
Generating Contenders

Jason Riggle, University of Chicago

August 24, 2009

Abstract

In Optimality Theory, a contender is a candidate that is optimal under some ranking

of the constraints. When the candidate generating function Gen and all of the

constraints are rational (i.e., representable with (weighted) finite state automata)

it is possible to generate the entire set of contenders for a given input form in much

the same way that optima for a single ranking are generated. This paper gives a

brief introduction to rational constraints and provides an algorithm for generating

contenders whose complexity, modulo the number of contenders generated, is linear

in the length of the underlying form with a multiplicative constant representing the

size of the finite-state representation of the constraint set.

1 Introduction

In Optimality Theory (OT; Prince and Smolensky 1993/2004), a candidate that cannot be

optimal under any ranking of the constraints is said to be harmonically bounded.1 Riggle

(2004) dubs the candidates that can win under some constraint ranking contenders and

provides an algorithm for generating the entire set of contenders for a given input form that

is applicable to OT-models in which the candidate generating function Gen and all of the

constraints are rational (i.e., representable with (weighted) finite state automata).

This paper provides a brief introduction to rational constraints in §2 and then, in §3,

presents algorithms for generating contenders and constructing OT typologies in cases where

constraints are rational. These algorithms are more efficient than those presented in Riggle

(2004) and are accompanied by explicit complexity analysis in contrast to the algorithm in

Riggle (2004) which was only shown to be guaranteed of termination.

1.1 Optimization and Complexity

In his seminal finite-state characterization of the generation problem in OT, Ellison (1994a)

showed that a relatively standard dynamic programming approach to optimization could be

used to efficiently compute optimal input-output mappings. In Ellison’s characterization of

the problem, the constraints and ranking are held out as fixed parameters and the input to

the problem consists of the underlying form. Ellison showed that, in this characterization,

optimization requires on the order of n|E| log n|Q| computational steps where n is the length

of the underlying form and (|E|, |Q|) is a constant denoting the number of arcs and states

in the finite state representation of the constraints in Con. Optimization is considered to

be efficient in this case because the complexity is log-linear in n.

1See also, Samek-Lodovici (1992), Samek-Lodovici & Prince (1999), and Samek-Lodovici & Prince (2002).

1

August 24, 2009 Generating Contenders

Responding to Ellison’s results, Eisner (1997a) argues that there are instances such as

learning where the ranking is not known in advance and thus cannot be a fixed parameter of

the problem. Eisner goes on to demonstrate that, when the constraint set and ranking are

not fixed parameters of the problem, optimization can be NP-hard because the size of |E| and

|Q| can grow exponentially with the number of constraints. The distinction between Ellison’s

and Eisner’s characterization of the generation problem in OT corresponds to what Barton

et al. (1987) define as the distinction between the generation problem and the universal

generation problem.

The distinction between whether (|E|, |Q|) is a fixed parameter of the problem or part

of the input to the problem is critical from the perspective of computational complexity

theory because constants do not figure into the assessment of the complexity of a problem.

Though it might seem counterintuitive to ignore potentially large constants in assessing

complexity, they are considered irrelevant from the limiting-case perspective of complexity

theory because they will be dwarfed by the value of non-fixed parameters like input length

n in all but finitely many cases. (See Papadimitriou (1994) for a review of the fundamentals

of computational complexity theory.) In addition to taking issue with the usefulness of

the assumption that the constraint set is fixed and the ranking known in advance, Eisner

considers the universal generation problem to be more practically relevant for linguists on the

grounds that large constants can matter in real-world applications outside the limiting-case

perspective of complexity theory.2

Heinz et al. (2009) respond to Eisner’s complexity results by proposing a slightly differ-

ent characterization of the generation problem in OT as what they call a ‘quasi-universal’

problem. In the quasi-universal characterization of the generation problem, the constraint

set is held out as a fixed parameter and the input to the generation task consists of a rank-

ing R and an underlying form. Heinz et al. (2009) argue that this characterization of the

problem more accurately reflects the usual definition of OT with a fixed universal constraint

set and that this characterization is appropriate for the problem of learning an unknown

ranking for a known set of constraints.

Adopting the quasi-universal characterization of optimization proposed by Heinz et

al. (2009), Riggle (2009) provides an optimization algorithm that requires on the order

of n(|E| log |Q|) computation steps for underlying forms of length n. This tightens Ellison’s

(1994a) complexity result by a logarithmic factor establishing that complexity of quasi-

universal optimization is linear in the length of the underlying form rather than log-linear.

