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1 Introduction

Semi-regular phonological processes occur often in natural language. For example, rendaku voicing
in Japanese fails to occur in a seemingly random fashion among roughly 16% of certain classes of
compounds. This presents an analytical challenge for generative theories with exceptionless rules
or categorical constraints: irregularity of any kind must arise within lexical representations, not
the grammar. For example, the compound in (1) predictably voices by the rule of rendaku voicing
McCawley (1968, inter alia) but the compound in (2) doesn’t. There is no known phonological
distinction between kuma and yama that enables a rule or constraint to explain the difference.

(1) kuma + te → kuma-de
‘bear’ ‘hand’ ‘rake’

(2) yama + te → yama-te
‘mountain’ ‘hand’ ‘mountainside’

Kawahara (2015) confronts the question of whether semi-regular processes such as rendaku
voicing in Japanese should be considered phonological or purely lexical, in view of its many excep-
tions. He addresses an apparently lexicalist view of rendaku taken by Vance (2014), and presents a
number of arguments in favor of its status as a bona-fide phonological process. In describing what
is at stake with respect to the question of whether rendaku is lexical or phonological, he points
out that ‘rendaku and its properties have been extensively used for phonological argumentation,
and that rendaku has been made famous among the field of phonological theory in general’ (Kawa-
hara, 2015, p. 4). As he discusses, the irregularity of rendaku undermines its phonological status
inasmuch as its production in a generative framework will be short-circuited by lexical listings that
apply to a whole compound in cases where the process fails to apply. Given the fact that the same
word will voice in some compounds but not in others, it is not enough to list something about
the voicing of a word in its independent lexical entry – at least it so appears. In familiar types of
generative frameworks, it would seem necessary for the lexicon to separately list any compound,
such as yama-te above, that happens to block the process of voicing.
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Grant McGuire, Pranav Anand, Deniz Rudin, other members of the UCSC Phlunch group, the audience at the
Berkeley Linguistic Society 2016 conference and Yohei Rosen for helpful comments and suggestions. I also thank
Mark Schmidt for valuable mentorship in machine learning. All errors are my own. Please send any inquiries to
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Not only does rendaku exhibit irregularity McCawley (1968, inter alia), but, as is well known,
the preference or dispreference for a given word to undergo voicing in a compound shows gradience
across the lexicon, as will be shown on page 3 in (3) and (4) below, where we see a continuum that
goes from complete resistance to rendaku in some words all the way across the scale to a state of
exceptionless voicing by other words (Haruo Kubozono, p.c., 2000; Irwin, 2015, inter alia). There
is no way in standard rule-based (e.g. Chomsky and Halle, 1968) or constraint-based frameworks
(e.g. Prince and Smolensky, 1993) in which features are binary or privative rather than scalar, to
give a word a feature that will determine its precise degree of preference for voicing.1

This work proposes a new analysis of rendaku that solves this problem, allowing the correct
output forms to be generated with little or no specification of voicing for particular, ‘exceptional’
compounds. I adopt the framework of Gradient Symbolic Computation (Smolensky and Goldrick,
2015, henceforth GSC), a type of Harmonic Grammar (Legendre et al., 1990a) that allows weighted
constraints and features with continuous activation levels. In this analysis, rendaku voicing occurs
by the coalescence of two stem-specific, partially activated [+voi] features that occur as attributive
affixes on compound-forming stems: a variation of the junctural morpheme for rendaku proposed by
Itô and Mester (1998). Only when the additive combination of these features exceeds some threshold
t does voicing occur. In the above examples, [+voi]kuti + [+voi]kuse > t > [+voi]sake + [+voi]kuse.
The contribution of both conjuncts to voicing captures not only the well-known gradient continuum
of voicing preference/dispreference among second conjuncts but also a lesser-known gradient effect
of first conjuncts on voicing.

Adopting the principle of Minimum Description Length (Goldsmith, 2009) I will show that GSC
can provide a better model of this semi-regular phenomenon than other frameworks by reducing
the degree of lexicalization with minimum cost to the grammar. Moreover, computer-simulated
algorithms show that this proposed grammar is learnable. This analysis holds promise that the
GSC model can shed new light on the lexicalization versus grammaticalization question with respect
to other semi-regular processes.

