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Abstract 

Phonological variation is conditioned by both grammatical and non-grammatical factors. Nearly all models of 

variation in phonological theory are exclusively grammatical, and do not account for the influence of non-

grammatical factors at all. In this paper, I argue that an adequate theory of phonological variation should 

account for both grammatical and non-grammatical influences on variation, and I develop a noisy Harmonic 

Grammar model of variation that can do this. The constraints used in Harmonic Grammar are ordinary 

grammatical constraints (as in Optimality Theory), and the influence of grammar on variation follows from this.  

The influence of non-grammatical factors is accounted for by scaling the weight of faithfulness constraints up 

or down, resulting in less or more unfaithfulness. 

 

1. Introduction 
 

In early generative phonology, variation was regarded as not a core part of the phonological grammar: it was 

introduced late in phonological derivation (at the boundary between phonology and phonetic implementation), 

and was conditioned by non-grammatical factors. In Lexical Phonology (Kiparsky 1982), for instance, it was 

assumed that the core (lexical) phonological rules apply obligatorily, and that the only rules that can apply 

optionally are those mediating the interface between phonology and phonetic implementation (the post-lexical 

rules) (Kaisse & Shaw 1985:6; Kiparsky 1985:86).2 Additionally, the lexical rules could only be conditioned 

by grammatical factors (morphology, phonology, etc.), while the post-lexical rules could be subject to 

external factors such as rate of speech (Kaisse & Shaw 1985:6). Although the influence of such external 

factors was acknowledged, it was considered to fall outside the domain of grammar, and the grammatical 

models developed in this tradition therefore had no formal mechanism for incorporating the influence of these 

                                            
1 The research for this paper was partially supported by a research grant from the Horace Rackham Graduate School at 
the University of Michigan. This research has benefited greatly from discussion with especially Joe Pater, but also many 
other people (including John McCarthy, John Kingston, Pam Beddor, Kevin McGowan, Ania Musial, Anthony Brasher, 
and Jon Yip), and from audience feedback (MCWOP 11, NELS 38, NAPhC 5, Georgetown University, University of 
Michigan, University of Massachusetts). 
 
2 The distinction made between obligatory rules and optional processes in Natural Phonology (Donnegan & Stampe 
1979:145) is another example of how variation was pushed to the outer edges of phonological grammar. 
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factors. Additionally, because variation was considered at best a non-core part of phonological grammar, it 

received very little attention in this research tradition. 

At the same time as these developments in theoretical phonology, variationist sociolinguistics in the 

Labovian tradition (Labov 1969) was also flourishing. In this tradition, variation was considered a core part of 

phonology. The architecture of the phonological component of grammar was therefore envisioned differently. 

Since all of phonological grammar can be variable, the distinction between obligatory lexical rules and 

optional post-lexical rules was considered to be a false distinction.3 The distinction between grammatical and 

non-grammatical influences on the application of a variable process was also blurred. Non-grammatical 

factors could be incorporated into the structural description of a rule in exactly the same way as more 

traditional grammatical factors (Bayley 2002:126). Phonological grammar therefore included reference to 

non-grammatical factors, and, in fact, there was no formal difference between these two kinds of factors. 

In spite of the fact that the variationist approach dominated sociolinguistic research during the 1970’s 

and 1980’s, theoretical phonology barely took note of the developments in this parallel field. It has only been 

since the early 1990’s that variation began to occupy a more central place in the research focus of theoretical 

phonology, and that the theoretical phonology research tradition started to take note of the decades of research 

in variationist sociolinguistics – spearheaded  by researchers such as Reynolds (1994) and Anttila (1997,  

2002); see also Boersma (1997), Boersma and Hayes (2001), and Coetzee (2004, 2006, to appear).  See 

Coetzee and Pater (to appear) for a review of the factors that lead to this change in how theoretical phonology 

views variation. 

These new approaches to variation in theoretical phonology are very successful at accounting for 

variation. They not only account for where variation should be possible, but also for the frequency structure of 

variation – Anttila (2002:211) refers to these two aspects of variation as the locus and degree of variation, and 

claims that an adequate theory of variation should be able to account for both. However, most models of 

variation developed in theoretical phonology are exclusively grammatical models – i.e. there is no place in 

these models where non-grammatical factors can also impact variation. (Though, see van Oostendorp 1997 for 

a suggestion about how non-grammatical factors could be incorporated.) In this sense, these new 

developments in theoretical phonology still lagged behind variationist sociolinguistics in accounting for only 

part of the phenomenon of phonological variation. 

In this paper, I argue that the earlier research in both theoretical phonology and variationist 

sociolinguistics was indeed correct, and that both grammatical and non-grammatical factors influence 

phonological variation.  Counter to most of the research in theoretical phonology, and more in line with the 
                                            
3  The variationist tradition did not necessarily reject all of the presuppositions of Lexical Phonology. Guy’s account of 
the morphological influence on t/d-deletion (Guy 1991), for instance, depends crucially on the division between lexical 
and post-lexical rules. At the same time, however, his account also depends on the assumption that rules at each of the 
derivational stages are variable. The main departure from more traditional theoretical phonology was thus in rejecting the 
notion that only post-lexical rules can be optional. 
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variationist sociolinguistic tradition, I also argue that an adequate model of phonological variation should 

account for both the influence of grammatical and non-grammatical factors. However, the specific model that 

I propose in this paper diverges from the classic Labovian variationist model in several respects. First, it is 

developed in a constraint-based framework, in line with recent theoretical phonology models of variation.  

Secondly, grammatical and non-grammatical factors are formally separated in the model, and grammatical 

factors are given precedence over non-grammatical factors. Grammar alone determines whether variation is 

possible in a specific context, and grammatical and non-grammatical factors jointly determine the frequency 

structure of variation. 

In the rest of this introductory section, I briefly review some of the evidence that both grammatical and 

non-grammatical factors influence phonological variation. The next two sections of the paper are then 

dedicated to the development of the model proposed here. In §2, I first show how the contribution of grammar 

can be accounted for in (noisy) Harmonic Grammar (Smolensky & Legendre 2006; Boersma & Pater 2008; 

Pater to appear). Section §3 then shows how the influence of non-grammatical factors can be incorporated via 

scaling the weights of faithfulness constraints. Section §4 briefly discusses some alternatives to the model 

proposed here, and §5 considers some of the implications of the model, as well as some outstanding issues. 

 

1.1. Grammatical factors 

 

Word-final t/d variably deletes from consonant clusters in English, so that a word like west can be 

grammatically pronounced as either [wst] or [ws]. This deletion process is probably the most extensively 

studied variable phonological process. It has been described in detail for countless dialects of English (see 

Coetzee 2004 for a recent review), and even for languages other than English (see Goeman 1999 and Goeman 

& van Reenen 1995 on Dutch). Since this process has been studied so extensively, the factors (both 

grammatical and non-grammatical) that influence its application are reasonably well understood, and for this 

reason, I will use t/d-deletion as a case study in the rest of this paper. 