Riggle argues that this result makes the quasi-universal characterization especially appealing

because it isolates the complexity of the grammar in the multiplicative constant (|Q| log |E|),

which teases apart the contribution to complexity that comes from a specific constraint set

and the contribution to complexity that comes from the computation of optimality.

2 This is why Barton et al. (1987) formulate the universal generation problem for grammars. This factor
also motivates Idsardi (2006) to adopt Eisner’s complexity characterization of OT and is cited by Wareham
(1998) who provides an independent proof that optimization in OT is NP hard in the universal case.

2

August 24, 2009 Generating Contenders

In this work, I adopt the algebraic characterization of violation profiles from Riggle

(2009), but instead of doing generation with a modified Dijkstra-(1959)-style shortest path

algorithm as in Riggle (2009), I provide a contender generation scheme that has more in

common with a Kay-(1980)-style chart-parser. This latter approach is more appropriate

to the task of generating contenders because the goal is the generation of all candidates

that correspond to non-harmonically-bounded paths rather than the generation of a single

optimal candidate. I show here that the contender generation algorithm is efficient modulo

the number of contenders that it produces (i.e., there can be as many as k! contenders for

k constraints, but the generation of n contenders has complexity that is polynomial in n).

1.2 Relative bounding

When generating contenders for a given constraints set Con, I assume that the candidate

generating function Gen takes an underlying form i and yields all and only the candidates

that can be derived from i by changes (unfaithful mappings) that are penalized by constraints

in Con. If Con is a subset of the universal set of (possible) constraints Con—as it is in most

OT analyses—this is equivalent to assuming that all other unfaithful mappings are ruled

out by undominated faithfulness constraints against changes other than those penalized by

constraints in Con. Furthermore, I assume that only the markedness constraints in Con

can motivate unfaithful mappings. This is equivalent to assuming that any markedness

constraint in Con but not in Con is ranked below the constraints in Con. I will refer to the

constraints in Con as active constraints.

Following these assumptions an OT analysis can be characterized as a micro-typology

in which the rankings of the inactive constraints are held fixed in order to focus attention

on just those candidates whose optimality is crucially determined by the ranking of the

active constraints. The selection of these candidates can be achieved by an extension of

the concept of harmonic bounding (Samek-Lodovici (1992), Prince & Smolensky (1993),

Samek-Lodovici & Prince (1999, 2002)).

(1) Definition: Harmonic Bounding (Samek-Lodovici & Prince 1999:2)

A candidate is harmonically bounded if there is another candidate that is (a) at least

as good on all constraints, and (b) better on at least one.

This definition seems to presuppose something like the notion of active constraints above.

The critical point is the meaning of ‘all constraints.’ Consider the four candidates in (2).

(2)

a.

b.
c.

d.

b

/VC/ Onset NoCoda Dep Max

VC. * *

CV. * *

CV.CV. **
ǫ **

3

August 24, 2009 Generating Contenders

Candidate b shows what Samek-Lodovici and Prince call collective harmonic bounding.

There is no ranking of these four constraints that will allow candidate b to simultaneously

beat candidates c and d. But what about other constraints? If Dep is divided into a specific

version for vowels and a general version, then candidate b can triumph as in (3).

(3)

a.

b.
c.

d.

b☞

/VC/ Onset NoCoda DepV Max Dep

VC. *! *

CV. * *

CV.CV. *! **

ǫ **!

Clearly the notion of harmonic bounding is not intended to refer to the entire universal

constraint set. Even if we had a model of all the constraints and a way to feasibly work

with them, the utility of harmonic bounding lies in its simplification of the candidate space.

Prince & Smolensky (1993:194-195) construe harmonic bounding slightly more narrowly

as a condition that arises under a given (partial) ranking in which a particular structure

can never surface because it is always ill-formed relative to another structure. The intended

meaning of ‘all constraints’ in (1) seems to be somewhere in the middle, referring to any

ranking of the constraints explicitly mentioned in an analysis but not to any ranking of any

imaginable constraints. It is precisely the intuition behind this construal of the scope of

harmonic bounding that the notion of active constraint above is meant to codify.

(4) Definition: Relative Bounding

A candidate is relatively bounded for a set of active constraints A if there is no

ranking of A under which that candidate is optimal.

This definition synthesizes Prince and Smolensky’s (1993) notion of harmonic bounding as a

condition that holds relative to a partial ranking of the constraints with a default assumption

about what that partial ranking is for all the constraints that are not mentioned in a given

analysis. From this assumption, it immediately follows that any candidate that violates an

inactive faithfulness constraint that is ranked above the active constraints will be relatively

bounded by any candidate that violates no inactive faithfulness constraints.