This analysis also accounts for the gradient nature of rendaku, where the preference or dis-
preference for voicing of a given word can be shown to be due to the activation strength of its
underlying voicing feature. An intrinsic part of that explanation will be the proposal that not only
do words that occur as the second conjunct of a compound exhibit gradient preferences for voicing,
but the first conjunct in a two-member compound also arguably exhibits the same kind of gradient
preference for triggering voicing in the word that follows it. This phenomenon is not as easy to see
unless it is viewed as part of the overall interaction between the voicing activation values of the two
conjuncts. Evidence that supports the hypothesis of gradience for triggering as well as for voicing
will be demonstrated by creating a noncontradictory hierarchy of voicing feature activation values
– a hierarchy that will be shown to be statistically very unlikely if the first conjuncts of the set of
compounds were to just occur randomly.

2 Examples of the gradient nature of rendaku voicing

A database of 921 noun-noun compounds was used in this analysis. The first conjuncts (henceforth
‘N1’s’) occurred among a set of 233 Yamato (native Japanese) nouns and the second conjuncts
(henceforth ‘N2’s’) among a set of 306 Yamato nouns. The database was limited to compounds of
native Yamato origin in which the total moraic count does not exceed four (i.e. compounds of the

1In Rosen (2001) I proposed a partial solution to some of these problems by having the lexical listing of a compound
occur representationally as pointers to the listings of the individual constituents, but it addressed the issue of gradience
only in a very coarse-grained way.

2



form 1µ + 1µ, 1µ + 2µ, 1µ + 3µ, 2µ + 1µ, 2µ + 2µ, or 3µ + 1µ).2 Compounds in which rendaku
voicing is blocked because of Lyman’s Law or because of belonging to the class of coordinative or
dvandva compounds, which also block rendaku (Martin, 1987, p. 9), were also excluded. Common
placenames and family names, which show evidence of being lexicalized as single words, were also
omitted. If we examine the frequency at which a noun experiences rendaku voicing within this set,
we find the following examples of a range of voicing frequencies among nouns that occur in at least
six compounds:

(3) N2 saki kusa te hara ki kawa
Gloss tip grass hand field tree skin
Freq. of rendaku 0 0.12 0.21 0.25 0.33 0.5
Num. of examples 16 17 19 8 18 14

(4) N2 tori hune hito hue
Gloss bird boat person flute
Freq. of rendaku 0.84 0.93 1.0 1.0
Num. of examples 13 21 16 12

(5) shows the triggering frequency of some N1s as the first conjuncts of two-member compounds.
Fewer nouns occur as abundantly in this position, since the number of nouns that can occur as the
nonhead of the compound will be less semantically and pragmatically limited than for the head
noun.

(5) N1 niwa me mizu ura yama yoko hana2
Gloss garden eye water back mountain side flower
Freq. of rendaku 0.16 0.5 0.7 0.75 0.81 0.9 1.0
Num. of examples 6 12 17 12 22 10 10

The following graph shows the voicing behavior of the compounds in the dataset, with N1, the
first conjunct, represented as a distance along the y-axis and N2’s on the x-axis, arranged in order
of voicing tendency on both axes. Red dots represent a compound that voices, blue dots one that
doesn’t. The graph is subdivided into three rows and three columns in each dimension according
to the overall voicing behavior of the stems. The graph shows the patterning of gradient voicing
preferences among stems. Overall, 16% of compounds in this set fail to voice. In the lowest row
and leftmost column are N1’s and N2’s that always block voicing; in the highest row and rightmost
column, N1’s and N2’s that always participate in voicing. But in the middle rectangle we find both
blue dots and red dots. The fact that clustering of colors occurs on this graph is a clue towards
the analysis of rendaku that shall be presented.

The next section introduces the Gradient Symbolic Computation framework under which this
analysis will be developed.

2The database was limited to compounds that fall within this length limit because of evidence that compounds
of greater length are much less resistant to rendaku voicing – what Rosen (2001, 2003) calls the ‘prosodic size factor’
(see also Kawahara and Sano, 2014). There is a similar reason for limiting the database to Yamato morphemes only.
If we adopt the stratification of the Japanese lexicon proposed by Itô and Mester (1995), compounds show increasing
resistance to rendaku as we move outside of the Yamato stratum of the lexicon to other strata.
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3 The Gradient Symbolic Computation framework (Smolensky
and Goldrick, 2015)

