined by a finite 
collection of candidate sets (csets), even when an infinite number of csets is admitted by GENS. 
An individual (ranking) grammar is the set of linear orders on CONS that all produce the same 
collection of optima, the same extensional language. Every ranking grammar is characterizable as 
an ERC set; the rankings that belong to it are the linear extensions of the grammar’s ERC set, 
termed ‘legs’. A support for a single grammar is a collection of csets that suffices to delimit all the 
legs of the grammar when the appropriate candidates are selected as optima. A universal support 
for a typology is a collection of csets that suffices to deliver all of its grammars when every 
possible combination of optima is considered. A minimal universal support is a universal support 
from which no cset can be removed without destroying its universality. These concepts and 
terminology, which develop and further specify those of Prince & Smolensky 1993/2004 (P&S), 
are from Prince 2014, 2014-15, 2015, Merchant & Prince (in prep.), and Alber & Prince (in prep). 
 
The logic of OT analysis requires not only that the system S under scrutiny be defined by spelling 
out áGENS, CONSñ, but that the typology claimed for S be derived from a valid universal support. 
As long as each cset contains all of its possible optima, the source of failure will be omission of at 
least one necessary cset. The penalty for failing to employ a valid universal support in this case is 
that the claimed typology is coarser than the real one. This means that while the distinctions 
between grammars that are established by the insufficient support are veridical, there are yet 
further distinctions that must be drawn to arrive at the real typology, which is finer than the 
generated one. Some of the grammars of the coarser typology turn out to be amalgams of two or 
more grammars from the actual typology of the system S as defined. In particular, some ranking 
relations that are left open in grammars of the coarser typology must be specified, splitting the 
grammars, in order to arrive at the correct typology. 
 
An instructive example of a too-coarse typology constructed from an insufficient support is 
provided by the Basic Syllable Theory (BST) as presented in chapter 6 of P&S. These authors 
define áGENBST, CONBSTñ and go on to analyze 9 grammars as the BST Typology. As Riggle 
(2004) was the first to announce, the actual number of grammars is 12. The shortfall is due to the 
omission of an input that contains a consonant that cannot be faithfully syllabified under the 
limitations of GENBST. P&S consider two csets: one from /V/, the other from /CVC/. The first 
gives rise to the triple fates of vowels that cannot be faithfully syllabified into syllables shaped 
[σCV]: faithful reproduction, epenthesis of C into onset, deletion of the vowel. The second gives 
rise to the triple fate of consonants that cannot be faithfully syllabified into [σCV] syllables, but 
which can be faithfully syllabified into syllables [σCVC]: faithful reproduction, epenthesis of V, 
deletion of the postvocalic C. These interact freely, and 3´3 = 9. 
 
Missing is an input like /C/, for which GENBST provides no faithful parse. GENBST requires that all 
syllables contain a V, disallowing the structure [σC]. The two admitted optimal outputs from /C/ 
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involve either epenthesis of a vowel to support the input C in the syllable [σCV] or deletion of the 
C to arrive at the empty string, which lacks syllables altogether and therefore slips past all of their 
defining requirements. Both candidates fully satisfy all markedness constraints, so that the choice 
between them is made purely on grounds of faithfulness:  f.maxf.depV yields the epenthetic 
optimum, and f.depVf.max yields the deletional, empty output.  It follows that every grammar 
in the typology crucially ranks these two constraints with respect to each other, because an OT 
grammar finds an optimum in every cset. 
 
The effect is therefore felt on those three grammars of the coarser P&S typology in which no 
ranking holds between f.depV and f.max. These are the 3 grammars in which /CVC/ is faithfully 
reproduced as [σCVC]. P&S note that these coda-allowing grammars meet the condition that both 
f.max and f.depV dominate m.NoCoda. (There are three of them, because they freely combine 
with the rankings derived by the 3 possible optima from /V/). The input /C/ — or /CCVVC/ from 
Riggle (2004:109) — will further split each of these coda-allowing grammars, based on their 
treatment of underlying C that cannot be faithfully syllabified in any grammar, which always 
forces a choice between epenthesis and deletion. 
 
The three P&S coda-allowing grammars each contain legs λ1 and λ2 which have the following 
form, where the material in the sequentially corresponding sequences “…” is assumed identical 
across the legs. 

λ1 = …f.max… …f.dep…  …m.NoCoda… 
λ2 = …f.dep…  …f.max… …m.NoCoda… 

In each of the P&S candidate sets, these legs produce the same optimum. In particular, 
CVC®[σCVC] is optimal under both. When /C/ is brought into the picture, however, they produce 
different outputs, with λ1 sponsoring C®[σCV] and λ2 sponsoring C®Æ. Because these 
candidates are admitted as competitors by GENBST and because they do not have identical 
violation profiles, it can only be that the P&S typology is too coarse for the BST as defined, and 
that it does not rest on a valid universal support. The P&S typology accurately characterizes a 
somewhat different OT system that we might call CST, where GENCST restricts inputs to allow CC 
only between vowels. CST provides a good approximation to BST, and in many languages the 
difference will not be noticed. But as we’ve seen, the coda-allowing grammars in CST contain 
legs that do not agree on the optimum of certain csets defined in BST. From the point of view of 
the BST, these CST grammars are not grammars but mere collections of rankings. They lack the 
key grammar-defining property that we can call uniform selection, whereby all linear orders 
belonging to the grammar select the same extensional language.  

 
Uniform selection gives us a way to establish the universality of a support for the typology of a 
system S. If we can show that each grammar derived from a given support selects a single 
violation profile as optimal in every candidate set admitted by GENS, then we can be sure that no 
grammar submits to further refinement: the support must be universal. On the face of it, this seems 
a burdensome requirement, inviting search of all grammars and all candidate sets, but it takes on a 
different character in the context of the Classification Program of Alber & Prince. 
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Alber & Prince (in prep.) analyze the ranking structure of the grammars of a typology into a set of 
(intensional) properties. Each property takes on a set of mutually exclusive values, where each 
value is a ranking condition. The grammars of the typology, understood as ERC sets that delimit 
sets of rankings as their legs, are generated in their entirety by selecting values from the properties, 
with the possibility of scope restrictions that limit the freedom of combination. In the stress system 
nGX, examined in detail below, the property “FTyp.ia/tr” requires a choice between 
IambTrochee and TrocheeIamb. Every grammar must choose one or the other of these. 
Similarly, the property “Pos.L/R” requires a choice between AFLAFR and AFRAFL, where 
“AFL” abbreviate the Generalized Alignment constraint commonly called “All Feet Left” and 
similarly for AFR, with exchange of chirality. Alber & Prince show that choosing values from 
these plus two other additional properties generates the entire set of ERC grammars obtained from 
their support for the nGX typology. 
 
These properties are intensional in that they determine grammars, but they have extensional 
consequences, determining the structural characteristics that appear in optima. For example, as we 
will show below, in an optimal output of grammars that satisfy the nGX property value FType.ia, 
every binary foot in a word is iambic; in those that satisfy FType.tr every binary foot is trochaic. 
This is the extensional force of the intensional property.   
 
It is worthwhile pausing to ponder the conceptual chasm between the intensional property and its 
extensional effects. A property like FType.ia/tr or Pos.L/R is about the ranking structure of 
grammars and enforces a relation between certain constraints. These constraints are not defined to 
dictate the shape of entire output forms: they merely accumulate penalties for certain structural 
configurations, often quite local, that occur within outputs. They do not say things like ‘every 
binary foot is iambic in optima’, or ‘the unary and binary feet in optima are disposed in such-and-
such a way’.  On the extensional side, the various structural patterns appearing in optima show a 
distribution that may be quite distantly related to the types of items and relations monitored by the 
constraints. For this reason, we enforce a terminological distinction between intensional properties 
and extensional characteristics. The nature of these characteristics and their distribution emerges 
from the functioning of the grammar. For any OT system S, this involves the interplay of the 
constraints of CONS, the candidate sets admitted by GENS, and the definition of optimality. 
Analysis rather than onomasty is required to establish the intensional-extensional connection. 
 
When we understand the extensional characteristics associated with the intensional properties that 
generate a typology, we have a full description of the linguistic structure imposed by the grammars 
of the typology. This is essential to understanding what the typology says about linguistic form. A 
valid universal support delivers the entire set of grammars in a typology, but it is never more than 
a finite sample of what is typically an infinite set. The distribution of extensional characteristics in 
a finite support may be suggestive of the broader pattern, but the mere finitude of the sample 
typically disallows secure generalization. The grammars must be examined, because they define 
the behavior of every cset. And the properties define the grammars. 
 



 
 

5 
 

From a property set for a typology, a classification in the terminology of Alber & Prince, we can 
derive a complete description of the typology’s extensional characteristics if we have a full 
analysis of the extensional consequences of the properties. A grammar is specified as a set of 
property values, and these induce a set of characteristics which completely delimits the extensional 
structure of the optima for that grammar. Just as the grammar emerges from conjoining the 
property values, so does the description of its optimal forms emerge from conjoining the 
descriptions of characteristics associated with those values. 
 