Anttila (1997:44) motivates the claim that phonological grammar should account for variation as follows: 

“… if variation preferences are based on phonological variables, then it seems reasonable to expect phonology 

to make sense of them”. This insight is, of course, not new to Anttila but rather echoes what has been said in 

the variationist tradition for decades. The same factors that condition application of “ordinary” categorical 

phonological rules also condition the application of variable phonological rules. This observation is also true 

with regard to t/d-deletion. In a 1989-paper, Labov summarizes the literature on the grammatical factors that 

influence t/d-deletion, and Coetzee (2004:Chapter 5) updates this with a review of some of the more recent 

literature. I discuss only a few of the grammatical influences on t/d-deletion here to illustrate that this process 

is indeed influenced by ordinary grammatical factors. 
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The featural makeup of the segment that precedes the t/d influences the likelihood that deletion will apply. 

Nearly every study of t/d-deletion reports on how the identity of the preceding consonant influences the rate 

of t/d-deletion. Although dialects differ in the details, the general trend is that t/d is more likely to delete after 

consonants that are more similar to t/d. This has been illustrated most clearly by Guy and Boberg (1997), 

whose data are summarized in Table 1.4 They interpret this as an Obligatory Contour Principle (OCP) type 

effect – adjacent identical features are avoided.  The OCP on segmental features is, of course, a well 

established part of phonological grammar that conditions many ordinary categorical processes (McCarthy 

1986). 

 

Table 1. Influence of the preceding consonant on t/d-deletion (Guy & Boberg 1997) 

Preceding consonant Example Shared features Deletion rate (%) 

[s, , z, ] mist [+cor, -son] 49 

[n] hand [+cor, -cont] 46 

[k, g, p, b] pact [-son, -cont] 37 

[l] field [+cor] 32 

[f, v] sift [-son] 29 

[m , ] seemed [-cont] 11 

 

Application of t/d-deletion is also influenced by what follows the t/d. In every dialect of English in which 

t/d-deletion has been studied, deletion is more likely to apply before consonant-initial words (west bank) than 

before vowel-initial words (west end) or a major phrase boundary (as in sentence final position). Table 2 gives 

a small, but representative, sample of the data from the literature on this aspect of t/d-deletion. The 

phonological context that follows some word often functions as part of the context for the application of 

ordinary categorical phonological rules. In French, for example, liaison that is usually blocked before a pause 

(petit [pti] ‘small’) or a consonant-initial word (petit chien [ptij] ‘small dog’), is compulsory before 

vowel-initial words in many contexts (petit animal [ptitanimal] (Fagyal et al. 2006:64-69). Similarly, in 

some dialects of Arabic, a vowel is obligatorily inserted between a consonant-final and consonant-initial word 

(/kataba l-maliku / → [katabal maliku] ‘the king wrote’ vs. /katabat l-malikatu/ → [katabatil malikatu] ‘the 

queen wrote’) (Broselow 1980; Coetzee 1998). 

 

 

                                            
4 Coetzee (2004:290-293) shows that this is for the most part consistent with the data reported in other studies. 
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Table 2. Percent deletion in different contexts5 

  Pre-V Pre-Pause Pre-C 

Relative deletion rate  west end west west side 

Pre-C > Pre-Pause > Pre-V 

AAVE (Washington, DC) 29 73 76 

Jamaican English 63 71 85 

New York City English 66 83 100 

Tejano English 25 46 62 

Trinidadian English 21 31 81 

Pre-C > Pre-V > Pre-Pause 
Philadelphia English 38 12 100 

Chicano English 45 37 62 

 Columbus English6 39 25 49 

 

Other typical grammatical factors that condition the application of t/d-deletion include stress placement, 

with more deletion from unstressed (cubist) than stressed syllables (insist), and cluster size with more deletion 

from tri-consonantal clusters (tanked [tækt]) than from bi-consonantal clusters (tacked [tækt]) (Labov 1989; 

Bayley 1995). From these few examples, it is clear that t/d-deletion is conditioned by grammatical factors that 

also condition the application of ordinary categorical phonological rules. Whatever model of phonological 

variation is adopted needs to explain this link between categorical and variable processes, and in this paper I 

                                            
5 The data reported in this table come from the following sources: AAVE (Fasold 1972), Chicano (Santa Ana 1991), 
Jamaican (Patrick 1992), New York City (Guy 1980), Tejano (Bayley 1995), Trinidad (Kang 1994), Philadelphia (Guy 
1980). The Columbus data is from the Buckeye Corpus (Pitt et al. 2007) – see the next footnote for how this information 
was extracted from the corpus. The data with regard to pre-consonantal context represent a simplification. The literature 
actually indicates that, as with the preceding consonant, the identity of the following consonant is also relevant. In general, 
following consonants of higher sonority tend to inhibit deletion (i.e. more deletion from hand book than from hand 
motion). See Bayley (1995) for an analysis in terms of syllable contact. Similarly, if t/d can form an onset cluster with the 
following consonant, deletion is also inhibited (more deletion from hand lotion than from hand wringing). See Labov 
(1997) for an analysis in terms of resyllabification. 
6 The Buckeye Corpus consists of audio recordings of over 40 hours from 40 different individuals from the Columbus 
area of Ohio – see Pitt et al. (2007) for a detailed description of the corpus. The data for Figure 1 were extracted from the 
corpus as follows: All words that end orthographically (i.e. in spelling) on -Ct or -Cd were selected from the corpus (i.e. 
words to which t/d-deletion could potentially apply). From this list were then culled words with silent letters – i.e. words 
that end orthographically but not phonologically on a consonant cluster (e.g. could, bought, etc.). A few additional words 
were culled from the list due to obvious errors in the transcription in the corpus. This left a list of 20,145 words. The 
phone tier of the Buckeye Corpus was then consulted to determine whether each word was transcribed with a phonetic 
realization of its underlying final /d/ or /t/. The context that follows each of the words was also noted, and each was 
classified as either V, C, or pause. The frequency of each word was extracted from CELEX (Baayen et al. 1995), and these 
frequencies were log transformed. Before transformation, a constant of 1 was added to all frequencies to avoid problems 
with the log of words with zero frequency in CELEX. Words were then classified into frequency bins that span 0.1 of the 
log-transformed frequency intervals. When an interval contained too few tokens to calculate reliable statistics, it was 
combined with the next interval, so that there are a few intervals that are larger than 0.1. Average deletion rate for each 
context was determined by averaging the deletion rate of the different frequency intervals. More information available 
upon request. 
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argue that the explanation follows from the fact that both types of processes are accounted for in exactly the 

same way, with exactly the same ordinary machinery of grammar. 

 

1.2. Non-grammatical factors 

 

Since t/d-deletion has been studied so extensively in the variationist tradition, and since this tradition often 

does not make a formal distinction between grammatical and non-grammatical factors, we also have a fair 

amount of information on the non-grammatical factors that condition this process. As with the grammatical 

factors, I discuss only a few illustrative examples from the vast literature here. 