(5) Identity Candidate Corollary

All candidates that violate faithfulness constraints ranked above active constraints A

are relatively bounded for constraint set A by the fully-faithful identity candidate.

In generating contenders, our goal is to pair down the infinite candidate set to just those

that are not relatively bounded for the active constraints.

4

August 24, 2009 Generating Contenders

2 OT with Rational Constraints: OTR

Constraints in OT are relations from candidates to numbers of violations. Because relations

that can be represented with finite state machines are often called ‘rational’ relations I will

refer to OT analyses whose active constraints are drawn from the rational fragment of the

universal constraint set as analyses within OTR. Many constraints proposed in the literature

lie outside the scope of OTR, but in cases where all the active constraints are rational, we

can generate contenders without regard for the other constraints.

2.1 Rational faithfulness constraints

Faithfulness constraints in OTR can be represented as weighted finite-state transducers. For

a concrete illustration of how these work, I will present a simple syllable structure grammar

over the symbols {C, V, .} (where . marks syllable boundaries). The constraint Max can

be instantiated as the finite state transducer JMaxK in Fig. 1.

. : .
C : C
V : V

.
:
ǫ

C
:
ǫ/m

ax
V

:
ǫ/m

ax

ǫ
:
.

ǫ
:
C

ǫ
:
V

Max

Σ = {C, V, .} ∆ = {C, V, .} Q = {Max}

q0 = Max F = {Max}

E = { (Max, ǫ, V, ∅,Max),

(Max, ǫ, C, ∅,Max),

(Max, ǫ, ., ∅,Max),

(Max, ., . , ∅,Max),

(Max, C, C, ∅,Max),

(Max, V, V, ∅,Max),

(Max, V, ǫ,max,Max),

(Max, C, ǫ,max,Max),

(Max, ., ǫ, ∅,Max)}

Figure 1: A finite-state representations of the constraint Max

The arcs (arrows) in JMaxK are labeled with (input : output /weight) triples that assign the

weight max (one violation) each time C or V is mapped to ǫ the empty string. Candidates

are evaluated by ‘walking’ along the arcs and adding up violations. For instance, each path

in JMaxK whose input labels spell out ‘VC’ is a candidate for the underlying form /VC/.

V : V

V:ǫ/max

C : C

C:ǫ/max

ǫ : .
ǫ : V
ǫ : C

ǫ : .
ǫ : V
ǫ : C

ǫ : .
ǫ : V
ǫ : C

0
Max

1
Max

2
Max

Figure 2: JMaxK(VC)

Formally, a weighted transducer JMK with weights from the set X is defined by a six-tuple

(Σ,∆, Q, q0, F,E) where Σ and ∆ are finite alphabets of ‘input’ and ‘output’ symbols, Q is

5

August 24, 2009 Generating Contenders

a finite set of states, q0 ∈ Q is the ‘start’ state, F ⊆ Q are the ‘final’ states, and E is a finite

set of arcs from (Q× Σ ∪ {ǫ} ×∆ ∪ {ǫ} ×X×Q).3 The notation in (6) will be helpful.

(6) a. Given an arc e ∈ E : s[e] denotes the source of the arc, t[e] denotes the arc’s

terminus, i[e] is the input label, o[e] is the output label, and w[e] is the weight.

b. A path 〈e1...ek〉 ∈ E∗ is sequence of connected arcs: t[ei−1] = s[ei] for i = 2...k.

c. The notation for arcs extends to paths in the obvious way. For π = 〈e1...ek〉:

s[π] = s[e1], t[π] = t[ek], i[π] = (i[e1]...i[ek]), and o[π] = (o[e1]...o[ek]).

d. A path is complete if its source is the start state and its terminus a final state.

e. JMK(x) is all complete paths that accept x: {π : s[π] = q0, i[π] = x, t[π] ∈ F}.

There are infinitely many complete paths through JMaxK(VC) in Fig. 2 and each one of

them encodes a different candidate for the input /VC/ with its own surface form.

If the transducers for a set of faithfulness constraints are isomorphic (i.e., have exactly

the same structure), they can be intersected to create a single weighted transducer by simply

merging the weights on corresponding arcs.