This grammar architecture consists of two levels: (a) a symbolic level of discrete symbol structures
in which symbols such as representations of phonemes are assigned to a set of roles such as positions
in a string; (b) a subsymbolic or subconceptual level which is a kind of neural connectionist network
that consists of distributed representations in which a given binding between a filler such as a
phoneme and a role such as a position is distributed over the whole network. Specifically, there is
an activity pattern for a given filler-role binding which is calculated by the tensor product of activity
vectors that encode the filler and the role at this subsymbolic level. The way the symbolic level is
derived algorithmically from the subsymbolic level involves two important factors: (i) a gradually
decreasing ‘temperature’ factor T of added Gaussian noise that creates a simulated annealing
process for optimization and (ii) a gradually increasing quantization factor q that forces the output
to be discrete (at least to some degree, although blended representations are still possible).

At the symbolic level, the grammar belongs to the class of Harmonic Grammars (e.g. Smolensky,
1986; Legendre et al., 1990a,b; Goldsmith, 1993; Pater, 2009), where, as Smolensky and Goldrick
describe, ‘the grammatical wellformedness of a symbol structure S is measured by a grammar-
Harmony function HG . HG(S) is the weighted sum of S’s violations of constraints on co-occurrence
of filler/role bindings’. In this symbol structure, structural positions are occupied by blends of
symbols that can have partial levels of activation.

Of particular interest to us here is the way, in this kind of harmonic grammar, the interaction of
partially-weighted constraints with partially activated input features will derive particular outputs.
The analysis of rendaku to be presented here parallels, in certain ways, an analysis of French liaison
in the GSC framework by Smolensky (2015), to which the reader is referred.
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4 A GSC account of rendaku voicing

The apparent semi-regularity of Japanese rendaku becomes grammatical and explainable if we adopt
the hypothesis that there are partially activated [+voice] features at the edges of morphemes whose
activation values reflect, for the first conjunct, that morpheme’s inclination to trigger rendaku in
the following stem, and, for the second conjunct, that morpheme’s inclination to undergo rendaku.
The combined effects of the two coalescing, partially activated features will determine whether a
[+voice] feature surfaces.

This requires a slight modification of the proposal of Itô and Mester (1998) of rendaku as a
junctural prefix:

(7) [yoko] + [voi]ρ + [tsuna] → yokodzuna ‘horizontal rope’ (Itô and Mester, 1998, p. 29)

In the present account the rendaku morpheme is both a prefix and a suffix, whose features
coalesce to one feature in the output as shown in (8). In (9), coalescence occurs but fails to
produce voicing, which shall be explained forthwith.

(8)

kuma-[voi]ρ1 + [voi]ρ2 -te → kuma-

ρ1,2

|
te = kuma-de

‘bear’ ‘hand’ ‘rake’

(9)

yama-[voi]ρ1 + [voi]ρ2 -te → yama-

ρ1,2

|
te = yama-te

‘mountain’ ‘hand’ ‘mountainside’

If a particular N1 triggers voicing in a significant majority of compounds, it will have a strongly
activated voicing feature that reflects its tendency (modulo the effects of the activation on N2) to
trigger voicing in a compound. The same is true for N2’s, where a strongly activated N2 reflects
its type-frequency of voicing in various compounds.

At the symbolic level, the GSC framework has weighted constraints that act on features that
can be partially activated. We shall see that the effects of weighted constraints such as Max and
Dep, whose general properties are familiar from Optimality Theory (Prince and Smolensky, 1993),
are such that there is a threshold for the sum of the activations of the [+voi] features on N1 and
N2, above which voicing will occur and below which it will not.

The following harmonic tableaux show how voicing is determined by the effects of weighted
Max and Dep constraints on partially-activated [+voi] features, to which, for the time being, we
assign hypothetical values. We give Max a weight of 1 and Dep a weight of −1. A Max constraint
creates positive harmony: its weight times the activation of the feature in question that surfaces.
A Dep constraint creates negative harmony: its (negative) weight times the difference in activation
values between a feature’s underlying form and surface form. The winning candidate is the one
with the highest harmony value.

(10) 1 1 -1

kuma([+voi] · (0.4)) ((0.225) · [+voi])te Max[+voi]1 Max[+voi]2 Dep[+voi] H

Z kuma-de 0.4 0.225 -0.375 0.25

kuma-te 0

• Dep violation is 1− (0.4 + 0.225) = −0.375.
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(11) 1 1 -1

yama([+voi] · (0.225)) ((0.225) · [+voi])te Max[+voi]1 Max[+voi]2 Dep[+voi] H

yama-de 0.225 0.225 -0.55 -0.1

Z yama-te 0

• Dep violation is 1− (0.225 + 0.225) = −0.55.