Aside from whatever desirability inheres in relating the grammars of a typology to their 
predictions about linguistic form, there is a further use for the full extensional interpretation of the 
intensional properties:  it can verify that the typology was generated from a valid universal 
support. From a proposed support, we can mechanically calculate a set of grammars, which may 
be classified into a set of properties and their values. The validity and completeness of a proposed 
classification may easily be checked by simply running through the sets of value choices and 
verifying with the entailment algorithm of Prince 2002a:31ff that the ERC sets so derived are in a 
mutually entailing relation with the grammars produced by calculation; or the check may call on 
FRed (Brasoveanu & Prince 2011) to show that the grammars produced by the property set are 
identical in MIB or SKB form with those produced by the support.  
 
Verifying that the support is universal requires further analysis. A claimed support is authentically 
universal if the grammars it induces cannot be further refined. Refinement requires splitting a 
putative grammar by determining that it contains distinct legs that produce distinct optima from a 
single input. 
 
The close association between properties and extensional characteristics allows us to pursue the 
universality question in the extensional domain. When a typology is analyzed as a set of 
properties, each of its grammars is equivalent to a conjunction of (intensional) property values. 
These values entail extensional characteristics. If every conjunction of property-value-derived 
characteristics yields the description of a single optimal candidate for each input admitted by 
GENS, then we can be sure that the grammars associated with the property values cannot be 
refined. (In the fully general case, which we will not encounter here, the extensional description 
can admit multiple candidate instantiations when they all have the same violation profile.) From a 
grasp of the intensional and extensional structure of the typology, we can prove — or in the case 
of non-uniqueness, disprove — the universality of a proposed support. In short, knowing how 
every grammar behaves extensionally tells us whether we know of every grammar. 
 
We carry out this program for the foot-based prosodic system nGX as analyzed by Alber & Prince. 
The bulk of our argument develops a detailed analysis of the extensional characteristics associated 
with property values. We then show that each choice of values yields a description that delimits a 
single candidate for each distinct input. We conclude by using this value-based description to 
characterize the possible universal supports of nGX. 
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§0.1  The system nGX and its properties 
 
From Alber & Prince (in prep.), we have the following specification of the system nGX, which 
recognizes various aspects of stress patterning that do not depend on the presence of a main stress 
and which does not impose any left-right asymmetries in metrical patterning. 
  
(1) GENnGX 

a. Inputs are strings of atomic units, representing syllables. 
b. An input is associated with outputs of exactly the same length in syllables. 
c. An output consists of a single Prosodic Word. 
d. A Prosodic Word consists of feet and syllables. 
e. A Foot consists of one or two syllables. 
f. A syllable may belong to at most one foot. 
g. A Foot has a unique head. 
h. A Prosodic word has at least one foot. 
i. The output set from an input contains every parse admitted by these requirements. 

 
Certain characteristics of output forms of nGX are fixed by GENnGX and others are left open to 
vary between candidates. The units of nGX structure are easily and briefly enumerated: syllable, 
Foot, Prosodic Word. A syllable is parsed into a foot or not, in which case it is termed an unparsed 
syllable. A foot, monosyllabic or bisyllabic, contains a distinguished syllable, the head. The 
Prosodic Word is free to contain feet in any non-overlapping, non-recursive disposition, so long as 
at least one is present. To uniquely identify a specific output form, we need only indicate its length 
in syllables, where in the syllabic string each of its feet begins and ends, and which syllables have 
the status of head-of-foot. This description is unambiguous because there is literally nothing else 
to specify. This observation makes up in usefulness what it lacks in profundity, and is therefore 
worthy of recognition. 
 
(2) Remark. Unambiguous Description of nGX forms. An output form of nGX is uniquely 

identified by its length, the location of its feet with respect to the syllable string, and the 
location of the heads of the feet. 

 
To spell out CONnGX, we introduce some notation. OTWorkplace (Prince, Tesar, and Merchant, 
2007-2015) provides a convenient string-based spelling system for the parses of nGX and similar 
prosodic systems: 
 o syllable not parsed into a foot (unparsed syllable) 
 u nonhead of a foot 

X head of foot 
- edge of foot or unparsed syllable 

This is easily seen to accord with the requirements of Remark (2), and therefore can be used to 
refer without fear of ambiguity to the hierarchical structures sanctioned by GENnGX. In addition, 
we will write ‘f’ for ‘foot of any kind,’ ‘F’ for ‘binary foot,’ ‘U’ for ‘unary foot,’ and ‘σ’ for 
‘syllable of any kind’. In constraint definitions, we use  to mean ‘precedes’ and ‘’ to mean 
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‘follows’. With these notations, the constraints of nGX may be defined as follows, where * is the 
OT star operator returning the number of matches in a candidate to the pattern specified after it. 
 
(3) CONnGX 

● Parse-σ (Ps) *o 
● Iamb  *-X 
● Troch *X- 
● AFL  *{σ,f}: σ  f 
● AFR  *{σ,f}: σ  f 

 
The definitions of AFL and AFR are derived from those of Hyde (2012:803, 2015:22). We elide 
reference to the Prosodic Word as the domain of alignment, since it is the only domain admitted 
by GENnGX that contains σ and f. On this approach, AFL accumulates a penalty for each pair {σ,f} 
in an output where σ precedes f. This provides an overall score for a form that effectively sums the 
distance in syllables of each foot f from the left edge of the Prosodic Word, which is exactly the 
intention of McCarthy & Prince (1993) for evaluation by this constraint, as first suggested by 
Robert Kirchner (p.c.). AFR does the same, in mirror image. 
 
The name of the system acronymically encodes its key properties. The definitions of Iamb and 
Troch are new, in that they penalize feet by placement of the head: Iamb penalizes head-initial 
feet, Troch head-final feet. The effect is that both penalize unary feet. In some earlier conceptions, 
the constraints penalized only -uX- as non-trochaic and -Xu- as non-iambic, treating unary feet as 
being both iambic and trochaic. Positioning of feet is done by Generalized Alignment (McCarthy 
& Prince 1993). All outputs consist of Prosodic Words with at least one foot: hence the suffixal X. 
 
With áGENnGX, CONnGXñ defined, a set of 12 grammars, listed in Appendix 1, may be generated 
from a support that consists of two complete csets with inputs of length 3σ and 4σ. The same 12 
may be generated from an input of length 5σ. This replication hints that 12 might be the actual 
number of grammars in the typology, and that they might be exactly the ones we have generated. 
Our goal is to show conclusively that this is true, and that both supports are universal. 
 
Observe that we are not trying to show that the extensional languages of nGX are those of the 
world around us. We execute the prior task of determining what the grammars of nGX actually 
are, free of all heuristics, speculation, and unjustified belief. Our method securely connects the 
grammars of nGX with the unbounded extensional languages that they predict, providing the basis 
for further empirical and theoretical development. 
 
Alber & Prince analyze the set of 12 grammars into 4 properties. (We resist calling it the ‘typology 
of nGX’ until we have shown that it was generated from a universal support.) The terminology 
and notation is described immediately below the table of properties given here. The content of the 
properties is the subject of sections §1-4. A property value holds of every leg in a grammar that 
‘satisfies’, ‘meets’, or ‘falls under’ that value. 
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(4) Properties of nGX 
Name  Values Ercish Form: Ps . Ia Tr . AFL AFR 
FTyp.ia/tr Iamb <> Troch e.WL.ee / e.LW.ee 
Pos.L/R AFL <>  AFR e.ee.WL / e.ee.LW 
Mult.D/sp Ps     <> áFsub,  Adomñ     W.(eL/Le).LL /  L.(eW/We).WW 
Un.X/o Ps     <> áFdom, Adomñ     W.LL.LL /  L.WW.WW 
 
Terminology and notation. A property has a name N followed by the names of its values a and b, 
thus N.a/b.  The names used here include the following mnemonically-chosen abbreviations. 
 
(5) Properties and Values 

Prop  Value Abbreviates 
Ftyp  ia foot type iambic  

 tr trochaic 
Pos  L position (of feet) left 

 R right 
Mult  D multiplicity (of feet) dense 

 sp sparse 
Un  o unary constituents  unparsed syllable 

 X unary foot 
 
The notation  áA,Bñ <> áC,Dñ abbreviates a property with the two (contradictory) values given 
by reversal of the domination relation, accompanied by the appropriate interpretation of the 
mentioned sets of constraints. These interpretations are: 

1.  A|B  C&D: ‘either A or B dominates both C and D,’ and  
2.  C|D  A&B: ‘either C or D dominates both A and B.’ 

The relation between the values follows the ERCish treatment of aggregates of constraints: 
disjunction of the dominators, conjunction of the subordinates. Recall that the Elementary 
Ranking Condition associated with a vector on {W,L,e} asserts that every constraint assessing L is 
dominated by some constraint assessing W (Prince 2002a,b). The example may be represented as 
an ERC (fragment) WWLL and its opposite LLWW, where the constraints are listed in the 
arbitrary order A,B,C,D. The values of the second ERC are obtained by applying the rules of 
negation in ERC logic to the first. These are: ØW=L, ØL=W, Øe=e.  See Prince 2002a for detailed 
discussion and analysis. 
 