ǫ : .
C : C
V : V

ǫ
:V

/d
pv

ǫ
:C

/d
pc V

: ǫ/m
ax

C
: ǫ/m

ax

Faith

Σ = {C, V} ∆ = {C, V, .} Q = {Faith}

q0 = Faith F = {Faith}

E =
{

(Faith, ǫ, C, dpc,Faith), (Faith, ǫ, V, dpv,Faith),

(Faith, C, ǫ, max,Faith), (Faith, V, ǫ, max,Faith)

(Faith, ǫ, ., ∅,Faith), (Faith, C, C, ∅,Faith),

(Faith, V, V, ∅,Faith),
}

Figure 3: JFaithK = JDepVK ∩ JDepCK ∩ JMaxK

The domain of a faithfulness constraint can be restricted to a particular underlying form

with a finite state acceptor for that form. Fig. 4 illustrates the acceptor for /VC/.

V C
0 1 2

Σ = {C, V, .} Q = {0, 1, 2}

q0 = 0 F = {2} E = {(0,V,1), (1,C,2)}

Figure 4: Accept(VC), an acceptor for the string VC

Finite state acceptors are defined with five-tuples (Σ, Q, q0, F,E) similarly to transducers,

but they have only one alphabet Σ and the arcs in E are drawn from Q×Σ×Q. To generate

candidates for underlying form x, the domain of JFaithK is restricted with Accept(x). This

3Weighted automata are also typically defined with a weight function on the final states. I omit this
detail for brevity because machines here do not impose additional penalties for stopping at a final state. For
a thorough introduction to automata see Hopcroft and Ullman (1979) or Roche and Schabes (1997).

6

August 24, 2009 Generating Contenders

corresponds to the machine in Fig. 5, which can be thought of intuitively as representing all

ways of walking along the arcs of the acceptor in Fig. 4 and the constraints in Fig. 3 at the

same time.

V : V

V:ǫ/max

C : C

C:ǫ/max

ǫ : .
ǫ : V/dpv

ǫ : C/dpc

ǫ : .
ǫ : V/dpv

ǫ : C/dpc

ǫ : .
ǫ : V

ǫ : C/dpc

0

Faith

1

Faith

2

Faith

Figure 5: Accept(VC) ∩L JFaithK = JFaithK(VC)

Formally, this machine is created by intersecting the acceptor with the domain of the trans-

ducer. This operation, which I will call left-intersection (denoted ∩L) is defined in (7). For

the sake of generality, I assume in the definition of left-intersection that the acceptor is

weighted. This allows the possibility of underlying forms to be marked with violations and

is harmless for unweighted acceptors whose arcs can be thought of as having ∅ weights.

(7) (ΣA, QA, q0A, FA, EA) ∩L (ΣB , ∆B, QB, q0B, FB , EB) =

(ΣA ∩ΣB ,∆, QA ×QB , 〈q0A, q0B〉, FA ∩ FB , E) where:

for each (p, i, v, q), (p′, i′, o′, v′, q′) in EA × EB

if i = i′ then (〈p, p′〉, i, o, v ⊎ v′, 〈q, q′〉) is in E

and for each q, (p′, i′, o′, v′, q′) in Q× EB

if i′ = ǫ then (〈q, p′〉, i′, o′, v ⊎ v′, 〈q, q′〉) is in E.

Right-intersection (denoted ∩R) is defined analogously and is used to combine an acceptor

with the range of a transducer. The terms ‘right’ or ‘left’ intersection accord with whether

the right or left symbol on the arcs of the transducer is used in combining the machines.

Right-intersection can be used to combine markedness and faithfulness constraints. This

will make it possible to assemble a single weighted automaton that represents the whole set

of active constraints.

2.2 Rational markedness constraints

In OTR, markedness constraints are weighted finite-state acceptors that are complete in

the sense that they accept and assign a weight to every possible surface form in ∆∗. The

constraint NoCoda, represented in Fig. 6, assigns violations to ‘C.’ sequences.

Weighted finite state acceptors (WFSA) are defined with five-tuples (Σ, Q, q0, F, E) just

like their unweighted counterparts; the only difference is that the arcs in E are drawn from

the set Q× Σ× X×Q where X is the set of possible weights.

7

August 24, 2009 Generating Contenders

./noc

C

V

C V

.

Noc0 Noc1

Σ = {C, V, .} Q = {Noc0,Noc1}

q0 = Noc0 F = {Noc0,Noc1}

E = {(Noc0, C, ∅,Noc0),

(Noc0, ., noc,Noc1),

(Noc0, V, ∅,Noc1),

(Noc1, V, ∅,Noc1),

(Noc1, C, ∅,Noc0),

(Noc1, ., ∅,Noc1)}

Figure 6: NoCoda as a weighted finite state acceptor JNoCodaK

The constraint JOnsetK presented in Fig. 7 is structurally similar to JNoCodaK, but

instead of assigning violations to the sequence ‘C.’ it penalizes vowel-initial syllables (which

are characterized here as V occurring at the beginning of a form or immediately after a ‘.’).