• The rendaku suffix (0.225) on yama ‘mountain’ is posited to have a lower activation value
than the one on kuma ‘bear’ (0.4).

• So the combined weights are not enough to surpass the threshold and cause voicing.

In general, we can show that the threshold for voicing will be given by D
M+D

, where M is the
weight of Max and −D is the weight of Dep.

Having rendaku voicing determined by whether the sum of voicing feature activation levels on
N1 and N2 surpasses some threshold will depend completely on whether there can be a strict,
noncontradictory domination hierarchy of voicing activation values on morphemes that reflects
their triggering and voicing tendencies. Consider, for example, the following interleaved set of
morphologically minimal pairs of compounds, shown in the diagram below, where the first two are
repeated from (8) and (9) above. Under our hypothesis that voicing is determined by the combined
strength of [+voi] rendaku affixes on N1 and N2, these examples establish a hierarchy of activation
values for these affixes shown in the boxes below.

(12)

ρkuma > ρyama > ρniwa

ρte < ρtori

kuma-de
‘rake’

yama-te

‘mountainside’

yama-dori

‘mountain-bird’

niwa-tori
‘chicken’

kuma

te

yama

tori

niwa

rendaku

no rendaku

rendaku

no rendaku

From this data we establish, for example, that ρkuma > ρyama > ρniwa for stem rendaku suffixes.
So if kuma ‘bear’ and niwa ‘garden’ both combined with the same stem (e.g. kinu ‘silk’) to form

compounds, the following morphologically minimal pair should be impossible:

(13) *kuma-kinu
*niwa-ginu

}

Contradicts the hierarchy ρkuma > ρniwa

These are not real compounds, but if they existed, we predict that they could not have this kind
of voicing contrast. If such contradictions are found to exist in the data, then our hypothesis – that
voicing is determined by the sum of innate voicing activation levels of affixes on stems – will not be
viable. But if no such contradictions can be found, and if such contradictions are likely to occur in
a dataset of randomly voiced compounds, then the current hypothesis is supported. The following
algorithm was used to search for contradictions in the data among both N1 rendaku suffixes and
N2 rendaku prefixes. (Subscripts on N’s here are to distinguish between different stems, not to
distinguish between the first and second conjunct of a compound.)
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1. Find all immediate domination instances from morphologically minimal pairs:
ρN1

> ρN2
iff N1N3 voices and N2N3 doesn’t voice.

e.g.: kuma-de vs. yama-te (previous page)
2. By transitivity of domination, (ρN1

> ρN2
and ρN2

> ρN3
→ ρN1

> ρN3
), create a dominance

tree.
3. Search the tree, depth first, for contradictions.

The following is a fragment of what such a domination tree would look like:

(14) kami1(1)

ura(4)

nama(5)

kata4(6) tuma(5)

titi(2) sato(2)

ura(4)

nama(5)

kata4(6) tuma(5)

haha(2)

It is significant that no contradictions turned up in the data set. We might ask how likely it is
that a lack of contradictions would occur randomly. To try to answer this question, the following
computer simulation was carried out:

1. Go through the list of compounds, randomly altering the voicing on N2, so that voicing occurs
84% of the time.

2. Do this 10 times.
3. Check each list for contradictions in domination for ρN1

and ρN2
.

Each run of the simulation produced 5 to 11 contradictions, suggesting that the lack of contra-
diction in the real data reflects some real property.

Having established that there exists a set of non-contradictory activation levels that is consistent
with the data, we next need to consider two related questions: what is an actual set of levels that
can correctly derive the voicing of compounds in the data, and how can this set of activations be
learnable?

A number of learning algorithms were tested by computer simulation, each with certain advan-
tages and disadvantages. It would exceed the limitations on length of this paper to describe all of
them, so I shall focus on one that has certain advantages with respect to Minimum Description
Length, which shall be discussed in the following section, after which, a learning algorithm for
activation levels will be presented.