Speech style or register influences the likelihood of t/d-deletion. Browman and Goldstein (1990), for 

instance, found little evidence of t/d-deletion applying in the reading of a word list, but they did find evidence 

for the process in a more casual speech style. Mitterer and Ernestus (2006) studied the analogous process in 

Dutch in two speech corpora. One corpus consisted of read speech (literally novels read on tape for the blind) 

– i.e. a rather formal reading style.  The other corpus consisted of recordings of casual speech. They found 

evidence of deletion in both corpora, but at very different rates (8% for the read speech vs. 45% for the casual 

speech). Speech register is not part of grammar proper, and this is hence an example of a non-grammatical 

factor influencing t/d-deletion. 

Frequency also interacts with t/d-deletion. In general, high frequency words (just) are more likely to 

undergo deletion than low frequency words (bust). Many of the variationist studies of t/d-deletion exclude 

high frequency words like and, just and n’t because these words often show near categorical deletion (Patrick 

1992:172; see also Bybee 2000:69-70 & 2002).  

As an illustration of how frequency interacts with t/d-deletion, Figure 1 plots the deletion rate in the Pre-

V, Pre-C and Pre-Pausal contexts for the English spoken in Columbus, Ohio. The x-axis represents the log of 

the CELEX (Baayen et al. 1995) frequency. From this figure, it is clear that deletion rate is positively 

correlated with frequency in all three contexts. This was confirmed by performing a linear regression for each 

context. The regression lines and equations, as well as the associated r2-values, are also shown on the graphs. 

The slopes of all three graphs are positive and roughly equivalent. The r2-values are also reasonably high, 

showing that frequency does account for a significant portion of the variation in deletion rate. The broken 

horizontal line represents the average deletion rate in each context, as also reported in Table 2. 
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Figure 1. Interaction between deletion rate and frequency in Columbus English7 

  

 

 

 

 

 

 

 

The usage frequency of a word is obviously not part of grammar proper. The frequency of some word 

cannot be predicted from its phonological properties, as is shown by words like just and bust that are 

analogous in all relevant phonological properties but that differ drastically in their usage frequency. It is hence 

clear that factors other than mere grammar also influence the application of the variable process of t/d-

deletion. 

Any successful model of the competence that speakers have with regard to t/d-deletion needs to have the 

following properties: (i) It must allow phonological grammar to influence the process. (ii) But it must also 

allow non-grammatical factors to influence the process. (iii) And it must have an explicit theory of how the 

contributions from these two different sources are integrated. In the rest of this paper, I develop an Harmonic 

Grammar model with these properties. 

 
2. The contribution of phonological grammar to t/d-deletion 
 

As shown above in §1.1, there are multiple grammatical factors that influence the likelihood of t/d-deletion. I 

will develop an account only for the influence of the following context here – i.e. for the observation that 

deletion is always more likely before a consonant-initial word (west bank) than before a vowel-initial word 

(west end) or a phrase boundary. Relevant data are given above in Table 2. The grammatical model in which I 

will work, is that of (noisy) Harmonic Grammar (HG), and before I commence with developing the account, I 

first explain briefly what Harmonic Grammar is (§2.1). Section §2.2 then presents the account. 

 

                                            
7 See the previous footnote for more on how the data represented in these graphs were obtained. 
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2.1. (Noisy) Harmonic Grammar 

 

Harmonic Grammar is a close relative of Optimality Theory (OT), and like OT is a grammatical model of 

constraint interaction rather than rule-based derivation (Legendre et al.2006; Pater to appear, Smolensky & 

Legendre 2006). The main difference between HG and OT is that HG uses weighted constraints rather than 

ranked constraints.8 In (1) is an example of an HG and OT tableau for a language that allows no tautosyllabic 

clusters, and that repairs these via deletion. 

 

(1) Optimality Theory         Harmonic grammar 

  

‘west’ DEP *COMPLEX MAX 

  

‘west’ 

5 1.5 1 

  á   DEP *COMPLEX MAX 

 west  *!   west  -1  -1.5 

 L    wes   *  L    wes   -1 -1 

 wes.t *!    wes.t -1   -5 

 

In an HG tableau, constraint weights are indicated above the constraints in the first row. Constraint 

violations are marked with negative whole numbers rather than asterisks. The harmony score (á) for each 

candidate is then calculated by multiplying the weight of each constraint violated by the candidate by the 

number of violations that the candidate earns in terms of that constraint, and summing all of the values. In this 

tableau, for instance, [wst] violates DEP and MAX zero times, and *COMPLEX once. á of [wst] is hence 

calculated as follows: (Weight(DEP) × 0) + (Weight(*COMPLEX) × -1) + (Weight(MAX) × 0) = (5 × 0) + (1.5 × 

-1) + (1 × 0) = -1.5.  The candidate with the highest á is selected as the optimal candidate (since all á’s are 

negative, the highest á is always the one closest to zero). 

Noisy HG (Jesney 2007; Boersma & Pater 2008) is a specific implementation of this HG model that adds 

a random noise component to evaluation (similar to the noise component in constraint ranking in Stochastic 

OT as implemented by Boersma & Hayes 2001). Every time that the grammar is used to evaluate output 

candidates for some input, the weight of each constraint is perturbed by a normally distributed random 

positive or negative number. Because of this, two constraints with weights that are sufficiently close together 

can lead to variation. In (2), the HG tableau from (1) is repeated, this time with the random noise added to the 

weight of the constraints (in parentheses next to the weight). In the first tableau, the weight of *COMPLEX is 

adjusted down by the addition of noise at -0.4. The weight of MAX, on the other hand, is adjusted upward by a 

                                            
8 This is more than a mere technical difference – because of this difference OT and HG differ in the kinds of languages 
that they predict to be possible. Specifically, “gang effects” between low weighted constraints can overpower a high 
weighted constraint in HG (Pater to appear), but in OT no combination of lower ranked constraints can ever overpower a 
higher ranked constraint. 
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positive noise value of 0.2. The effect is that violation of *COMPLEX is less serious than violation of MAX in 

this tableau so that the faithful candidate is selected as optimal over the deletion candidate. In the second 

tableau, the weight of MAX is adjusted down and that of *COMPLEX is adjusted up. In this tableau, violation 

of *COMPLEX is hence worse than violation of MAX, and the deletion candidate is selected as optimal. 

 

(2) Faithful candidate optimal         Deletion candidate optimal 

  

‘west’ 

5 (.1) 1.5 (-.4) 1 (.2) 

  á 

  

‘west’ 

5 (.2) 1.5 (.4) 1 (-.2) 

  á  DEP *COMP MAX  DEP *COMP MAX 

 L west  -1  -1.1  west  -1  -1.9 

 wes   -1 -1.2  L wes   -1 -.8 

 wes.t -1   -5.1  wes.t -1   -5.2 

 

Noisy HG has a learning algorithm analogous to the gradual learning algorithm (GLA) associated with 

Stochastic OT (Boersma & Hayes 2001). The HG algorithm has been implemented in Praat (Boersma & 

Weenink 2009). Like the Stochastic OT GLA, the learning algorithm associated with HG is: (i) Error driven. 