V/ons

.

C

. V

C

Ons0 Ons1

Σ = {C, V, .} Q = {Ons0,Ons1}

q0 = Ons0 F = {Ons0,Ons1}

E = {(Ons0, ., ∅,Ons0),

(Ons0, V, Ons,Ons1),

(Ons0, C, ∅,Ons1),

(Ons1, V, ∅,Ons1),

(Ons1, ., ∅,Ons0),

(Ons1, C, ∅,Ons1)}

Figure 7: Onset as a weighted finite state acceptor JOnsetK

‘Hard’ markedness constraints can be implemented as incomplete acceptors that simply

reject some surface forms rather than assigning violations. Fig. 8 illustrates an inviolable

constraint, which I will call JSyllK, that requires all syllables to have the shape ((C)V(C).).

C

. C

V
.

V

1

2

3

4

Σ = {C, V, .} Q = {1, 2, 3, 4}

q0 = 1 F = {1}

E = {(1, C, 2),

(1, V, 3),

(2, V, 3),

(3, ., 1),

(3, C, 4),

(4, ., 1)}

Figure 8: JSyllK, a hard constraint on syllable structure

The restriction this constraint imposes could also be obtained using a ranked set of violable

constraints. Hard constraints are convenient in that they simplify an analysis by restricting

the typology to a particular set of languages.

8

August 24, 2009 Generating Contenders

2.3 Putting the pieces together

Intersecting all the constraints produces a single finite-state representation of the evaluation

function. Because intersection is commutative, the order in which the pieces are put together

is irrelevant; the machine JEVALK, as presented in Fig. 9, is the same for every ranking of

its constituent constraints. For the sake of parsimony, I use the symbol ‘X’ for ‘C’ or ‘V’ in

order to collapse pairs of arcs labeled (C:ǫ/max) and (V:ǫ/max) in several places.4

ǫ:C
/dpc C:C

ǫ:./noc ǫ:C/dpc

C:C

ǫ:V/{ons,dpv}

V:V/ons

ǫ:.

ǫ:V
/dpv

V:V

X:ǫ/max

X:ǫ/max

X:ǫ
/max

X:ǫ
/max

1

2

3

4

Σ = {C, V, .} ∆ = {C, V, .}

Q = {1, 2, 3, 4} q0 = 1 F = {1}

E = {(1, X, ǫ,max, 1),

(1, C, C, ∅, 2),

(1, ǫ, C, dpc, 2),

(1, V, V, ∅, 3),

(1, ǫ, V, dpv, 3),

(4, X, ǫ,max, 4),

(4, ǫ, ., noc, 1),

(2, Xǫ,max, 2),

(2, V, V, ∅, 3),

(2, ǫ, V, dpv, 3),

(3, X, ǫ,max, 1),

(3, ǫ, ., ∅, 1),

(3, C, C, ∅, 1),

(3, ǫ, C, dpv, 1)}

Figure 9: JEVALK = JSyllK ∩R JOnsetK ∩R JNoCodaK ∩R JFaithK

In order to evaluate the set of candidates for a specific input form, the acceptor for that

form is left-intersected with JEVALK. This is illustrated for the input /VC/ Fig. 10.

ǫ:C/
dpc

ǫ:C/
dpc

ǫ:C/
dpc

V:V/ons

ǫ:./noc

ǫ:.
/noc

ǫ:.
/nocǫ:C

/dpc
ǫ:C
/dpc

ǫ:C
/dpc

ǫ:V/ons,dpv ǫ:V/ons,dpv ǫ:V/ons,dpv

ǫ:. ǫ:. ǫ:.

V:ǫ/max

C:ǫ/max

ǫ:V/
dpv

ǫ:V/
dpv

ǫ:V/
dpv

V:ǫ/max C:ǫ/max

V:V

V:ǫ/max

C:ǫ/max

C:C

C:C

V:ǫ/max C:ǫ/max

01

02

03

04

11

12

13

14

21

22

23

24

Figure 10: Two /VC/ → [CV.] candidates in Accept(VC) ∩L JEVALK

4Features or sets of symbols can also be used in machines. For a discussion of the ramifications of using
features vs. symbols in finite state rules/constraints see van Noord & Gerdemann (2000).