Each property stated above bifurcates the typology of nGX into those grammars that satisfy one 
value and those that satisfy the other. Thus, the ‘scope’ of each property — the set of grammars to 
which it is relevant —is the entire typology. In the case of Un.o/X, there is a natural narrowing of 
scope which simplifies the property. When limited to Mult.D grammars, it becomes Ps<>Fdom, 
which sponsors opposing ERCs W.LL.ee / L.WW.ee. Alber & Prince refer to the phenomenon of 
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limited scope as ‘mootness’, since the distinction made by the property is moot outside its scope. 
We show how this works at the end of §4. 
 
Property values classify grammars by shared ranking requirements. Properties implicitly define 
classes of constraints as well: for example, FTyp recognizes {Iamb, Trochee} as a significant 
class. The notation Fdom, Fsub allows us to generalize over the members of the class F = {Iamb, 
Trochee}, referring to whichever of these is dominant (Fdom) or subordinate (Fsub) in the legs of 
a grammar. Similarly, A = {AFL, AFR} is identified as class of constraints by its participation in 
the property Pos.L/R. 
 
For convenience of reference, we assume a fixed but arbitrary sequencing of the CONnGX 

constraints in ERCS: Ps, Ia, Tr, AFL, AFR. We use dots to separate the constraints into the classes 
{Ps}, F = {Iamb, Troch}, A = {AFL, AFR}. This allows us to abbreviate ERCs as e.g. W.eL.Le, 
which represents Ps  Tr & AFL, “Ps dominates both Tr and AFL.” 
 
 
§0.2  Mode of Argument 
 
A grammar is specified by choice of property values. With properties from the inventory (5), we 
have grammars such as sp.ia.R.o, D.ia.L.o, D.tr.R.X, where each dotted slot in the sequence cites 
the name of a property value. Each value provides an ERC that holds of the grammar so defined. 
For example, Pos.L contributes the ERC e.ee.WL (“AFL AFR”), FTyp.ia contributes e.WL.ee 
(“IambTroch”), and in accord with those choices, Mult.D contributes W.eL.Le (“Ps  Fsub & 
Adom” Þ “Ps Troch & AFL”). 
 
We investigate the extensional content of the properties by examining grammars that satisfy a 
certain property value or values. The same mode of argument is employed repeatedly. We analyze 
a competition between two candidates, call them z and φ, which are constructed so as to be in an 
informative relation. Competitors z and φ will typically differ in only one respect, thereby 
isolating the violation penalties contributed by the distinction between them. We determine the 
ERC z~φ by inspecting their relative performance on the constraints. Then we show that this ERC 
is entailed by the property or properties under consideration, employing the familiar inferential 
system of ERC logic (Prince 2002a, b). This establishes that z is better than φ in the grammar, 
which we write as ‘zφ’. If zφ in a given grammar, then φ cannot be optimal under the 
conditions that the grammar meets, because there is always a better candidate, namely z.  Recall 
that zφ is a strict order relation defined with respect to a specific grammar, and means that, in 
every leg λ of that grammar, λ selects z from the set {z,φ}. If a grammar satisfies the ERC z~φ, 
where z and φ differ in violation profile, we are guaranteed that zφ. 
 
The force of the argument is that no candidates of the form of φ can be optimal, and by choosing 
our φ’s and z’s properly, we can rule out all structural types except the one that mirrors the 
extensional content of the property we are examining. This is the one hammer we need to smite all 
the suboptima. 
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This is a bounding argument, of a type generally familiar from the OT literature. In the ordering of 
candidates imposed by the property value(s) under discussion, we show that z bounds φ, 
eliminating φ’s chances for optimality. This form of argument is commonly used to establish 
harmonic bounding, which holds in every ranking. (P&S 1993/2004:116-8, 209-212, Samek-
Lodovici 1992). We make use throughout of a generalized form, focusing on the subset of 
rankings admitted by a property value or values, taking advantage of the resources of ERC logic. 
P&S (p. 262-4) prove aspects of their Onset Theorem and Coda Theorem (stated p.113-4) with 
similar arguments. Prince 2006 makes extensive use of ERC-logic entailment relations to establish 
properties of OT systems. 
 
Certain of our conclusions require only harmonic bounding arguments, independent of the 
properties. These involve the distribution of unary feet in optima. From harmonic bounding alone 
we can show that an optimum must have at least one binary foot if it has enough syllabic material 
to support one: put another way, the feet of an optimal output of 2 syllables or greater in length 
cannot all be unary. To illustrate the character of a bounding argument, and to get a start on the 
characterization of extensional effects of the constraint system, we develop the argument here. We 
build up to the desired result through a sequence of two more specific lemmas, each established by 
a harmonic bounding argument. We use the U, F, and σ notation from above; foot edges, when 
invoked, are indicated by parentheses. We write |α| for the length in syllables of the form α. For 
any constraint C, we write C(q) for the numerical penalty assigned by C to candidate q, and thus 
an expression like C(q) < C(z) declares that one number is less than another. 
 
(6) Lemma. No optimal output contains a sequence UU. 

Proof. Consider any form φ = […UU…] and a competitor z = […F...] which is exactly 
like φ in every respect except that the syllables parsed UU in φ are parsed as F in z. To construct 
the ERC z~φ, we compare C(z) and C(φ) numerically over every constraint CÎCONnGX. 
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      z = […F…],   φ = […UU…] 

z~φ Comparison of violation values Rationale 

e Ps(z) = Ps(φ) The status of syllables as footed or unfooted is the same in 
both. 

W Iamb(z) < Iamb(φ) 

UU contributes 2 violations to Iamb(φ). If F is iambic, it 
contributes no violations to Iamb(z); if F is trochaic, it 
contributes 1 violation to Iamb(z). All other feet are the 
same in both competitors. 

W Troch(z) < Troch(φ) The same reasoning applies mutatis mutandis. 

W AFL(z) <  AFL(φ) 

UU = (σ)(σ) and F=(σ σ). AFL sees UU as (σ (σ and F as (σ 
σ, where the left parentheses denote edges which, when non-
initial, contribute violations to the AFL score. The UU 
structure in φ contains one more AFL-relevant foot edge 
than the F structure in z and that extra edge in φ is non-
initial, guaranteeing at least one additional violation. All 
other feet are in the same positions in both. 

W AFR(z) < AFR(φ) The same reasoning applies mutatis mutandis to UU = σ) σ) 
and F = σσ).  

 

Given these numerical relations, the resulting ERC z~φ is e.WW.WW, indicating that z 
harmonically bounds φ. No form containing a sequence UU can be optimal.   
 
(7) Lemma. No optimal output contains a sequence Uo or oU. 

Case 1. Let φ = […Uo…]. Consider a competitor z = […F...] which is exactly like φ in every 
respect except that the material parsed Uo in φ is parsed as F in z. To construct the ERC z~φ, we 
compare z and φ over every constraint.  
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      z = […F…],   φ = […Uo…] 

z~φ Comparison of violation values Rationale 

W Ps(z) < Ps(φ) The form z has one fewer unparsed syllable than φ. 

e/W Iamb(z) £ Iamb(φ) 
If F is trochaic, we trade one non-iambic foot for another, 
and the scores are equal. If F is iambic, z has one less non-
iambic foot than φ. 

W/e Troch(z) £ Troch(φ) The same reasoning applies mutatis mutandis. 

e AFL(z) = AFL(φ) From the point of view of AFL, Uo = (σσ and F = (σσ, 
contributing equal numbers of violations to the AFL score. 

W AFR(z) < AFR(φ) 

From the point of view of AFR, Uo = σ)σ and F = σσ). Since 
the cited foot edge in Uo in φ is one syllable farther from the 
end of the form than the cited edge in F, it contributes one 
more violation to the AFR score than F in z. 

The resulting ERC z~φ takes the form W.We.eW or W.eW.eW, depending on whether F is iambic 
or trochaic. Thus z harmonically bounds φ. No form containing Uo can be optimal.  

Case 2. Let φ = […oU…] and z = […F…]. The reasoning here is the same as in Case 1, except 
that the roles of AFL and AFR are interchanged. The resulting ERCs take the form W.We.We or 
W.eW.We, depending on whether F is iambic or trochaic. Once again, z harmonically bounds φ. 
No form containing a sequence oU can be optimal.       

 
(8) Proposition. Binarity. No optimal output longer than 1σ lacks binary feet. 

Proof. Let φÎ{U,o}+ where |φ| is 2 syllables or greater. From GENnGX, we have it that φ 
contains at least one foot. Consider some such form φ = […U…], where at least one of the 
stretches “…” is nonempty. U must be immediately followed or immediately preceded by a 
syllable to its left or by a syllable to its right. That neighboring syllable may be parsed as a unary 
foot, so the cited U is in a configuration UU. Or the neighboring syllable may be unparsed, so that 
cited U is in a configuration Uo or oU. There are no other cases. From Lemma (6) and Lemma (7), 
we know that no optima contain any of these configurations. Since GENnGX requires the presence 
of a foot in outputs, and since no φÎ{U,o}+ with |φ| ³ 2 is optimal,  the only optimal forms of 
length 2 syllables or longer have at least one binary foot.     
 