It compares the grammar’s current prediction with the learning input and adjusts the grammar only if there is 

a mismatch between these two. (ii) Gradual. The weights of the constraints are adjusted in small, incremental 

steps. This means that multiple cycles through the algorithm and learning data will be necessary before the 

final grammar is reached.  See especially Boersma and Pater (2008) for a detailed discussion of the noisy 

HG learning algorithm. 

 

2.2. The t/d-deletion grammar 

 

In this section of the paper, I develop a noisy HG account for the data represented in Table 2 above. The 

analysis is developed here as if only the phonological/grammatical context influences the probability of 

deletion. In section §3, I will augment the account to allow for the influence of non-grammatical factors by 

scaling the weights of the faithfulness constraints. 

 

2.2.1. The constraints 

 

The constraints that I assume are given in (3). The two contextual faithfulness constraints are in the spirit of 

Steriade’s “licensing by cue” constraints – i.e. they protect segments from deletion in contexts where the cues 

for their perception are particularly saliently licensed (Steriade 2001, 2008).  
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(3) *CT Assign one violation for every word that ends on the sequence […Ct] or 

[…Cd].9 

MAX Assign one violation mark for each segment in the input that does not have a  

  correspondent in the output (no deletion) 

MAX-PRE-V Assign one violation mark for each segment that appear in pre-vocalic context 

in the input, and that does not have a correspondent in the output (no deletion 

before a vowel) 

MAX-PRE-PAUSE Assign one violation mark for each segment that appear in pre-pausal context in 

the input, and that does not have a correspondent in the output (no deletion 

before a pause) 

 

Steriade proposes that a segment is protected by special faithfulness constraints in contexts where its 

perceptual cues are more robustly licensed. The consonantal release burst can cue both place (Lahiri et al. 

1984; Malécot 1958; Stevens & Keyser 1989; etc.) and manner information (Stevens & Keyser 1989). The 

formant transitions out of a consonant also carry information both about place (Celdran & Villalba 1995; Eek 

& Meister, 1995; Fowler 1994; Fruchter & Sussman 1997; Kewley-Port 1983; Kewley-Port et al. 1983; 

Nearey & Shammass, 1987; Stevens & Blumstein 1978; Sussman et al. 1991; Sussman & Shore 1996; etc.) 

and manner (Diehl & Walsh 1989; Walsh & Diehl 1991). To motivate the existence of the positional versions 

of MAX, it is therefore necessary to show that release bursts and formant transitions are more robustly 

licensed in pre-vocalic and pre-pausal position than in pre-consonantal position. 

In pre-consonantal position, the likelihood of a consonantal release being realized is relatively small 

(Browman & Goldstein 1990). Except when the following consonant is a sonorant, there is also no 

opportunity for the realization of formant transitions, and even into a following sonorant consonant, robust 

formant transitions are less likely than into a following vowel. Pre-consonantal position is hence the context 

in which t/d-perception is least well cued, so that there is no special faithfulness constraint that protects 

against deletion specifically in this context. 

In pre-pausal position, formant transitions can obviously be realized. However, some dialects of English 

do strongly release final consonants (Holmes 1995), and in such dialects the release burst is licensed in pre-

                                            
9 This constraint is a special version of the more general *COMPLEX, that applies only to a subclass of consonant clusters, 
and only when these clusters appear in word-final position. As it stands, the constraint is probably too specific. For 
instance, deletion of [p] from words like ramp, wisp, etc., and deletion of [k] from words like whisk, task, etc. is also 
observed. To account for these deletions, the constraint should probably be generalized so that it penalizes all […C+stop] 
sequences. However, the literature contains virtually no information on the deletion of [p] and [k] in these contexts, 
probably because there are so few […Cp] and […Ck] words in English. For this reason, I assume the more specific 
constraint here. However, see Coetzee (2004:252-255) for an exploration of a more general constraint. 



277 
 

pausal position.10 In pre-vocalic position, both releases and transitions can be realized, but only across a word 

boundary. In pre-pausal position, only the release can be realized, but it is not realized across a word boundary. 

In pre-vocalic position, both releases and formant transitions can be realized, but only across a word boundary. 

Although both of these contexts licenses perception of t/d more robustly than pre-consonantal context, it is not 

clear whether there is a universal robustness difference between these two contexts. The robustness difference 

between them in some language depends on how likely final stops are to be released in this language, and on 

how likely releases and formant transitions are to be realized across word boundaries in this language. This is 

also reflected in the data reported in Table 2. Although all dialects show most deletion in pre-consonantal 

contexts, dialects can differ in whether pre-vocalic or pre-pausal context shows the lowest deletion rate. 

 

2.2.2. The learning simulations 

 

In order to develop a noisy HG account of the data in Table 2, Coetzee and Pater (to appear) ran learning 

simulations in Praat for each of the dialects, except for Columbus. In creating the input files for learning, they 

assumed that each of the three contexts (pre-consonantal, pre-vocalic, and pre-pausal) appeared 100 times. 

Deletion and non-deletion outputs were represented in the 100 tokens of each context proportional to the 

deletion rates reported in Table 2. For Chicano English, for instance, 55 of the 100 instances of pre-vocalic 

position was coded as having a non-deletion output and 45 as having a deletion output, etc. The decision 

strategy in Praat’s learning module was set to “Linear OT”, which is Praat’s implementation of noisy HG. 

The initial weight of all constraints was set to 100. All other settings were kept at Praat’s defaults. Once the 

grammar has been learned, Praat’s “to output distribution” function was used to test the predicted output of 

the grammar. Each of the input types was submitted 100,000 times to the grammar.11 A grammar based on the 

Columbus data was learned and tested in the same way. Table 3 gives the results of the learning simulations 

and the testing of the grammars that have been learned. On the left, the weights that were learned by the Praat 

simulations are given. On the right, the observed deletion rates for each context, as well as the deletion rates 

expected given the grammar that has been learned, are given. 

Let w(C) stand for the weight of some constraint. w(MAX) is very close to w(*CT) for six of the dialects 

(excluding only New York City and Philadelphia). Since the weight difference between these constraints is so 

small, it means that the weights actually used in evaluation (constraint weight + noise) will sometimes be 

higher for MAX and sometimes higher for *CT, resulting in variable deletion in pre-consonantal context.  

                                            
10 See Malécot (1958) for evidence that utterance final released consonants are perceived more accurately than unreleased 
consonants. 
11 The input files used by Coetzee and Pater (to appear) in the learning simulations reported here are included in 
“coetzee-pater-variation.zip”, which is available from the author, or from http://people.umass.edu/pater/coetzee-pater-
variation.zip. 
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This is illustrated in (4) for Tejano English, where the same grammar (same basic constraint weights) selects a 

different output at two different evaluation occasions due to the fact that the noise is different between the two 

evaluations. For the New York City and Philadelphia dialects, w(*CT) is roughly 80 weight units higher than 

w(MAX). Since the evaluation noise was set to Praat’s default of 2 during the simulation, it means that the 

noise added to constraint weights are normally distributed with a standard deviation of 2. The probability that 

a large enough positive noise value will be added to w(MAX) and a large enough negative noise value to 

w(*CT) for the weights of these constraints to invert is therefore vanishingly small, so that the deletion 

candidate is guaranteed to be selected as optimal nearly always. 