9

August 24, 2009 Generating Contenders

The intersection of the acceptor for /VC/ with JEVALK produces a machine that encodes

every candidate that can be generated by the structure changing operations in JEVALK. The

highlighted paths in Fig. 10 describe two ways the input-output pairing (VC, CV.) can be

generated. Because there are loops in the graph, there are infinitely many distinct paths

and each one encodes a candidate (input, output) mapping for the underlying form /VC/.

2.4 Working with infinite tableaux

UR: /VC/ Ons Noc Max DepV DepC

a. CV. *! *

b. CV. *! *

c. ∅ *!*

d. CVC. *! *

e. ☞CV.CV. * *

ǫ:C/
dpc

ǫ:C/
dpc

ǫ:C/
dpc

V:V/ons

ǫ:./noc

ǫ:.
/noc

ǫ:.
/nocǫ:C

/dpc
ǫ:C
/dpc

ǫ:C
/dpc

ǫ:V/ons,dpv ǫ:V/ons,dpv ǫ:V/ons,dpv
ǫ:. ǫ:. ǫ:.

V:ǫ/max

C:ǫ/max

ǫ:V/
dpv

ǫ:V/
dpv

ǫ:V/
dpv

V:ǫ/max C:ǫ/max

V:V

V:ǫ/max

C:ǫ/max

C:C

C:C

V:ǫ/max C:ǫ/max

01

02

03

04

11

12

13

14

21

22

23

24

ǫ:C/
dpc

ǫ:C/
dpc

ǫ:C/
dpc

V:V/ons

ǫ:./noc

ǫ:.
/noc

ǫ:.
/nocǫ:C

/dpc
ǫ:C
/dpc

ǫ:C
/dpc

ǫ:V/ons,dpv ǫ:V/ons,dpv ǫ:V/ons,dpv
ǫ:. ǫ:. ǫ:.

V:ǫ/max

C:ǫ/max

ǫ:V/
dpv

ǫ:V/
dpv

ǫ:V/
dpv

V:ǫ/max C:ǫ/max

V:V

V:ǫ/max

C:ǫ/max

C:C

C:C

V:ǫ/max C:ǫ/max

01

02

03

04

11

12

13

14

21

22

23

24

ǫ:C/
dpc

ǫ:C/
dpc

ǫ:C/
dpc

V:V/ons

ǫ:./noc

ǫ:.
/noc

ǫ:.
/nocǫ:C

/dpc
ǫ:C
/dpc

ǫ:C
/dpc

ǫ:V/ons,dpv ǫ:V/ons,dpv ǫ:V/ons,dpv
ǫ:. ǫ:. ǫ:.

V:ǫ/max

C:ǫ/max

ǫ:V/
dpv

ǫ:V/
dpv

ǫ:V/
dpv

V:ǫ/max C:ǫ/max

V:V

V:ǫ/max

C:ǫ/max

C:C

C:C

V:ǫ/max C:ǫ/max

01

02

03

04

11

12

13

14

21

22

23

24

Figure 11: Five contenders for /VC/

In Fig. 11, I present a (relatively)

traditional tableau that includes the

two candidates from Fig. 10 along

with finite state representations of

three others. Because each of the

paths in Accept(VC) ∩L JEVALK

corresponds to a candidate for the

input /VC/, one could think of this

machine as an infinite tableau with

each path representing a row.

It is fairly easy to verify that

candidate e is optimal among the

five candidates for the ranking given

in Fig. 11, however proving that e is

superior to all possible alternatives

is another matter entirely. Such a

proof requires the representation of

the entire candidate space provided

by JEVALK(VC). In §3.7 I will show

how this can be done.

In §3.4 I will show that work-

ing with the ‘infinite’ tableaux en-

coded by weighted automata makes

it possible to generate all of

the non-harmonically-bounded can-

didates in a single derivation.

The critical insight behind all

computational approaches to OT is

that optimization can be done over

a finite representation of the infinite space of possible candidates and does not require

searching this infinite space by generating and testing candidates one at a time.5

5E.g., Ellison (1994b), Tesar (1995), Eisner (1997a,b), Gerdemann & van Noord (2000), Riggle (2004).

10

August 24, 2009 Generating Contenders

3 Generating Contenders

In §2, I showed how sets of rational constraints could be combined with each other and

with the representation of an underlying form to produce a single finite state representation

of the space of possible candidates for that form. In this section, I will show how this

representation can be used to efficiently generate optimal forms.