We conclude by noting a feature of ERC logic that we will take advantage of when convenient. In 
Boolean reasoning, if the antecedent is false, there is no need to worry about the truth value of the 
consequent: the same holds coordinatewise in ERC logic when an antecedent coordinate is L. 
Recall that entailment from one ERC to another depends on two rules of inference, L-retraction 
and W-extension (Prince 2002:5-7). To obtain αβ, where α, β are logically nontrivial in that they 
each contain both W and L, it is necessary and sufficient that in each coordinate k we have 
α[k] £ β[k], where the comparative values are arrayed along an abstract scale L<e<W. The rule 
of W-extension says that if the consequent coordinate value β[k] = W, then α[k] may be anything. 
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The rule of L-retraction says that if antecedent α[k] = L, then β[k] may be anything. The upshot is 
that in arguing αβ coordinatewise, we can ignore those coordinates k where α[k] has L, because 
nothing in β[k] can obstruct the entailment relation, by L-retraction.  
 
(9) Remark.  Ex Falso Quodlibet. For ERCs α and β, if α[k] = L, then in arguing αβ by checking 

relations between values in the coordinates, we need not check the value of β[k]. 
 
We will employ this handy shortcut on a couple of occasions below, to simplify the calculations 
when they threaten to distract. 
 
§0.3  Conspectus of the Argument 
 
Unaries (§0.2)  

● Lemma (6). No optimal output contains a sequence UU. 
● Lemma (7). No optimal output contains a sequence Uo or oU. 
■ Proposition (8). Binarity. No optimal output longer than 1σ lacks binary feet. 
 

FTyp.ia/tr (§1) 
■ Proposition (10). Uniformity of Foot Type. All the binary feet of an optimal output 
have the same type, iambic or trochaic. 

 
Pos.L/R (§2)   

● Lemma (11). Under Pos.L, no optimal output contains FU. Under Pos.R, no optimal 
output contains UF. 
● Lemma (12). No optimal output contains a unary foot displaced from the dominant edge.  
 Corollary (13). One U. No optimal output contains more than one U. 
● Lemma (14). No optimal output under Pos.L contains the sequence oF. No optimal 
output under Pos.R contains the sequence Fo. 
■ Proposition (15). Positioning of Feet in Optima. In a grammar satisfying Pos.L, any 
optimal output of length 2 or greater must be of the form [(U)Fnok], n≥1, k≥0. In any 
grammar satisfying Pos.R, any optimal output of length 2 or greater must be of the form 
[okFn(U)]. 

 
MULT.D/sp (§3) 

● Remark (18). Shrift for the Short. Optimal outputs of length 1 are of the form [U]. 
Optimal outputs of the length 2 are of the form [F]. 

Mult.sp 
● Lemma (19). Under Mult.sp = áAdom, FdomñPs, no optimal output contains FF. 
● Lemma (20). Under Mult.sp, no optimal output contains UF or FU. 
■ Proposition (21). The shape of the sparse. In grammars satisfying Mult.sp = áAdom, 
Fsubñ Ps, all optima of length 2 or greater take the form [Fok] under Pos.L and [okF] 
under Pos.R, k ≥ 0.  
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Mult.D 
● Lemma (22).Under Mult.D, no optimal output contains oo. 
● Lemma (23). Under Mult.D, no optimal output contains both U and o.  
■ Proposition (24). The shape of the dense. In grammars satisfying Mult.D = Ps 
áAdom,Fsubñ, all optimal outputs of length 2 or greater take the form [Fn(o)] or [(U)Fn] 
under Pos.L and [(o)Fn] or [Fn(U)] under Pos.R, n≥1. 

 
Un.o/X (§4) 

Un.X 
● Lemma (26). Un.o/X and Sparseness. Sparse grammars cannot assume the value Un.X. 
Sparse grammars must assume the value Un.o. 
● Lemma (27). Under Un.X, no optimal output contains o.  
■ Proposition (28). The shape of Un.X. Under Un.X = Ps  áFdom, Adomñ, all optimal 
outputs of length 2 or greater take the form [(U)Fn] under Pos.L and [Fn(U)] under Pos.R, 
n≥1. 

Un.o 
● Lemma (29). Under Un.o, no optimal output of length 2 or greater contains U.  
■ Proposition (30). The shape of Un.o. In grammars satisfying Un.o, optima are of the 
form [Fnok] under Pos.L and [okFn] under Pos.R, n≥1, k≥0.  

 
Extensional Characteristics of the Optima of nGX (§5) 

Theorem (32). Optimal Outputs of nGX.  The optimal outputs of nGX of length greater 
than or equal to 2 syllables are drawn from the following patterns. Within each schema, F 
is uniformly iambic or uniformly trochaic, and n³1, k³0. 

Mult/Un values Pos.L Pos.R 

Mult.sp, (Un.o)   Fok   okF 

Mult.D, Un.o   Fn(o)   (o)Fn 

Mult.D, Un.X   (U)Fn   FnU 
 
Universal Supports for nGX (§6) 

Theorem (33). Universal Supports for nGX. Any collection of candidate sets that 
delivers the 12 grammars obtained from the properties (4) is a universal support for nGX. 
● Lemma (34). The Long Supports. Any odd-length input of 5 or more syllables provides a 
universal support for nGX. 
● Lemma (35). Failure of the Even. No even length provides a universal support. 
● Lemma (36). The support with two inputs, one of length 3, the other of length 2m, m³2, 
is universal and minimal. 
Theorem (37). Minimal Universal Supports for nGX. The minimal universal supports 
for nGX are (1) the csets from an input of length 3 and an input of length 2m, m³2, and (2) 
any single cset from an input of odd length 5 syllables or greater. There are no others. 
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§1  FTyp.ia/tr: Iamb <> Troch 
 
We begin by establishing the extensional effects of the FTyp.ia/tr property. 
 
(10) Proposition. Uniformity of Foot Type. All the binary feet of an optimal output have the 

same type, iambic or trochaic. The binary Foot type of the entire output form is determined by 
FTyp (Fdom  Fsub). 

Proof. Assume FTyp.ia = e.WL.ee, so that Fdom = Iamb. Consider any output φ that 
contains a binary foot F̄ of the subordinate trochaic type, so that φ = [… F̄ …]. Now consider an 
output z = […F…] which is exactly the same as φ except that the cited trochaic foot F̄ is replaced 
by iambic F. Claim: zφ in any grammar meeting FTyp.ia. To show this, we construct the ERC 
z~φ. Observe that both z and φ fare exactly the same on the constraints Ps, AFL, AFR.  This 
leaves only Iamb and Troch to distinguish foot type, as claimed.  

The form φ has one more non-iambic foot than z, so that Iamb(z) < Iamb(φ). On Troch, 
we have Troch(z) > Troch(φ), because z has one more non-trochaic foot than φ. We therefore 
have the following ERC: 

 Ps Iamb Trochee AFL AFR 
z~φ e W L e e 

We abbreviate this as z~φ = e.WL.ee. 
Any grammar satisfying FTyp.ia = e.WL.ee meets this condition. The ERC z~φ is trivially 

entailed by FType.ia, and we have zφ. This means that φ cannot be optimal in any grammar 
satisfying FType.ia, because there is always a competitor better than φ. Any form like φ that 
contains even a single trochaic foot F̄ has a competitor that betters it by virtue of lacking that foot. 
Whether the competitor is itself bettered by something else is immaterial to deducing the fate of φ. 
Therefore, in grammars under FType.ia, no trochaic binary foot appears in an optimum. 
 The argument holds, mutatis mutandis, for FTyp.tr when we simply interchange the roles 
of Iamb and Troch. 

Thus no form with any subordinate-type binary feet is optimal, and each optimum must be 
chosen from among those with only dominant-type binary feet, as claimed.   
 
 
§2  Pos.L/R: AFL <> AFR 
 
We now establish a number of facts about the positioning of feet in nGX. 

(11) Lemma. Under Pos.L, no optimal output contains FU. Under Pos.R, no optimal output 
contains UF. 

Proof. Assume that the grammar under consideration satisfies Pos.L = AFLAFR. Let 
φ = […FU…] and consider a competitor z = […UF…], identical to φ in every respect except for 
the parsing of the three syllables dominated by the cited F and U nodes. We calculate the ERC 
z~φ. Observe first that φ and z fare identically on the constraints Ps, Iamb, and Trochee. This 
gives us z~φ = e.ee.XY, where X and Y are values to be determined. Any distinction between φ 
and z is made entirely by AFL and AFR. 
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Notating foot-edges with parentheses, we observe that the original sequence FU has the 
structure (σσ)(σ). Only the left edges count for AFL, so the contribution of UF and FU to the 
overall AFL penalties is determined by the following reduced structures: 

FU = (σ  σ (σ    in φ = […FU…] 
UF = (σ (σ  σ    in z  = […UF…]. 

These share whatever AFL penalty is induced by the leftmost foot-edge, but in z the second foot-
edge is closer to the beginning of the word, thereby shaving one violation from its AFL score. 
Since everything else in forms φ and z is identical, we have AFL(z) < AFL(φ). 
 Applying the same reasoning to AFR, we have the following relevant representations: 

FU = σ  σ) σ)    in φ = […FU…] 
UF = σ) σ  σ)    in z  = […UF…]. 