5 Minimum Description Length (Goldsmith, 2011)

Minimum Description Length is an evaluation metric by which we shall argue that deriving the
correct voicing outcome in compounds through the grammatical combination of partial voicing
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features is preferable to a model that regards the surface forms as resulting from a choice of a
lexically listed allomorph. Our objective is to avoid unnecessary lexicalization of the phonology
of compound words in cases where the grammar can determine correct outputs from underlying
features. We want to find an optimal middle ground between two extremes: (a) an unwieldy lexicon
that unnecessarily gives a full phonological description of every morphologically complex output
form and (b) and unwieldy grammar that overfits the data. For the purpose of making a scientific
judgment of how well a particular linguistic model fits the data that is being studied, Goldsmith
(2002, 2011) and Goldsmith and Riggle (2012) develop the principle of Minimum Description Length
or MDL, based on work by Rissanen (1989), which gives us a way of choosing the optimal trade-
off between the lexical specification of output forms and a grammar that generates output forms
from the sparsest possible set of input forms. Formally, MDL is calculated in bits as the sum of
the two quantities we want to minimize: the negative log probability of the grammar plus the
negative log probability of the data given the grammar: argmin(−log2p(g) − log2p(D|g)), where
p(D, g) = p(g)p(D|g) and thus −log2p(D, g) = −log2p(g)− log2p(D|g). With respect to the present
compound data we can calculate the description length of the data using the information-theoretic
principle that data D can be encoded with n bits when the n is the positive log probability that
the grammar assigns to D (Goldsmith and Riggle, 2012).

In calculating the MDL of a grammar that derives morphologically complex output forms from
a composition of simple lexemes, we need to consider the question of which combinations of mor-
phemes can combine: for example, which stems can combine with which affixes in the case of
affixation or which stems can combine with which other stems in the case of compounding. To
represent these kinds of combinatorial possibilities, Goldsmith proposes signatures: ‘structures
indicating which stems may appear with which affixes’.

In the case of the compounds we are considering, suppose that whether or not rendaku voicing
occurred is determined through the pairing of allomorphs of stems in a signature structure, where
allomorphs can be voiced or nonvoiced. A nonexhaustive signature for stems that can follow mugi
‘barley’ in a compound might look something like the following, where a voiced allomorph of the
second conjunct occurs in the first and third entries.

(15)

{mugi ‘barley’}















bue ‘flute’
ko ‘flour’

batake ‘field’
mesi ‘food’















In the case of the proposed analysis of rendaku voicing in the GSC framework, a signature can
also list, for a given stem, the level of activation of a rendaku affix it combines with. If every stem
has an affix with a slightly different activation level than any of the others, then no affix could
share its signature with more than one stem. On the other hand, if the voicing of compounds could
be derived with a small number of discrete levels of activation on affixes, where each stem has a
signature pointer a certain level, the burden on the lexicon will be less since the listing of signatures
can be made more compact. Suppose, for example that a number of stems that can occur as N1’s
all associate with a rendaku affix with the same activation level, which we can for the time being
call ‘strong’ then a signature for that set of stems might look like the following:

(16)


















kuma ‘bear’
kusa ‘grass’
umi ‘sea’

...



















{ρstrong}
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With respect to MDL, then, it becomes important to find a learning algorithm that can find a
small number of discrete activation levels for rendaku affixes rather than a different level for the
affix that occurs with each stem. The next section introduces an algorithm that can achieve this.

6 A learning algorithm for activation levels of affixes

The following algorithm was tested through computer simulation.

1. Initialize the activation level of each N1 and N2 affix to zero, based on the hypothesis that
stems will be encountered first in their simplex form, where there is no evidence for any [+voi]
activation.

2. Initialize the weights of Max and Dep constraints at 1 and −1 respectively.
3. Initialize η, the stepsize for Max and Dep increments and for random noise perturbations at

0.01.
4. Initialize t, a temperature factor for simulated annealing on Max and Dep weights at 1.
5. For each iteration:

(a) For each compound in the database:

i. If voicing occurs and aN1 + aN2 + Gaussian noise < D
M+D

(threshold):

A. Increment Dep by stepsize × aN1 + aN2 − 1 + Gaussian noise × temperature
B. Increment Max by stepsize × aN1 + aN2 + Gaussian noise × temperature
C. Randomly choose Ni (one of N1 or N2) to increment first by some set amount

(e.g. 0.05)
D. If aNi

< threshold (i.e. won’t voice in simplex word), increment aNi

E. If still aN1 + aN2+ Gaussian noise < D
M+D

(threshold), increment other affix’s
activation

ii. If voicing does not occur and aN1 + aN2 + Gaussian noise > D
M+D

(threshold):

A. Follow the above 4 steps but in opposite direction.

iii. If either N1 or N2 activation on its own with added Gaussian noise is above the
threshold, decrement its activation by 0.05.