 

Table 3. Results of learning simulations 

 Constraint weights  Deletion rates 

 *C
T 
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A

X
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AAVE  101.0 3.9 -1.712 99.0  Obs 29 73 76 

      Exp 28 72 75 

Jamaica 101.4 1.7 0.7 98.6  Obs 63 71 85 

      Exp 63 71 85 

NYC 141.1 80.9 78.9 58.9  Obs 66 83 100 

      Exp 65 83 100 

Tejano  100.4 3.0 0.8 99.6  Obs 25 46 62 

      Exp 26 45 61 

Trinidad 101.2 5.2 4.2 98.8  Obs 21 31 81 

      Exp 20 29 79 

Philadelphia 139.2 79.5 82.4 60.9  Obs 38 12 100 

      Exp 38 12 100 

Chicano 100.4 0.9 1.8 99.6  Obs 45 37 62 

      Exp 45 38 62 

Columbus 100.0 0.1 2.1 100.1  Obs 39 25 49 

      Exp 38 24 49 

                                            
12 Although the “Linear OT” decision strategy in Praat can result in the learning of negative constraint weights, such 
weights are converted to zero when the grammar is used to generate outputs.  Since constraint violations are given in 
negative integers, a negative constraint weight would result in a constraint that boosts the harmony score of candidates 
that violate the constraint.  
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 (4) a. Tejano English: Faithfull output in pre-consonantal context 

  

‘west bank’ 

100.4 (-.1) 99.6 (.8) 3.0 (-.1) 0.8 (.9)  

 *CT MAX MAX-PRE-V MAX-PRE-PAUSE   á 

 L west bank -1    -100.3 

 wes bank  -1   -100.4 

 b. Tejano English: Deletion output in pre-consonantal context 

  

‘west bank’ 

100.4 (-.2) 99.6 (.2) 3.0 (-.3) 0.8 (-.1)  

 *CT MAX MAX-PRE-V MAX-PRE-PAUSE   á 

 west bank -1    -100.2 

 L wes bank  -1   -99.8 

 

For all eight dialects, w(MAX) + w(MAX-PRE-V) is very close to w(*CT), and likewise for w(MAX) + 

w(MAX-PRE-PAUSE). As a result of noisy evaluation, the harmony score of the deletion candidate in pre-

vocalic context is sometimes higher and sometimes lower than the faithful candidate, resulting in variable 

deletion in this context, and similarly for pre-pausal context. This is illustrated in (5) for pre-pausal context, 

again using the Tejano grammar. 

 

(5) a. Tejano English: Faithfull output in pre-pausal context 

  

‘west’ 

100.4 (-.1) 99.6 (.8) 3.0 (1.1) 0.8 (-.3)  

 *CT MAX MAX-PRE-V MAX-PRE-PAUSE   á 

 L west -1    -100.3 

 wes  -1  -1 -100.9 

 b. Tejano English: Deletion output in pre-pausal context 

  

‘west’ 

100.4 (-.1) 99.6 (.2) 3.0 (-.3) 0.8 (-.4)  

 *CT MAX MAX-PRE-V MAX-PRE-PAUSE   á 

 west -1    -100.3 

 L wes  -1  -1 -100.2 

 

Comparing the observed and the expected deletion rates for each of the dialects shows that the grammars 

learned in the simulation do very well at modeling the actually observed variation. It is clear that noisy HG as 

implemented here can account for the variation observed in these data. In addition to accounting for the data 

from individual dialects, the analysis developed here also expresses some universals. As shown in (6), 

deletion in pre-consonantal context violates a subset of the constraints violated by deletion in pre-vocalic and 
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pre-pausal contexts. As a consequence, the harmony score of the deletion candidate in pre-consonantal 

position will always be higher than that of a deletion candidate in pre-pausal or pre-vocalic position. From 

this follows that deletion is predicted to always be most likely in pre-consonantal context. 

 

(6) Different contexts in Tejano English  

  100.4 99.6 3.0 0.8  

 *CT MAX MAX-PRE-V MAX-PRE-PAUSE   á 

 /west bank/ → [wes bank]  -1   -99.6 

 /west end/ → [wes end]  -1 -1  -102.6 

 /west/ → [wes]  -1  -1 -100.4 

 

I conclude that noisy HG can successfully account for variable phenomena (as shown in Table 3), for 

categorical application of some process (as shown for pre-consonantal deletion in New York City and 

Philadelphia English), and for universal aspects of a variable phenomenon. However, in the account 

developed here, only grammar is involved. In the next section, I augment this account to allow non-

grammatical factors to also influence application of the process.  

 

3. The contribution of non-grammatical factors to t/d-deletion 
 
As shown in §1.2 above, there are several non-grammatical factors that also influence the rate of t/d-deletion. 

I will focus in this section on the influence of lexical frequency as an example. See §5.1 for some exploration 

of how multiple non-grammatical factors can be integrated into the model. 

 

3.1. Weight scaling 

 

Higher frequency words are more likely than lower frequency words to undergo t/d-deletion – more deletion 

from high frequency just than low frequency jest. This will be the case only if the statement in (7) is true. For 

any input, the deletion candidate is optimal only if its harmony score (á) is higher than that of the faithful 

candidate. To get more deletion in high frequency words, it is hence necessary that the probability that 

á(deletion) > á(faithful) is higher in high than low frequency words. 

 

(7)  p[á(jus_) >   á(just)]  >   p[á(jes_) >   á(jest)]  
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One way in which this can be achieved is by scaling the weight of faithfulness constraints down for 

higher frequency words, and up for lower frequency words.13 This will entail that the faithfulness constraints 

are ranked lower relative to the markedness constraints for the high frequency words than for the low 

frequency words. In high frequency words, the markedness constraints will therefore more likely determine 

which candidate is optimal (higher likelihood of selecting a relatively unmarked candidate), and the opposite 

for low frequency words. The same effect can be achieved by scaling the weight of markedness constraints up 

for high frequency words, and down for low frequency words. I opt for faithfulness scaling here because there 

are precedents for this in the literature. In OT, for instance, van Oostendorp (1997) proposes increasingly 

higher ranking of faithfulness constraints in increasingly formal registers. (Though see §5.2 for possible 

differences between scaling markedness and faithfulness weights). 

The effect of weight scaling is illustrated in (8). In these tableaux, wt = weight, nz = noise, and sf = 

scaling factor. For faithfulness constraints, there are now a weight, a noise value and a scaling factor. For 

markedness constraints there still are only a weight and a noise value. The constraint weights are those for 

Tejano English from Table 3. The two tableaux are exactly equivalent in terms of grammar (the same weights 

and noise values) and differ only in the scaling factor. High frequency just has a negative scaling factor so that 

the effective weights of the faithfulness constraints are lowered for just. The opposite holds for low frequency 

jest. With exactly the same grammatical settings, the deletion candidate is selected as optimal for high 

frequency just, and the faithful candidate for low frequency jest. 