These share the AFR penalty induced by the second foot-edge, but in φ the first foot-edge is one 
syllable closer to the right edge of the word. Thus, AFR(φ) < AF(z).  
 Putting these results together, we obtain the ERC e.ee.WL. Since Pos.L gives us exactly 
the same ERC, we have trivially (since αα) that Pos.Lz~φ. Therefore, in any grammar 
satisfying Pos.L, we have zφ, and φ cannot be optimal. 
 The argument with respect to Pos.R and UF proceeds identically, exchanging right and 
left. This establishes the lemma.          
       
(12) Lemma. No optimal output contains a unary foot displaced from the dominant edge.  

Proof. Consider grammars satisfying Pos.L, and consider a form φ = […U…]. If the first 
“…” is nonempty, displacing the cited unary from the dominant (left) edge, then the cited U must 
sit in one of three configurations: oU, UU, FU. The first two of these are not present in optima by 
Lemmas (7) and (6) respectively. The third is absent from optima under Pos.L according to 
Lemma (11). If the cited U is displaced from the left edge, then φ is not a possible optimum. 

The same argument may be replicated for Pos.R with mirror-image forms.    
 
(13) Corollary. One U. No optimal output contains more than one U. 

Proof. Even if one U sits at the dominant edge, any other U must be displaced from the 
dominant edge, a guarantee of suboptimal status, by Lemma (12).      
       
(14) Lemma. No optimal output under Pos.L contains the sequence oF. No optimal output under 

Pos.R contains the sequence Fo. 
Proof. Consider any grammar satisfying Pos.L. Let φ = […oF…]. Consider a competitor z in 

which the syllables parsed by the cited sequence oF in φ is parsed instead as Fo in z, so that we 
have z = […Fo…], where the competitors φ and z are identical in every respect outside the cited 
oF and Fo sequences. Since both z and φ consist of exactly the same units, they fare the same on 
Ps, Iamb, and Trochee and differ only on the alignment constraints.  
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We have the following AFL-relevant representations: 
 oF = σ (σ σ    in φ = […oF…]  

Fo = (σ σ σ    in z  = […Fo…]. 
The cited (left) foot-edge contributes one more violation to the score for AFL in φ than in z. Since 
everything else outside the cited sequences is the same in z and φ, we have AFL(z) < AFL(φ).  

For evaluation by AFR, we have the following relevant representations: 
oF = σ σ  σ)   in φ = […oF…]  
Fo = σ σ) σ    in z  = […Fo…]. 

The cited (right) foot-edge contributes one violation less to the score for AFR in φ than in z. Since 
the two outputs are identical except for the cited sequences, it follows that AFR(φ) < AFR(z).  
 These lucubrations give us z~φ = e.ee.WL. Since this is the same as Pos.L, we have 
Pos.Le.ee.WL, trivially. In any grammar satisfying Pos.L, we have zφ. It follows that φ cannot 
be optimal under Pos. L. This means that optimal outputs in Pos.L grammars cannot contain the 
sequence oF.  
 The same reasoning applies to grammars satisfying Pos.R, using mirror image forms. The 
result is that optima under Pos.R cannot contain Fo.      
 
(15) Proposition. Positioning of Feet in Optima. In any grammar satisfying Pos.L, any optimal 

output of length 2 or greater must be of the form [(U)Fnok], n≥1, k≥0. In any grammar 
satisfying Pos.R, any optimal output of length 2 or greater must be of the form [okFn(U)]. 

 Proof. Forms of length 2 are shaped [F] by Lemma (8), which guarantees the presence of 
at least one binary foot, meeting the claimed descriptions. Consider forms of length 3 or greater in 
grammars under Pos.L. If there is a unary foot in an optimal output, it cannot be displaced from 
the beginning, by Lemma (12). This means that only forms [(U)…], where “…” contains no U, 
have any hope of optimality.  If the form has a binary foot, and it must have at least one by 
Lemma (8), then no such foot can appear in optima in the configuration oF, by Lemma (14). This 
leaves only the configuration [(U)Fn… for binary feet to occupy in optima. Completing the form 
with unparsed syllables runs afoul of no condition established so far, so [(U)Fnok] is the only 
pattern left for optimal outputs to assume. 
 The same argument may be replicated for Pos.R mutatis mutandis.   
 
The optimal shapes established in Proposition (15) will be further refined as we proceed.  
 
We conclude with a couple of remarks of more general interest. First, observe that only AFL and 
AFR are involved in positioning decisions in nGX. If two competing outputs have exactly the 
same number of feet of exactly the same type, they perform identically on the constraints Ps, 
Iamb, Troch, as noted in the arguments above. They can only be distinguished by foot location, 
which is monitored by AFL and AFR. 
 Second, and perhaps less obviously, in any contest between an optimum and a competitor 
that matches it in every characteristic except foot position, it is the dominant alignment constraint 
that decides between them. There are no cases where two such competitors, one optimal, both fare 
equally on the dominant constraint, leaving the decision to its subordinate antagonist. This is 
implicit in the proofs already given, and need merely be brought out. 
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(16) Remark. The dominant alignment constraint decides foot-location in competitions between 

an optimal form and a competitor with the same number and types of feet. The subordinate 
constraint makes no decisions. 

Proof. By Proposition (15), all possible optima have either the shape [(U)Fnok] or the 
shape [okFn(U)], n³1, k³0. We consider only forms of length 3 or greater. In forms of length 1, 
there is only one output admitted by GENnGX, so no competition. The same is true of length 2, 
because the only optima are shaped [F].  

Consider the situation under Pos.L, and let z be an output possibly optimal under Pos.L, 
and therefore of the form [(U)Fnok], n³1, k³0. Observe that z must contain at least one binary 
foot, by Proposition (8), motivating the requirement that n³1. Let φ be a competing parse, φ¹z, 
with exactly the same number and types of feet as z. We make no supposition as to whether φ is 
possibly optimal, although by assumption there is an arrangement of its feet that is, namely z.  

The prosodic pattern of z is the only arrangement of its prosodic units that lacks 
configurations oU, Uo, oF, or FU. Therefore φ must contain at least one of these. Since φ ¹ [Uok], 
if φ contains Uo, it must also contain either oU, oF, or FU; we may therefore set [Uok] aside.  

The proofs of Lemmas (11) and (14) establish that for any form φ containing a configuration 
FU or oF, respectively, we can produce another form strictly better than φ on AFL by virtue of 
lacking one of those configurations, namely by replacing them with UF and Fo respectively. The 
same reasoning that applies to oF in Lemma (14) extends to oU. Thus, for any form φ which 
differs from z only in disposition of feet we can construct a φ¢ that lacks one of the instances oU, 
oF, FU, with AFL(φ¢)<AFL(φ). But if φ¢ is itself not identical to z, then it must also contain at 
least one instance of oU, Uo, oF, or FU. Once again, any form containing Uo must also contain at 
least one of the others. We may therefore iterate the same reasoning until we reach a form to 
which it does not apply, by virtue of lacking oU, Uo, oF, FU. But this can only be z. Therefore 
AFL(z) < AFL(φ).  This shows that the decision between the possible optimum z and any 
competitor with the same prosodic units differently disposed is made entirely by AFL in grammars 
under Pos.L. 

The same reasoning applies mutatis mutandis to mirror-image forms under Pos.R.   
 
§3  MULT.sp/D: áAdom, Fsubñ<> Ps 

The number of feet in optima is determined by Mult.D/sp.  We introduce two useful descriptive 
terms, defined extensionally. 

(17) Sparse and dense 
a.  A sparse language has exactly 1 foot in every output. 
b. A dense language has more than 1 foot in some outputs forms. 

 
These definitions suffice to distinguish the relevant classes of extensional languages in nGX. The 
terms are echoed in the values sp/D associated with the property Mult, but the value names refer to 
specific ranking relations, not to the characteristics of forms. The extensional content of the values 
Mult.sp and Mult.D will prove to be much more detailed than the broad distinction incorporated in 
the definitions of ‘sparse’ and ‘dense’ just given. 
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We begin the argument by noting that short optima have limited structural options. 
 
(18) Remark. Shrift for the Short. Optimal outputs of length 1 are of the form [U]. Optimal 

outputs of the length 2 are of the form [F]. 
Proof. By GennGX all outputs must contain at least one foot, settling the first case. In the 

case of length 2, observe that Lemma (6) rules out UU, and Lemma (7) rules [Uo] and  [oU]. This 
leaves only [F].          
 
§3.1  Mult.sp: áAdom, Fsubñ Ps   
 
We first consider the extensional effects of Mult.sp. 
 