(b) Drop the temperature factor to one-fourth of its value
(c) Drop the stepsize for Max and Dep to 99.9% of its value
(d) Stop if all compound activations gave a correct voicing value.

The results of a computer simulation of this algorithm were convergence after 482 iterations
with the following final results.3

(17) Max 1.07

Dep 0.85

threshold 0.44

Correct predictions 885

Incorrect predictions 0

N1 activation levels 8

N2 activation levels 7

3Other algorithms are possible. For example, an informal algorithm that factors in pitch accent can be shown
to reduce the number of activation levels to three for each of N1 affixes and N2 affixes; however, this algorithm
requires the set of compounds to be looked at somewhat globally rather than learning strictly from encounters of one
compound at a time. Although this algorithm may be associated with model that has a slightly better MDL than a
seven-level model, length limitations on this paper preclude a full discussion of such a model.
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We shall now compare the model with activation levels derived from the algorithm described
above with models that lexically list exceptional compounds.

7 Feature activation values and minimum description length

We shall consider here five possible models that account for the rendaku data at hand and compare
them by each MDL:

Full lexical specification of compounds with each compound being listed separately in the
lexicon.

Two separate allomorphs (with voicing and without) for all the N2’s that show alternations in
voicing and a single allomorph for the N2’s that do not alternate. Compounds are derived
through signatures (see above) that structure the combinations of co-occurring allomorphs

GSC account: 7 activation level classes The grammar generates output forms for compounds
in the GSC framework as described above in Section 4 with partially activated features for
voicing that can have seven different possible values.

Signatures with single allomorphs plus lexical listing of exceptions For all the compounds
to which rendaku voicing applies, have signatures with single, voiced allomorphs for each of
the N2’s involved and lexically list the remaining nonundergoing compounds with no signa-
tures.

For each of these models we need to calculate the following quantities whose sum will be the
MDL for that model with respect to rendaku voicing of the dataset. Notice that we are abstracting
away from a model of the whole language, but comparing how various models deal with the semi-
regular process of rendaku voicing in a certain set of noun-noun compounds.

Cost of URs Unigram bit cost, phoneme by phoneme, of listing the UR or each simplex N1 and
N2. Since these simplex forms can all exist on their own as monomorphemic words, in any
model the allomorph that does not undergo rendaku needs to be listed anyway, so given that
we are comparing models, we shall only be concerned here with the cost of listing voiced
allomorphs.

Cost of fully-listed compounds Unigram bit cost, phoneme by phoneme, of listing each full
compound on its own.

Cost of pointers to signatures If signatures are part of the model, the bit cost of all the pointers
from signatures to the allomorphs involved.

Cost of partially activated feature representation If partially activated voicing features on
N1’s and N2’s are part of the model, the bit cost of representing each feature. This cost will
depend on the number of activation level classes.

Cost of grammar description The description cost of the relevant part of the grammar that
derives output forms.

10



(18) Summary of bit cost for various models

Model pointers to voicing grammar extra listed total

signatures activation (network allomorphs compounds

values model)

Full specification 0 0 0 0 22,506 22,506.0

Full allomorphs 5,123.0 0 0 2,903.3 0 8,026.3

7 levels 2,963.9 1,248.0 363.1 0 0 4,575.0

Voicing through signatures 2,352.3 2,903.3 0 0 6.781.9 11,737.7

& listed exceptions

In the foregoing calculation of MDL for various models to account for patterns of rendaku
voicing, the GSC model with seven levels of activation came out with a substantially better MDL
score than the other models, all of which account for the semi-regularity of rendaku through some
kind of lexicalization for explaining exceptions.4

The following tableaux give derivations of two compounds, that were given above with hypo-
thetical activations in (10) and (11), now based on activation levels that were derived from the
algorithm given above in Section 6.

(19) 1.07 1.07 −0.85

kuma([+voi] · (0.35)) ((0.15) · [+voi])te Max[+voi]1 Max[+voi]2 Dep[+voi] H

Z kuma-de 0.35 0.15 -0.425 0.075

kuma-te 0

• Dep violation is (1− (0.35 + 0.15)) × 0.85 = −0.425.