3.1 Violations multisets and the violation semiring

In §2 the merge operation ⊎ was used to combine violations across machines. This implies

that violation profiles are represented as multisets. Formally, a multiset X is a pair (C,m)

where C, the basis, is a standard Cantorian set and mX(c) is a multiplicity function that

maps each c ∈ C to the number of times it occurs in X. The merge operation is basically

addition: A⊎B = C where mC(x) = mA(x) + mB(x) and the basis of C is the union of the

basis sets of A and B. When writing out multisets, I will denote multiplicities greater than

one with numeric prefixes and, in cases where confusion with ordinary sets might arise, I

will surround the multisets with ‘bag-braces’, e.g. Hons,maxI ⊎ HmaxI = Hons, 2maxI.

For any given constraint set Con, the range of possible violation profiles is precisely the

set of all multisets that share Con as their basis, which I will denote as VCon. Violation

profiles could be represented in a variety of ways—a list would suffice—but multisets are an

elegant choice because their structure does not imply any ordering among the constraints and

because merger ⊎ corresponds to the natural sense of addition for violation profiles. Likewise,

multiset-difference corresponds to subtraction and the subset relation D corresponds to

(simple) harmonic bounding. Put a bit more formally, ⊎ is a closed binary operator that is

both commutative and associative. This means that the triple (VCon,⊎, ∅) is a commutative

monoid that provides a basic system of arithmetic for violation profiles.

Given a constraint ranking RCon, the relation of harmonic inequality (denoted ≻R),

provides a total ordering of the violation profiles in VCon.

(8) Harmonic Inequality

For A, B ∈ VCon, A is more harmonic than B according to RCon, written A≻RB, iff

mA(c) < mB(c) for the highest ranked c ∈ Con where mA(c) 6= mB(c).

Optimization in OT can be seen as minimization according to harmonic inequality. For two

violation profiles A and B, the function minR(A,B) returns A if A≻RB and B otherwise.

The ‘empty’ violation profile ∅ is the most harmonic element of VCon regardless of the

ranking of the constraints. Conversely, an infinite violation profile ‘∞’ in which m(c) =∞

for all c ∈ Con can be created to serve as the antithesis of ∅. If the definition of VCon is

extended slightly to include the infinite violation profile, then ∞ will be the least harmonic

element of VCon regardless of the ranking of the constraints. I will assume henceforth

that VCon contains the infinite violation profile, this provides another commutative monoid

(VCon, minR, ∞) over violation profiles. Note that there are as many minR operators as

there are rankings RCon but that they all share these same properties.

11

August 24, 2009 Generating Contenders

Together, these monoids make up a semiring (VCon, minR, ⊎, ∞, ∅) over violation pro-

files. Semirings are abstract algebraic structures represented by five-tuples (X,⊕,⊗, 0̄, 1̄)

that allow a unified characterization of many seemingly different systems. For the set X,

semirings define two operations ⊕ and ⊗ that act intuitively like the + and × operations on

N. Like +, ⊕ must be associative and commutative and, like ×, ⊗ must be associative and

must distribute over the ⊕ operator. The ⊗ operator is not required to be commutative,

but when it is the semiring is commutative. Finally, X must contain two elements 0̄ and

1̄ that act as identity elements for the ⊕ and ⊗ operators respectively and 0̄ must be an

‘annihilator’ for the ⊗ operation in the sense that 0̄⊗x = 0̄ for any x ∈ X. Two of the most

familiar semirings are the ‘counting’ semiring C and the boolean semiring B given in (9).

(9) The C and B semirings: C = (N,+,×, 0, 1) B = ({0, 1},∨,∧, 0, 1)

1. ⊕ associativity (a + b) + c = a + (b + c) (a ∨ b) ∨ c = a ∨ (b ∨ c)

⊕ commutativity (a + b) = (b + a) (a ∨ b) = (b ∨ a)

0̄ identity for ⊕ a + 0 = 0 + a = a a ∨ 0 = 0 ∨ a = a

2. ⊗ associativity (a× b)× c = a× (b× c) (a ∧ b) ∧ c = a ∧ (b ∧ c)

⊗ commutativity (a× b) = (b× a) (a ∧ b) = (b ∧ a)

1̄ identity for ⊗ a× 1 = 1× a = a a ∧ 1 = 1 ∧ a = a

3. ⊗ distributivity (a+b)×c = (a×c)+(b×c) (a∨b)∧c = (a∧c)∨ (b∧c)

c×(a+b) = (c×a)+(c×b) c∧ (a∨b) = (c∧a)∨ (c∧b)

4. 0̄ annihilates for ⊗ a× 0 = 0× a = 0 a ∧ 0 = 0 ∧ a = 0

For a thorough introduction to semirings, their relation to formal languages, their use in

parsing, and their use in optimization problems see Fink (1992), Kuich (1997), Goodman

(1998), Mohri (2002), Droste & Kuich (2007), and citations therein.