(19) Lemma. Under Mult.sp, no optimal output contains FF. 
 Proof. Let z = […Foo…] and φ = […FF…], where z and φ are identical in every respect 
outside the specified regions FF and Foo. We may also assume, without losing sight of any 
possible optima, that all binary F are of the dominant foot type, as Proposition (10) assures us, 
which we will assumed to be iambic by Ftyp.ia. We assume Adom = AFL by Pos.L. We have, 
then, Mult.sp = áTroch, AFLñPs, ERCwise L.eW.We. As always, we want to examine the ERC 
z~φ, so we determine the relative performance of the two competitors over the constraint set. 

      z = […Foo…],   φ = […FF…] 

z~φ Comparison of violation values Rationale 

L Ps(z) > Ps(φ) Form z has 2 more unparsed syllables than φ. 

e Iamb(z) = Iamb(φ) All feet are identical in both, except for the cited sequences, 
which contain no non-iambic feet. 

W Troch(z) < Troch(φ) Form z contains one fewer non-trochaic foot than φ. 

W AFL(z) < AFL(φ) 

AFL sees Foo in z as (σ σ σ σ, and FF in φ as (σ σ (σ σ. In 
φ, the rightmost cited foot-edge incurs a penalty for AFL 
unmatched in z. The leftmost cited foot-edge in φ and in z 
incur the same AFL penalty. 

e/W AFR(z) £ AFR(φ) 

AFR sees Foo in z as σ σ) σ σ and FF in φ as σ σ) σ σ). The 
leftmost cited foot-edge is identically placed in both. The 
rightmost foot-edge in φ incurs a positive penalty if FF is not 
final; if it is final in φ, it incurs no penalty.   

Putting these considerations together, we have the ERC L.eW.We or L.eW.WW. Under FTyp.ia 
and Pos.L, Mult.sp = L.eW.We, which is identical to the first and asymmetrically entails the 
second by W-extension. Therefore, {FType.ia, Pos.L, Mult.sp}z~φ, and we have zφ in 
grammars meeting these conditions. It follows that no form that like φ contains FF can be optimal 
in these grammars.  
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The argument replicates mutatis mutandis for the other values of FType.ia/tr and Pos.L/R, 
establishing the claim.          
 
(20) Lemma. Under Mult.sp, no optimal output contains UF or FU. 
 Proof. Assume for concreteness FType.ia and Pos.L. Lemma (12) guarantees that no 
optimum under Pos.L contains a unary foot displaced from the left edge, ensuring a fortiori that 
FU cannot appear in optima under the combination of Mult.sp and Pos.L. We therefore need only 
consider a form φ = [UF…] and contrast it with a form z = [Fo…], where the material in “…” is 
identical in the two forms. 

      z = [Fo…],   φ = [UF…] 

z~φ Comparison of violation values Rationale 

L Ps(z) > Ps(φ) Form z has one more unparsed syllable than φ. 

W Iamb(z) < Iamb(φ) Form φ has one more non-iambic foot than z, namely the 
cited U, contributing 1 more violation of Iamb than z has. 

W Troch(z) < Troch(φ) Form φ has one more non-trochaic foot than z. 

W AFL(z) < AFL(φ) 
AFL sees Fo in φ as (σ σ σ and the sequentially 
corresponding syllables in UF in z as (σ (σ σ. The rightmost 
foot-edge in z incurs a penalty on AFL not matched in φ.  

W AFR(z) < AFR(φ)   
AFR sees the UF structure in φ as σ) σ σ) and the Fo structure 
in z as σ σ) σ. The leftmost cited foot-edge in φ incurs a 
greater penalty on AFR than the only cited foot-edge in z.  

Putting these observations together yields the ERC L.WW.WW which is clearly entailed by 
Mult.sp = L.eW.We. We have therefore {FType.ia, Pos.L, Mult.sp} z~φ. Thus zφ, and it 
follows that φ cannot be optimal in any grammar meeting these conditions.  
 The same reasoning applies mutatis mutandis when other values are chosen for FType.ia/tr 
and Pos.L/R, re-defining Adom and Fdom. In particular, analysis of mirror image forms under 
Pos.R shows that sparse optima cannot contain FU.       
 
(21) Proposition. The shape of the sparse. In grammars satisfying Mult.sp = áAdom, FsubñPs, 

all optima of length 2 or greater take the form [Fok] under Pos.L and [okF] under Pos.R, k ≥ 0.  
Proof. Optima are restricted to the forms [(U)Fnok] and [okFn(U)], n ≥ 1, k³0, under 

Proposition (15). By Lemma (19) no optimal output under Mult.sp contains FF, and by Lemma 
(20) no optimal output under Mult.sp contains UF or FU. Sparse optima can then only be of the 
form [Fok] and [okF].           
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§3.2   Mult.D: Ps  áAdom, Fsubñ 
 
From the property statement itself, we have Mult.D = Ps áAdom, Fsubñ. Setting as always 
Fdom = Ia and Adom = AFL for ease of argument, we find ourselves dealing with grammars that 
satisfy the ERC W.eL.Le, which says PsáAFL,Trochñ. Fusing this with Pos.L = e.ee.WL, we 
have Pos.L◦Mult.D = W.eL.LL. We now proceed to deduce properties from this ERC, making use 
of the logical fact recorded as Remark (9) that if a coordinate value is L, we have nothing to verify 
about the corresponding coordinate in any ERC that we want it to entail. This means that we can 
content ourselves with establishing ERC fragments of a form that we can represent as W.ex.xx, 
where the x’s indicate unknown values, which of course needn’t be the same. 
 
(22) Lemma. Under Mult.D, no optimal output contains oo. 
 Proof.  Let φ = […oo…]. We compare with the minimally differing z = […F…], where F 
is of the dominant foot type, and where the sequentially corresponding “…” are structurally 
identical in z and φ. We assume for concreteness FTyp.ia, so that F is iambic in optima. 

      z = […F…],   φ = […oo…] 

z~φ Comparison of violation values Rationale 

W Ps(z) < Ps(φ) Form z has 2 fewer unparsed syllables than φ. 

e Iamb(z) = Iamb(φ) Neither F nor oo contributes violations of Fdom = Iamb. 

Of the ERC z~φ, we now know the crucial values. From z~φ = W.ex.xx and Pos.L◦Mult.D = 
W.eL.LL, we may conclude, in light of Remark (9), that  
  Pos.L◦Mult.Dz~φ 
and therefore that zφ. The argument reproduces mutatis mutandis for all other settings of the 
Pos.L/R and FTyp.ia/tr values. It follows that no output […oo…] may be optimal under Mult.D.  
 
(23) Lemma. Under Mult.D, no optimal output contains both U and o. 
 Proof.  With Fdom = Iamb and Adom = AFL, any optimal output must be of the form 
[(U)Fnok], with all F iambic, by Proposition (10) and Proposition (15).  From Lemma (22), we 
know that k£1, since dense outputs cannot contain oo. Therefore, any optimal output under 
Mult.D must be of the form [(U)Fn(o)]. Consider a U-containing form φ that contains both U and 
o. We must have φ = [UFno]. This form cannot be of odd length, so we conclude that no odd 
length form may contain both U and o.  
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Now consider the competitor z = [Fn+1]. We have these relations on Ps and Iamb. 

      z = [Fn+1],   φ = [UFno] 

z~φ Comparison of violation values Rationale 

W Ps(z) < Ps(φ) Form φ contains an unparsed syllable while z does not. 

W Iamb(z) < Iamb(φ) Form φ contains the non-iambic foot U while z does not. 

This gives us as much of the ERC z~φ as we need. We have z~φ = W.Wx.xx. Since Pos.L◦Mult.D 
= W.eL.LL, we have 
  Pos.L◦Mult.Dz~φ 
This establishes that zφ, and that therefore φ cannot be optimal. No form under Pos.L, FTyp.ia, 
and Mult.D may contain both U and o.  
 As always, these arguments may be replicated under all choices of values for FType.ia/tr 
and Pos.L/R.  It follows that no optimal outputs of any length, odd or even, may contain both U 
and o under Mult.D.          
 
(24) Proposition. The shape of the dense. In grammars satisfying Mult.D = Ps  áAdom,Fsubñ, 

all optimal outputs of length 2 or greater take the form [Fn(o)] or [(U)Fn] under Pos.L and 
[(o)Fn] or [Fn(U)] under Pos.R, n≥1. 

 Proof. Optima are restricted by Proposition (15) to the forms [(U)Fnok] and [okFn(U)]. 
Under Mult.D, optimal outputs may not contain oo by Lemma (22), nor may they contain both U 
and o by Lemma (23), so under Pos.L the only dense optima have the shapes [Fn(o)], [UFn], and 
under Pos.R, the possible optima must be shaped as their mirror images.   
 
(25) Corollary. All dense even-length outputs are exhaustively parsed into binary feet. 
 Proof.  Forms [Fno] and [UFn] are of odd length. This leaves only [Fn] among the patterns 
of optima admitted by Proposition (24).       
 

§4  Un.o/X:  áAdom, Fdomñ<> Ps 
All that remains to be determined is whether a dense odd-length output has an unparsed syllable or 
a unary foot. The property is determined by Un.o/X: áAdom, Fdomñ <> Ps.  
 