 

(8) a. Tejano English: High frequency just  

 ‘just’ wt nz wt nz sf wt nz sf wt nz sf  

 100.4 0.2 99.6 0.9 -1.0 3.0 -0.3 -1.0 0.8 -0.8 -1.0  

 *CT MAX MAX-PRE-V MAX-PRE-PAUSE   á 

 just -1    -100.6 

 L  jus  -1  -114 -99.5 

   b. Tejano English: Low frequency jest  

 ‘jest’ wt nz wt nz sf wt nz sf wt nz sf  

 100.4 0.2 99.6 0.9 1.0 3.0 -0.3 1.0 0.8 -0.8 1.0  

 *CT MAX MAX-PRE-V MAX-PRE-PAUSE   á 

 L jest -1    -100.6 

 jes  -1  -1 -102.5 

                                            
13 The idea of using weight scaling for this purpose was first suggested to me by Joe Pater (p.c.). 
14 When the effective weight of a constraint falls below zero, it is replaced with zero in the calculation of á to prevent a 
candidate from getting a harmony boost due to constraint violation. 
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3.2. The primacy of grammar 

 

As shown in Table 2, pre-consonantal context has a higher deletion rate than pre-pausal and pre-vocalic 

context for all dialects. In §2.2.2, I have shown that this follows from the grammar of t/d-deletion. Deletion in 

pre-consonantal context violates a subset of the faithfulness constraints (MAX) violated by deletion in pre-

pausal (MAX, MAX-PRE-PAUSE) or pre-vocalic context (MAX, MAX-PRE-V). Since weight scaling has no 

influence on which constraints are included in the grammar, it can also not affect the relative deletion rate 

differences between pre-consonantal context, and pre-vocalic or pre-pausal contexts. The grammatical factors 

(the constraints included in the grammar) determine the limits of what a possible language is, and the non-

grammatical factors merely influence the details of how actual languages are realized within these limits. 

Similarly, if in the grammar of some language the weight if MAX-PRE-V is higher than the weight of 

MAX-PRE-PAUSE so that deletion is more likely in pre-pausal context, the relative difference in deletion rate 

between these contexts cannot be affected by weight scaling. All faithfulness constraints are scaled up or 

down by the same scaling factor for all words of a specific frequency. The relative weight difference between 

MAX-PRE-V and MAX-PRE-PAUSE will therefore remain the same at all scaling factors. This is another 

example of the primacy of grammar – if grammar dictates more deletion in pre-pausal context via specifying a 

lower weight for MAX-PRE-PAUSE than MAX-PRE-V, then non-grammatical factors can never result in more 

deletion in pre-vocalic position. 

 

Table 4. Deletion rates in Tejano English at different scaling factor values 

Word frequency Scaling factor Pre-V Pre-Pause Pre-C 

Higher -1.0 46 64 74 

 -0.5 36 55 68 

 -0.1 27 47 63 

Average 0 26 45 61 

 0.1 24 43 60 

 0.5 17 35 54 

Lower 1.0 11 26 47 

 

These two examples of grammar primacy are illustrated in Table 4. This table shows the deletion rates 

predicted for Tejano English under a range of different scaling factors. Deletion rates are based on the Tejano 

grammar from §2.2.2, and were calculated by first manually changing the weight of faithfulness constraints 

up or down, and then using the “to output distributions” option in Praat. Note that the relative deletion rate 

differences between the three contexts remain unchanged at all scaling factors. Also note that the deletion rate 
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goes up as the scaling factor decreases (and lexical frequency increases), showing again how the influence of 

frequency is accounted for in this model. 

 

3.3. A linking function between usage frequencies and scaling factors 

 

The last part of the model that is missing is a linking function between frequency values and scaling factors. 

The details of this part of the model are still under development, so that this section of the paper is somewhat 

speculative. In order to develop a linking function, detailed data about deletion rates at a range of different 

frequency values are required. To the best of my knowledge, none of the research in the variationist tradition 

on t/d-deletion reports its data in such a way that this type of information can be extracted from it. The data on 

Columbus English represented in Figure 1, however, are of exactly the required kind, and in the rest of this 

section I therefore focus on Columbus English.  

Using the regression equation for each of the three contexts represented in Figure 1, I determined the 

deletion rate predicted for a range of different frequency values. Example results are given in Table 5. I also 

determined the deletion rate predicted at several different scaling factors by the grammar for this dialect (as 

learned during the simulation discussed in §2.2.2). Example results are also given in Table 5. The next step is 

to align the two sets of predictions in some way. When the scaling factor is set to zero, frequency has no 

influence on the operation of the grammar – constraint weights and noise are then the only variables that go 

into the calculation of harmony scores. Based on the assumption that words of average frequency are less 

likely to be influenced by frequency considerations, the two sets of deletion predictions were therefore aligned 

so that a scaling factor of zero corresponds to the average frequency of the frequency groups in the regression 

analyses (a value of 3.4).  

Once the two sets of values were aligned at their midpoints, the linking function in (9) was used to 

determine how to align the remainder of the two sets.15 This function is a linear function so that both 

frequency and scaling factors change at a constant rate. In effect, the linking function in (9) does the following: 

(i) The scaling factor is set to zero for words with a log frequency equal to the mean log frequency of 3.4.   

(ii) For each increase of 0.2 above the mean log frequency, the scaling factor is decreased by 0.1. (iii) For 

each decrease of 0.2 below the mean log frequency, the scaling factor is increased by 0.1. 

 

 

 

                                            
15 For the purposes of this paper, the linking function was determined by trying several different alignments between the 
two sets until one was found that minimizes the differences between the two sets. In future research, ways of finding the 
best alignment between the two sets of value by means of an optimization algorithm should be investigated. 
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Table 5. Deletion rates in Columbus English, as predicted by frequency and grammar 

lg(freq) 

Predicted deletion rate 

Scaling factor 

By lg(freq) By scaling 

Pre-C Pre-V Pre-Pause Pre-C Pre-V Pre-Pause 

2.4 42 30 17 39 27 12 0.5 

2.6 43 32 18 41 30 14 0.4 

2.8 45 34 20 43 32 17 0.3 

3 47 35 22 45 34 20 0.2 

3.2 48 37 23 47 36 22 0.1 

3.4 49 39 25 49 38 24 0 

3.6 51 41 28 51 41 27 -0.1 

3.8 52 43 29 53 43 30 -0.2 

4.0 54 45 31 54 45 33 -0.3 

4.2 55 47 32 56 47 35 -0.4 

4.4 56 48 34 58 49 38 -0.5 

 

(9) Let lex be some word, flex the log frequency of lex, and difflex the difference between the mean log 

frequency (3.4) and flex (i.e. 3.4 - flex). Let sflex be the scaling factor associated with lex. 