(20) 1.07 1.07 −0.85

yama([+voi] · (0.25)) ((0.15) · [+voi])te Max[+voi]1 Max[+voi]2 Dep[+voi] H

yama-de 0.25 0.15 -0.51 -0.11

Z yama-te 0

• Dep violation is (1− (0.25 + 0.15)) × 0.85 = −0.51.

8 Partially-activated [+voice] features as attributive affixes

The underlying, partially-activated [+voice] feature that we are proposing here can be seen as an
extension of the idea of morphological paradigms. Some researchers have argued (e.g. Itô and
Mester, 1998) that rendaku occurs because of a junctural morpheme of the form [+voice] which
effects some kind of compositional linking between the two morphemes, in the same way that the
particle no does when it occurs after nouns in Japanese, allowing them to compose syntactically
with certain following elements. The junctural morpheme hypothesis is supported by historical

4As pointed out by Paul Smolensky (p.c.) the idea of partitioning affixes on N1 and N2 into subclasses of different
strengths could also be achieved in categorical OT through varying the rankings of Max-voi and *voi constraints
to different subgrammars, each of which corresponds to a different activation level in a GSC account. The OT model
appears to require an increased description length for a grammar that has a more complex constraint ranking, with
separate faithfulness and markedness constraints with respect to voicing for each lexical subclass. A very rudimentary
bitwise comparison of the MDL for an OT account versus a GSC account gives a bit cost of 264.7 for an OT model
and 136.5 for a GSC model. Quite independent of the choice between the two models, what enables us to avoid
over-lexicalization in accounting for rendaku’s semi-regularity is the previously unexplored idea of combining the
effects of both N1 and N2 on voicing, which can be done with either model.
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evidence that this [+voice] feature is in fact the reflex of the particle no that occurred between
two nouns in the same configuration at an earlier stage of the language (Martin, 1987). A slight
modification of Itô and Mester’s proposal is that the junctural morpheme is realized as both a
suffix and a prefix on nouns rather than an independent morpheme or clitic in the same way
that independent morphemes may evolve into suffixes or prefixes on words with which they often
associate, forming morphological paradigms. Given the productivity of the way that Japanese
lexical morphemes combine to form compounds, it would not be unreasonable to suppose that the
surface realization of a noun with an added [+voice] is a kind of attributive affix. The alternation
of the affixless form of a noun when it occurs in simplex form with the affixed form in compounds
can be compared to the same kind of contrast between surface realizations of adjectives in German.
Adjectives in German are inflected with either strong or weak declension suffixes when they occur
attributively but are unsuffixed when they occur predicatively:

(21) ein
a.m.nom.sg

klein-er
small-m.nom.sg

Hund
dog

‘a small dog’
(inflection on attributive adjective)

(22) Der
the.m.nom.sg

Hund
dog

ist
be.3.sg

klein
small

‘The dog is small’
(no inflection on predicative adjective)

So in Japanese we can think of an underlying form /asi-v1 + v2-kata/ ‘foot+shape: footprint’
as having partially-activated voicing features v1, v2 that realize a morphological paradigm whose
allomorphs determine the attributive and nonattributive forms of the noun.

9 Previous accounts of rendaku’s gradient, semi-regular nature

Vance (2014) places the burden of exceptions or gradience on the lexicon, not on the grammar.
He cites an account in Ohno (2000) based on analogy, in which stems exhibit the same rendaku
behavior if they are semantically or phonologically similar, for example, siro ‘white’ is proposed
to behave similarly with respect to rendaku as kuro ‘black’, and mimi ‘ear’ to hana ‘nose’. In
Ohno’s account, kami ‘hair’ a robust voicer (e.g. kabe-gami ‘wall-paper’) happens not to be voiced
in kuro-kami ‘black hair’. So he concludes that semantically similar siro ‘white’ should also block
voicing in 2nd conjunct, which is what he finds in a psycholinguistic experiment in which novel
compound siro-kami ‘white hair’ is chosen over a voiced version by subjects.

He also finds that ti ‘blood’ is a robust non-voicer except in hana-zi ‘nosebleed’. So semantically
similar mimi ‘ear’ should also block voicing in a 2nd conjunct. His evidence is novel compound
mimi-zi ‘ear-blood’ which was chosen over a non-voiced version because of analogy with hana-zi
‘nosebleed’.