(26) Lemma. Un.o/X and Sparseness. Sparse grammars cannot assume the value Un.X. Sparse 

grammars must assume the value Un.o. 
Proof.We show that the values Un.X and Mult.sp are contradictory. 
 [1] Mult.sp = áAdom, Fsubñ  Ps.  
 [2] Fdom  Fsub. 
 [3] Mult.spáAdom, FdomñPs = Un.o, from [1],[2] by transitivity of domination. 
 [4] Un.X = Ps  áAdom, Fdomñ.  
 [5] {Mult.sp,Un.X}áAdom,Fdomñ  Ps; and  Ps áAdom,Fdomñ, from [3], [4]. 

Recall that “áA,BñC” means “(AC) or (B C)”, while “CáA,Bñ” is “(CA) and (CB).” 
Domination is a strict order, and therefore asymmetric, so [5] is a contradiction. This leaves only 
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the value Un.o = áAdom, Fdomñ Ps to be available for conjunction with Mult.sp. Un.o is not 
only consistent with Mult.sp = áAdom, FsubñPs, but is logically entailed by it, by [3].  
 
The choice between the values of Un.o/X is therefore only relevant to the grammars of the dense 
languages. 
 
(27) Lemma. Under Un.X, no optimal output contains o. 
 Proof. Un.X = PsáAdom, Fdomñ. Since AdomAsub and FdomFsub, Un.X delivers 
the ERC W.LL.LL no matter which values of Pos.L/R and FTyp.ia/tr are chosen. Let z be any 
form that is fully parsed, and φ a competitor with at least one unparsed syllable. Clearly 
z~φ = W.xx.xx. By the logic of Remark (9), this is entailed by W.LL.LL no matter what values are 
assigned to the individual x’s, so under Un.X we have zφ, eliminating φ’s chances for 
optimality, and with it the chances of any form with unparsed syllables.    
 
(28) Proposition. The shape of Un.X. In grammars satisfying Un.X = Ps  áFdom, Adomñ, all 

optimal outputs of length 2 or greater take the form [(U)Fn] under Pos.L and [Fn(U)] under 
Pos.R, n≥1. 
Proof. From Lemma (26), no Mult.sp grammar can assume the value Un.X, so all Un.X 

grammars can only be Mult.D. Indeed, Un.X = Ps  áAdom, Fdomñ entails Mult.D = 
PsáAdom, Fsubñ because Fdom  Fsub. From Proposition (24), under Mult.D, optima are of 
the form [Fn(o)] or [(U)Fn] assuming Pos.L, and the mirror images under Pos.R. From Lemma 
(27), in all grammars satisfying Un.X, optimal outputs are completely parsed, eliminating outputs 
of the form [Fno] and [oFn]. This leaves only [(U)Fn] under Pos.L and [Fn(U)] under Pos.R.      
 
(29) Lemma. Under Un.o, no optimal output of length 2 or greater contains U.  
 Proof. Un.o = áAdom, FdomñPs. From Lemma (26)[3], Mult.sp  Un.o. Grammars 
under Mult.sp allow no U in optimal outputs of length greater than 1 syllable by Proposition (21), 
so this class of grammars under Un.o satisfies the statement of the lemma. We turn now to the 
remaining class of grammars, those satisfying Mult.D. Consider any dense form φ = [UFn] and a 
dense competitor z = [Fno]. Setting Adom = AFL, Fdom = Iamb, we have the following ERC from 
fusion: Mult.D◦Un.o◦FTyp.ia◦Pos.L = L.WL.LL.  
Explicitly,  

Mult.D    W.eL.Le 
Un.o     L.We.We  
FTyp.ia e.WL.ee 
Pos.L  e.ee.WL 
fuse(all) L.WL.LL 

By Remark (9), we need only show that Fdom (Iamb) assigns fewer violations to z, thus ensuring 
a W in the second coordinate of the ERC z~φ. Forms φ = [UFn] and z = [Fno] have the same 
number of binary feet, which we may assume to be of the dominant, iambic type. But φ contains 
an additional unary foot, adding one to its Iamb penalty. This gives the ERC x.Wx.xx, which is 
entailed by Mult.D◦Un.o◦FType◦Pos.L = L.WL.LL. In any such grammar, zφ. Parallel 
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arguments hold by switching the values of Fdom and Adom. Switching Adom does not affect the 
fused ERC. Switching Fdom gives us the ERC L.LW.LL, and the same form of argument goes 
through under the assumption that F in the competitors is trochaic.      
 
(30) Proposition. The shape of Un.o. In grammars satisfying Un.o, optima are of the form [Fnok] 

under Pos.L and [okFn] under Pos.R, n≥1, k≥0.  
Proof.  Consider first grammars satisfying Mult.sp. By Lemma (26)[3] these must have the 

value Un.o. From Proposition (21), we have that in all such grammars optima are of the form [Fok] 
and [okF], which accords with the claim that Un.o grammars admit only [Fnok] and [okFn] under 
Pos.L and Pos.R respectively.  Now consider grammars satisfying Mult.D. By Proposition (24), all 
optima in Mult.D grammars are of the form [(U)Fn] and [Fn(o)] under Pos.L and the mirror images 
under Pos.R. But by Lemma (29), no optimal outputs of length 2 or greater contain U under Un.o. 
Therefore only only [Fn(o)] and [(o)Fn] remain. These are of the form demanded by the lemma.   
 
Mootness. Not all properties impose distinctions on every class of grammars. For example, the 
property Un.o/X distinguishes one class of dense languages from another, but makes no distinction 
between types of sparse languages. 

If Un.o/X =  áFdom, Adomñ<> Ps, as assumed above, then Un.X contradicts Mult.sp and 
Un.o is entailed by Mult.sp, as shown in Lemma (26). In this case, the ineffectiveness of Un.o/X 
follows from the logic of its formulation. 

We may also give the property a simpler formulation as Fdom <> Ps, omitting mention of 
Adom, if we explicitly limit its scope to the grammars satisfying Mult.D.  Under this approach, 
Alber & Prince describe the property Un.o/X as being moot with respect to Mult.sp. Nothing about 
the arguments above would change if we shifted to the scope-limited version. In nGX, there is no 
particularly strong reason to choose one over the other, but Alber & Prince show that mootness is 
a fundamental, ineradicable characteristic of typological structure in the general case which arises 
because grammars, understood as sets of rankings, are delimited by ERC sets. 
 
§5  Extensional Characteristics of the optima of nGX 
 
The results of §§1-4 classify the languages of nGX based on the property values that define their 
grammars. The property Un.o is given in its wide-scope version. 
 
(31) nGX by Properties 

Optima Properties 
Mult FType Pos Un 

 Fok  sp  ia/tr  L  o 
 okF  sp  ia/tr  R  o 
 Fn(o)  D  ia/tr  L  o 
 (o)Fn  D  ia/tr  R  o 
 (U)Fn  D  ia/tr  L  X 
 Fn(U)  D  ia/tr  R  X 
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We now justify the classification. 
 
(32) Theorem. Optimal Outputs of nGX. The optimal outputs of nGX of length greater than or 

equal to 2 syllables are drawn from the following patterns. Each, by GENnGX, is a single PrWd. 
Within each schema, F is uniformly iambic or uniformly trochaic, and n³1, k³0. 

Mult/Un values Pos.L Pos.R 

Mult.sp, Un.o  Fok  okF 

Mult.D, Un.o  Fn(o)  (o)Fn 

Mult.D, Un.X  (U)Fn  Fn(U) 

Proof. From Proposition (15) we have that in any grammar satisfying Pos.L, optimal 
outputs take the form [(U)Fnok] and in any grammar satisfying Pos.R, optimal outputs take the 
form [okFn(U)]. By Proposition (10), the binary feet in such forms are either all iambic or all 
trochaic. According to Proposition (21), in any grammar satisfying Mult.sp, optimal outputs must 
be of the form [Fok] or [okF] with a single binary foot per word. From Proposition (24), in any 
grammar satisfying Mult.D, optimal outputs are restricted to the form [Fn(o)] or [(U)Fn] under 
Pos.L and [(o)Fn] or [Fn(U)] under Pos.R, n≥1. A grammar with the value Un.X has only 
completely parsed forms [(U)Fn] or [Fn(U)] by Proposition (28), and in any grammar with the 
value Un.o, there are no optima with unary feet, by Proposition (30), allowing only the forms 
[Fn(o)] or [(o)Fn].            
 
6. Universal Supports for nGX 
 
(33) Theorem. Universal Supports for nGX. Any collection of candidate sets that delivers the 

12 grammars obtained from the properties in (4) is a universal support for nGX. 
Proof. The properties in (4) entail the characterization of the optima asserted in Theorem (32). 

Each extensional description, when variables n and k are specified and when any parenthesized 
element is either included or omitted, determines the length of the described form in syllables, the 
location of its feet with respect to the syllable string and, when F is specified as iambic or trochaic, 
the location of the heads of the feet. By Remark (2), there can be only one form admitted by 
GENnGX that meets this description. Therefore, no further refinements of the grammars can be 
motivated.            
 
We may also now completely characterize the universal supports of nGX. The key observation is 
that a universal support must distinguish all the possible optima. The simplest case is when the 
optima manifest in a single candidate set.  
 