     

  

 

 The graph in Figure 2 plots the deletion rates predicted by frequency (on the y-axis) and the different 

scaling factors (on the x-axis). If the two sets of predictions were perfectly matched, all data points would fall 

on the diagonal. The data points in Figure 2 are all tightly clustered around the diagonal, indicating a near 

perfect match between the two sets of predictions. That the match is this good, and that the function used to 

link to the two sets of predictions is a simple linear function, are encouraging. However, to conclude with 

more certainty that the approach proposed here for the integration of the influence of lexical frequency and 

grammar is successful, these results would have to be replicated for t/d-deletion in more English dialects, and 

also for other variable processes.  

difflex 

0.2 
 sflex   =   (0.1) 
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Figure 2. Deletion rates in Columbus English as predicted by frequency and weight scaling 
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4. Alternatives 
 
In addition to noisy HG, there are several other models of phonological variation in the current theoretical 

phonology literature. In this section, I briefly consider the most important of these, and argue that noisy HG 

accounts better for the kind of data that is the focus of this paper. For a more detailed evaluation of these, see 

Coetzee and Pater (to appear).  

 

4.1. Partially ordered constraints 

 

The partially ordered constraints (POC) theory was originally proposed by Kiparsky (1993) and Reynolds 

(1994), and later developed in more detail by Anttila (1997, 2002). This model is developed in classic OT and 

thus assumed discreet rankings between constraints rather than ranking along a continuous scale. Variation 

arises when there are some constraints that are crucially unranked relative to each other. Every time that the 

grammar is used, one of the possible total rankings between the set of unranked constraints is selected at 

random. The frequency structure of variation also follows from this – if some variant is selected in n out of 

the t possible total rankings, then this variant is predicted to appear n/t of the time. There are at least three 

problems with this model. First, there is currently no learning algorithm associated with this model. Secondly, 

since constraint ranking is discreet, the range of variation that the model can predict is very limited. In this 

model, there are only two possible relations between any two constraints at evaluation time – either C1 à C2, 

or C2 à C1. The fine graded differences between the different dialects shown in Table 2 can hence not be 

accounted for in this model. In fact, given the same constraints as used above in §2, POC predicts that the 
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deletion rates shown in Table 6 is the only possibility. Since deletion is observed in all three contexts, all three 

of the MAX-constraints must be unranked relative to each other and relative to *CT. In pre-consonantal 

context, there is one constraint each against deletion and retention, and deletion and retention are hence 

equally likely. In the other two contexts there are twice as many constraints against deletion as against 

retention, and retention is hence twice as likely as deletion. This is clearly not in agreement with the data from 

Table 2, where each dialect has different deletion rates, and where the deletion rates differ quite substantially 

from those predicted by POC. 

 

Table 6. Deletion rates predicted for all dialects in the POC theory of variation 

 Pre-V Pre-Pause Pre-C 

Constraints against retention *CT *CT *CT 

Constraints against deletion MAX, MAX-PRE-V MAX, MAX-PRE-PAUSE MAX 

Expected deletion (%) 33 33 50 

 

Thirdly, also due to the discreet ranking between constraints, there is very limited ability to allow non-

grammatical factors to impact deletion rates. *CT and MAX are unranked relative to each other, allowing 

variable deletion in pre-consonantal position. The higher likelihood of deletion in high frequency words could 

be accounted for by fixing the ranking *CT à MAX for high frequency words, and the lower likelihood of 

deletion for lower frequency words by fixing the ranking MAX à *CT for such words. However, this would 

predict that words of average frequency show 50% deletion, high frequency words 100%, and low frequency 

words 0%. This is again too restrictive and not in agreement with the data. 

 

4.2. Rank-ordered candidate set 

 

Coetzee (2004, 2006) develops a different OT-model of variation. This model diverges from classic OT and 

from POC in that EVAL (the evaluative component of an OT grammar) is assumed to impose a well-

formedness rank-ordering on the full candidate set rather than merely selecting the single best candidate. In 

this respect, it is more similar to HG where each candidate receives a harmony score so that the whole 

candidate set can also be ordered relative to each other. This model is dubbed the “rank-ordering model of 

EVAL”, or ROE for short, by Coetzee. In ROE, variation arises when the language user accesses more than 

just the top-most candidate on the rank-ordered candidate set (more than just the optimal candidate of classic 

OT). The probability that some candidate will be accessed as output is proportional to its position on the rank-

ordering – a candidate higher on the rank-ordering (a more well-formed candidate) is more likely to be 

accessed. The influence of non-grammatical factors could in principle be incorporated into this model by 
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allowing such factors to increase or decrease the probability that candidates from lower on the rank-ordering 

can be accessed. However, this model has a major drawback, namely that it relies on discreet rankings like 

classic OT and POC. Consequently, EVAL imposes the rank-ordering cand1 ê cand2 on two candidates, but it 

cannot stipulate how much better cand1 is than cand2. Concretely, in terms of t/d-deletion, since retention is 

more likely than deletion both in pre-vocalic and pre-pausal contexts in Tejano English, ROE will impose the 

rank-ordering retention ê deletion for both of these contexts. It can therefore not differentiate between these 

contexts, even though they do differ in deletion rates. Noisy HG, which assigns a specific numeric harmony 

score to every candidate, successfully overcomes this shortcoming of ROE. 

 

4.3. Stochastic Optimality Theory 

 

Stochastic OT, as implemented by Boersma (1997) and Boersma and Hayes (2001), differs from HG and 

agrees with classic OT in the use of ranked rather than weighted constraints. However, it agrees with HG in 

that constraint ranking is along a non-discreet, continuous scale. Because of the non-discreet ranking abilities 

of Stochastic OT, it is not limited to one set of deletion rates like POC (Table 6). In fact, as shown in Coetzee 

and Pater (to appear), Stochastic OT can account just as well as noisy HG for all the different dialects in 

Table 2. Also, like HG and different than POC, Stochastic OT has a learning algorithm affiliated with it, the 

Gradual Learning Algorithm (GLA). However, as shown by Pater (2008), the Stochastic OT GLA is provably 

non-convergent. The learning algorithm associated with HG, on the other hand, has a convergence proof 

(Boersma & Pater 2008). For this reason alone, the HG model of variation is to be preferred over the 

Stochastic OT model. 

 

4.4. Variable rules 

Labov (1969) introduced the notion of a variable rule, thereby inaugurating decades of research in the 

variationist sociolinguistic tradition. Variable rules are ordinary phonological rewrite rules, in the spirit of SPE 

(Chomsky & Halle 1968), with three augmentations: (i) the rules are marked as optional, and (ii) the structural 

descriptions of the rules encode how the presence of different elements in the context of the rule promotes or 

inhibits application of the rule. (iii) The structural descriptions of variable rules can contain both grammatical 

and non-grammatical factors. In fact, no formal distinction is made between grammatical and non-

grammatical components of a rule’s structural description. Because of the incorporation of non-grammatical 

factors into the structural descriptions of these rules, they can account for the influence of both grammatical 

and non-grammatical factors on a variable process. 