Some problems with an analogical account are the following. ‘Analogy’ is a descriptive term to
which it is difficult to assign the status of a rigorous principle of a formal grammar. And classifying
stems by semantic category in a way that can predict voicing across the board seems impossible,
given the following examples:

(23) • tori ‘bird’ doesn’t voice after niwa ‘garden’ or mizu ‘water’
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• It does voice after tutu ‘pipe’, yama ‘mountain’, hina ‘chick’, umi ‘sea’ (note semantic
relation to ‘water’ above), huyu ‘winter’, oya ‘parent’, muku ‘yew’, natu ‘summer’,
koma ‘shogi piece’.

This leaves us with the question of how to semantically distinguish the two lists. GSC, on
the other hand, captures Ohno’s examples in a more formal way through voicing activations that
resulted from the learning simulation discussed in Section 6 above. For example, siro-[+voi] · 0.15
and kuro-[+voi] · 0.05 both had low activations in addition to the fact that they happen to have
some semantic similarities.

10 Summary and conclusion

The dataset used in this study was purposely restricted in order to control the number of variables
involved in what we are testing. By limiting the data to noun-noun compounds only that fall within
a certain prosodic size limit and the same lexical stratum,5 we can control for the possible effects
on rendaku voicing of (a) syntactic category of the members of the compound (b) the effects of
prosodic size and (c) lexical stratum, all of which have been shown to have an effect on whether
or not rendaku voicing occurs (Kubozono, 2005, inter alia). Further study could look at ways in
which these factors can be incorporated into an analysis within the same framework.

Notice also that even though the feature activation values we are positing are gradient, the
predictions they make are categorical inasmuch as the output of N1+N2 for a given compound is
not estimated to vary from speaker to speaker or utterance to utterance – at least within what we
can take to be standard dialect.6,7

The GSC framework, by virtue of the way that gradience and blending of symbolic structures are
an intrinsic part of its system, allows us to approach and understand gradient irregular patterns
such as rendaku voicing in a way that is difficult or impossible with some other systems. The
foregoing analysis of the irregularity of rendaku voicing arguably solves the problem of having its
irregular patterns at cross-purposes with the productivity of generative rules or constraints. For
the seven-level model, no lexical exception needs to be specified in a lexical listing for the whole
compound. Another result of this approach is that it creates a more equal division of labor between
the lexicon and the rest of the grammar in accounting for observed patterns in the language. Some
of the gradient patterns we observe, such as the variable behavior among morphemes to undergo
this process can only be accounted for through the way the lexical listing of individual morphemes
acts in tandem with the generative process. This is because there are no robust correlations between
phonological properties of the morphemes and their willingness to undergo the rendaku process,
that could be accounted for by some phonological rule or constraint.

In this analysis, then, some of the patterning that we see in the language stems from grammatical
processes and some also results from patterning in the lexicon. The lexicon in this view is therefore

5Paul Smolensky (p.c.) suggests that these proposed activation level classes can be seen as further subdividing
the lexicon into substrata.

6Judgments that were made here with respect to whether or not voicing occurs for a given compound were made
to conform with listed pronunciations in the NHK (Japanese Broadcasting Corporation) Pronunciation and Accent
Dictionary (Nippon Hoosoo Kyookai (Japanese Broadcasting Corporation), 1998).

7Some may imagine that this kind of Harmonic Grammar is overly prone to making the kinds of ‘vague, soft,
or non-categorical predictions’ that Goldsmith et al. (to appear, p. 4) observes that some linguists may incorrectly
imagine will be the result of probabilistic models – models that share much in common with Harmonic grammars.
The GSC model is not expressly a probabilistic model, but the Harmony function operates in many ways like the
probability function of probabilistic and information theoretic grammars such as those proposed by Goldsmith (1993,
2002) and Goldsmith and Riggle (2012).
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not completely random in the way that a framework such as OT (Prince and Smolensky, 1993)
would seem to insist on.8 At the same time, there is no evidence that the approach to the gradience
of rendaku voicing described in this paper creates a ‘duplication problem’, since the lexicon and
the rest of the grammar are arguably performing separate, nonoverlapping functions in determining
voicing.
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Legendre, Géraldine, Yoshiro Miyata, and Paul Smolensky. 1990a. Can connectionism contribute
to syntax?: Harmonic grammar, with an application. In Proceedings of the 26th regional meeting
of the Chicago Linguistic Society , ed. M. Ziolkowski, M. Noske, and K. Deaton, 237–252. The
Chicago Linguistic Society.
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