(34) Lemma. The Long Supports. Any odd-length input of 5 or more syllables provides a 

universal support for nGX. 
Proof. Consider an input of length 2m+1, m³2. Since it admits all parses defined by GENnGX, 

it admits exactly these from the table accompanying Theorem (32). 
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Mult/Un values Pos.L Pos.R 

Mult.sp, (Un.o)   2 1Fo m−   2 1o Fm−   

Mult.D, Un.o   F om    o Fm   

Mult.D, Un.X   U Fm   F Um   

Split each cell in two by allowing F to be uniformly iambic or uniformly trochaic in the formulae. 
These 12 forms are exactly the optimal outputs admitted by each of the grammars of nGX, as we 
have shown. Thus the candidate set for input of length 2m+1, m³2, contains 12 distinct optima, 
one for each grammar of nGX.        
 
(35) Lemma. Failure of the Even. No even length provides a universal support for nGX. 

Proof. The input of length 2 yields only the two optima shaped [F], by Remark (18). For 
the lengths 2m, m³2, we turn to Theorem (32), which gives a complete list of the shapes of all 
possible optima of nGX. No forms [Fno], [UFn] [oFn], [FnU] can appear as parses of even lengths.  
The possibly optimal parses of even length 4 or greater are exhaustively those of the shapes [Fo2k], 
[o2kF], and [Fn], n³2, k³0. Among the dense, which fall under Mult.D, the longer even length 
inputs fail therefore to distinguish between Un.o and Un.X.      
 
We know from experiment that the support with inputs of length 3 and 4 syllables is universal, 
simply because it produces the 12 grammars. We may now generalize this observation to cover the 
collocation of the length 3 cset with any other cset with input of even length greater than 2. 
 
(36) Lemma.  The support with two inputs, one of length 3, the other of length 2m, m³2, is 

universal and minimal. 
Proof. Length 3 has the optima [Fo], [oF], [UF], [FU], for F iambic and for F trochaic. 

Observe that the optimal structures [Fok] and [Fn(o)] are not distinguished at length 3, nor are [okF] 
and [(o)Fn]. This establishes that the input of length 3 does not provide a universal support.  

The structural types neutralized at length 3 are however distinguished at length 2m, m³2, 
where the optima 2 2[Fo ]m−  instantiate [Fok], contrasting with the optima [Fm] of the shape [Fn(o)]; 
and the same mirror-imagewise for 2 2[o F]m− . From Corollary (35), we know that the optima of 
length 2m are [Fo2k], [o2kF], for k = m–1, and [Fm], doubled by the iambic-trochaic distinction.  
From both lengths taken together, we may form pairs that distinguish all the grammars. Under 
Pos.L, these take the schematic shapes (Fo, Fo2k), (Fo, Fm), and (UF, Fm), k = m–1, which may be 
expanded to instantiate the full range of Pos.L/R and FTyp.ia/tr values, yielding the 12 grammars.  
This establishes universality. Since neither length 3 nor length 2m, m³2, is universal by itself, we 
have minimality as well.         

 
(37) Theorem.  Minimal Universal Supports for nGX. The minimal universal supports for nGX 

are (1) the csets from an input of length 3 and an input of length 2m, m³2, and (2) any single 
cset from an input of odd length 5 syllables or greater. There are no others. 
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Proof. Lemma (36) establishes that the combination of csets from lengths 3 and 2m, m³2 
is universal and minimal. Lemma (34) establishes the odd lengths greater than or equal to 5 
syllables are each universal, with minimality following trivially. No even length can be universal 
by itself, by Lemma (35).  

Any support Σ that contains an even length cset must therefore contain another cset of odd 
length. If the length of the odd member is greater than or equal to 5, then Σ is non-minimal. We 
now dispose of the shorter lengths. The 1 syllable cset has the same optimum in all grammars, and 
therefore belongs to no minimal support.  

The 2-syllable input has only two optima, both shaped F, for iambic and trochaic. Every 
optimal output of length greater than 1 contains F, by Proposition (8). That F must be either 
iambic or trochaic, so that every such output determines the value of FTyp.ia/tr. The 2-syllable 
cset may therefore be removed from any universal support without compromising universality.  
We conclude that the 1 and 2 syllable csets belong to no minimal universal supports, and with that, 
we have covered all the cases.         
 
Along the route to characterizing the universal supports for nGX, we have also established the 
shape of every optimum admitted by the system, and associated each optimum with the grammar 
that admits it. The essential move was to connect each grammar-defining property value with the 
extensional characteristics that it imposes. The resulting view of the system now lies well beyond 
what can be abstracted from observing the distribution of characteristics in a finite sample from 
nGX. We definitively have the typology in a way that sets the stage for wide-ranging analysis and 
comparison with other systems, abstract and concrete. 
 

 
 

 
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Appendix 1 
 
Sample of Extensional typology of nGX:  2σ-5σ inputs. NB. All 1σ inputs are U = -X-. 
 
Language 2s 3s 4s 5s Footing 
sp.ia.L(.o) -uX- -uX-o- -uX-o-o- -uX-o-o-o- 

Fon sp.tr.L(.o) -Xu- -Xu-o- -Xu-o-o- -Xu-o-o-o- 
sp.ia.R(.o) -uX- -o-uX- -o-o-uX- -o-o-o-uX- 

onF 
sp.tr.R(.o) -Xu- -o-Xu- -o-o-Xu- -o-o-o-Xu- 
D.ia.L.o -uX- -uX-o- -uX-uX- -uX-uX-o- 

Fn(o) D.tr.L.o -Xu- -Xu-o- -Xu-Xu- -Xu-Xu-o- 
D.ia.R.o -uX- -o-uX- -uX-uX- -o-uX-uX- 

(o)Fn 
D.tr.R.o -Xu- -o-Xu- -Xu-Xu- -o-Xu-Xu- 
D.ia.L.X -uX- -X-uX- -uX-uX- -X-uX-uX- 

(U)Fn D.tr.L.X -Xu- -X-Xu- -Xu-Xu- -X-Xu-Xu- 
D.ia.R.X -uX- -uX-X- -uX-uX- -uX-uX-X- 

Fn(U) 
D.tr.R.X -Xu- -Xu-X- -Xu-Xu- -Xu-Xu-X- 
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Appendix 2 
Grammars of nGX given as SKBs and Hasse diagrams, from OTWorkplace. 
 
Appendix 2.1   ‘Sparse’. Outputs = [F,on ] 
 
sp.ia.L 

  

4:AFL 5:AFR 2:Iamb 3:Troch 1:Ps 
W L    

  W L  W   W L 
 

  

 

 
 
sp.tr.L   

4:AFL 5:AFR 3:Troch 2:Iamb 1:Ps 
W L    

  W L  W   W L 
 

  

 

 
 
sp.ia.R   

5:AFR 4:AFL 2:Iamb 3:Troch 1:Ps 
W L    

  W L  W   W L 
 

  

 

 
 
sp.tr.R   

5:AFR 4:AFL 3:Troch 2:Iamb 1:Ps 
W L    

  W L  W   W L 
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Appendix 2.2   D.o = ‘Weakly Dense’.  Outputs = [Fn,o] 
 
D.ia.L.o  
2:Iamb 1:Ps 3:Troch 4:AFL 5:AFR 

W L       
  W L L   
      W L 

 

  
 
D.tr.L.o  

3:Troch 1:Ps 2:Iamb 4:AFL 5:AFR 
W L       
  W L L   
      W L 

 

  
 
D.ia.R.o  

2:Iamb 1:Ps 3:Troch 5:AFR 4:AFL 
W L       
  W L L   
      W L 

 

  
 
 
D.tr.R.o  

3:Troch 1:Ps 2:Iamb 5:AFR 4:AFL 
W L       
  W L L   
      W L 
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Appendix 2.3   D.X = ‘Strongly Dense’.  Outputs = [Fn,U ] 
 
D.ia.L.X  

1:Ps 2:Iamb 4:AFL 3:Troch 5:AFR 
W L L     
  W   L   
    W   L 

 

 
  
D.tr.L.X  

1:Ps 3:Troch 4:AFL 2:Iamb 5:AFR 
W L L     
  W   L   
    W   L 

 

 
  
D.ia.R.X  

1:Ps 2:Iamb 5:AFR 3:Troch 4:AFL 
W L L     
  W   L   
    W   L 

 

 
  
D.tr.R.X  

1:Ps 3:Troch 5:AFR 2:Iamb 4:AFL 
W L L     
  W   L   
    W   L 
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Appendix 3  Property specifications in the Iambic Left Quadrant of nGX 
 
(i)  sp.ia.L.o  “Sparse Iambic Left”   
 

Property  Value ERC 
Mult sp L.eW.We 
Ftyp ia e.WL.ee 
Pos L e.ee.WL 

Un o L.We.We 
 
 
(ii)  D.ia.L.o “Weakly Dense Iambic Left” 
 

Property  Value ERC 
Mult D W.eL.Le 

Ftyp ia e.WL.ee 
Pos L e.ee.WL 
Un o L.We.We 

 
 
(ii)  D.ia.L.X “Strongly Dense Iambic Left” 
 

Property  Value ERC 
Mult D W.eL.Le 
Ftyp ia e.WL.ee 
Pos L e.ee.WL 
Un X W.Le.Le 
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