Several mathematical models have been proposed over the years for relating the observed application rate 

of a variable rule to the presence/absence of different components of the rule’s context (Cedergren & Sankoff 
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1974; Rousseau & Sankoff 1978; etc.). The one that has become the standard in the field, and that is 

implemented in the widely used software packages VarbRul and Goldvarb, performs a multivariate stepwise 

logistic regression over observed token counts (Paollilo 2002:177; Sankoff et al. 2005). In this analysis, 

application/non-application of the rule is taken as the dependent variable, and different factors hypothesized 

to influence the probability of application are taken as independent/predictor variables. Given a corpus of 

observed tokens to which the rule could apply, and in which each token is coded for application/non-

application of the rule, as well as for the value for each of the independent variables, VarbRul/Goldvarb 

estimates the contribution that each independent variable makes to the probability of rule application, using a 

maximum likelihood algorithm. The probability that a rule will apply is expressed by the formula in (10). In 

this formula, p0 represents the probability of the rule applying independently from any factors in its structural 

description. p1…pn stand for factors, grammatical or non-grammatical, in the context of the rule.  
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Since the values of p0…pn are determined by a best-fit algorithm, this model can model any set of input 

data with which it is presented extremely well. See Coetzee and Pater (to appear) for evidence that it does at 

least as well as noisy HG on the dialects in Table 2. However, also because it relies on a best-fit regression 

algorithm it is devoid of substantive grammatical content, and it can model any set of data with which it is 

presented, even if the data is grammatically unnatural. Coetzee and Pater (to appear) show that it can account 

for a language like Tejano English, except that the deletion rate in pre-consonantal and pre-vocalic contexts 

are flipped around. This would be an unnatural system with the lowest deletion rate in pre-consonantal 

position. Noisy HG, on the other hand, because it relies on grammatically substantive constraints, fails to 

learn a grammar that can produce a language like that, even if presented with learning data having that 

structure. Table 7 contains the deletion rates predicted for such a dialect by a variable rule grammar and a 

noisy HG grammar learned based on this kind of input. See Coetzee and Pater (to appear) for details about 

how exactly these learning simulations were conducted. 

 

Table 7. An unnatural language with variable rules and noisy HG 

 Pre-V Pre-Pause Pre-C 

Observed deletion  62% 46% 25% 

Expected deletion, based on variable rules 62% 46% 25% 

Expected deletion, based on noisy HG 44% 44% 44% 
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As a regression model, the variable rule model is excellent at describing data on variation very accurately 

in a mathematically exact manner. However, since it lacks grammatical substance it is not a very effective 

model of natural language. 

 

5. Concluding discussion 
 

5.1. One or multiple scaling factors? 

 

As shown in section §1.2, there are multiple non-grammatical factors that influence phonological variation. In 

addition to lexical frequency, there are, for instance, speech rate, formality register, and various aspects of 

social knowledge. A fully adequate model of phonological variation therefore needs to be able to incorporate 

the influence from grammar, and from multiple non-grammatical factors. There are several ways in which 

multiple non-grammatical factors can be incorporated into this model. The different non-grammatical factors 

could make an independent contribution so that each would have its own scaling factor. The combined 

influence of the non-grammatical factors will then be the sum of all the scaling factors. It is also possible that 

the interaction between the different non-grammatical factors are more complex – for instance, it may be that 

frequency is less influential at very low speech rates which is associated with careful, full pronunciations. A 

more complex function than mere addition would then be required for determining the combined contribution 

of the different non-grammatical factors. To decide between these options, more research is necessary on the 

way in which non-grammatical factors other than frequency impact variation, and in how different non-

grammatical factors interact. 

 

5.2. Allomorphic variation 

 

In the model presented in this paper, only faithfulness constraints are affected by weight scaling. Candidate 

selection that does not depend on faithfulness constraints should therefore not be affected at all by non-

grammatical factors. Kager (1996) proposes that in allomorphy, both allomorphs form part of the input and 

the selection between the allomorphs is made based on markedness alone – whichever allomorph results in the 

least marked structure is selected. Assuming this approach to allomorphy and the model of variation 

developed in this paper, it therefore follows that allomorphic variation should be immune to the influence of 

non-grammatical factors.16 Muna (van den Berg 1989) presents an example of variable allomorphy. In Muna, 

pronominal possession is marked with suffixes to the noun root. The third person plural possessive suffix can 

be realized as either [-do] or [-ndo]. In roots that contain no pre-nasalized consonants, [-ndo] is the only 
                                            
16 Thank you to Matt Wolf for pointing out this consequence of the model to me. 
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allowed form of the suffix. However, in roots with a pre-nasalized consonant, free variation between the two 

allomorphs is allowed. Examples are given in (11). Numbers in square brackets refer to page numbers in van 

den Berg (1989). 

 

(11)  [galu]       ‘field’  [galu-ndo], *[galu-do] ‘their field’ [85] 

   [randa]       ‘stomach’  [randa-ndo]~[randa-do] ‘their stomach’ [36] 

   [kambele]      ‘shadow’  [kambele-ndo]~[kambele-do] ‘their shadow’ [36] 

 

The avoidance of the [-ndo] form in roots containing a pre-nasalized consonant is part of a more general 

avoidance of words with more than one pre-nasalized consonant in Muna. Coetzee and Pater (2008) use an 

OCP-type constraint against multiple occurrences of the feature [pre-nasal] in a single word (*PRENAS2) to 

account for this aspect of Muna’s phonology. In a Kager-type account of allomorphy, there is a morphological 

constraint stating what the preferred form of the morpheme is. In this example, [-ndo] is clearly the preferred 

form – since it is the only form allowed when *PRENAS2 is inert, as in a word without a pre-nasalized sound. 

The relevant morphological constraint would therefore be USE[-ndo]. These two constraints fully determine 

allomorph selection, and neither of them are faithfulness constraints. As such, they are immune to weight 

scaling so that the selection between the two variants in words with a pre-nasalized consonant should be 

unaffected by factors such as lexical frequency.  

If it indeed is the case that variable allomorph selection is sensitive to non-grammatical factors, the model 

developed in this paper would need to be adjusted. It may be necessary, for instance, that weight scaling 

should be extended to markedness constraints also. 

 

5.3. Final evaluation 

 

Variation is characteristic of all levels of linguistic structure, and any adequate model of the human linguistic 

capacity should be able to account for variation. In the past fifteen years, significant progress has been made 

in this regard, and there are currently several grammatical models of variation that account very successfully 

for variation. However, existing models are nearly exclusively grammatical in nature while variation is 

impacted in non-random and predictable ways by many non-grammatical factors. A more complete model of 

the competence of a language user therefore needs to incorporate the influence of both grammatical and non-

grammatical factors. This paper presents one proposal in which this can be achieved. Initial exploration of this 

model has promising results, but more research is required for a substantive evaluation of the model. 
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