For the violation semiring, the minR operator takes the role of ⊕ and the ⊎ operator

takes the role of ⊗. In (10), I present the violation semiring V alongside the tropical semiring

T , which is the semiring that is most commonly used for optimization problems.

(10) T = ({R+ ∪ ∞},min,+,∞, 0) V = (VCon, minR, ⊎, ∞, ∅)

1.

2.

3.

4.

(amin b)min c = amin(bmin c) (a minR b) minR c = a minR (b minR c)

(amin b) = (bmin a) (a minR b) = (b minR a)

amin∞ =∞min a = a a minR ∞ =∞ minR a = a

(a + b) + c = a + (b + c) (a ⊎ b) ⊎ c = a ⊎ (b ⊎ c)

(a + b) = (b + a) (a ⊎ b) = (b ⊎ a)

a + 0 = 0 + a = a a ⊎∅ = ∅ ⊎ a = a

(amin b) + c = (a + c)min(b + c) (a minR b) ⊎ c = (a ⊎ c) minR (b ⊎ c)

c + (amin b) = (c + a)min(c + b) c ⊎ (a minR b) = (c ⊎ a) minR (c ⊎ b)

a +∞ =∞+ a =∞ a ⊎∞ =∞⊎ a =∞

12

August 24, 2009 Generating Contenders

The violation semiring is actually quite similar to the tropical semiring. In both cases the

⊕ operator is minimization and the ⊗ operator is addition.6

For a semiring-weighted finite state machine JMK with arcs E, the weight of each path

π = 〈e1...ek〉 ∈ E∗ is (w[e1]⊗ ...⊗ w[ek]). For V, this is the merge of the weights in π.

(11) w[π] =
⊗

e∈π

w[e] E.g. w[π] =
⊎

e∈π

w[e]

Each path is a candidate, and with a ranking RCon the notion of an optimal path is defined.

(12) JMKR(x) =
⊕

π∈JMK(x)

w[π] E.g. JMKR(x) = minR w[π]
π ∈ JMK(x)

As illustrated in Fig. 10, the presence of epenthetic cycles (i.e., loops) can make the set

of candidates (i.e., paths) in JMK(x) infinite, so it is essential that ‘infinite sums’ be well

defined (so called in reference to ⊕). In the case of the V semiring, what this means is that

(12) must return well defined optima even when the set of candidates is infinite.

The minR operation defines a partial ordering over VCon called the natural order and

this order corresponds precisely to harmonic inequality (i.e., A �R B ⇔ AminR B = A).

Because the 1̄ element acts as an annihilator for minR (i.e., AminR ∅ = ∅), the V semiring

is bounded in the sense that the harmony of every violation profile X is between ∅ and∞:

∅ �R X �R ∞. This is sufficient to guarantee that optimality is well defined for infinite

candidate sets because, for any loop π, w[π]0 �R w[π]n for any positive integer n. In other

words, going around the loop zero times, which costs 1̄ = ∅, is always better (or no worse

than), going around the loop n times, which costs (((w[π])1 ⊎ w[π])2 ⊎ ...w[π])n.

Bounded semirings are idempotent in the sense that AminR A = A for all A ∈ VCon.

This ensures that the semiring is monotonic (i.e., if A �R B then (AminR C) �R(B minR C)

and (A⊎C) �R(B⊎C)). The monotonicity of V makes it possible to use dynamic program-

ming techniques whereby the optimization problem is recursively factored into sub-problems

whose optimal solutions are combined to produce an optimal solution for the whole problem.

3.2 Optimization via dynamic programing

Given a graph-representation of the entire candidate space like the one in Fig. 10, the task

of computing the optimal candidate under ranking R is simply a matter of finding the most

harmonic path from the start state to a final state under R. This is a relatively standard

instance of a shortest path problem, where shortest is taken to mean most harmonic. For

the purpose of illustration, I will find the most harmonic paths in JEvalK(VC) under the

ranking R = Onset≫NoCoda≫Max≫DepV≫DepC.

6 T is also called the (min, +) semiring. The ‘tropical’ moniker is an homage to Imre Simon’s pioneering
research on T (cf. Simon (1988)). In weighted-constraint-based models like Harmonic Grammar (Legendre
et al. 1990, Goldsmith 1993, Smolensky & Legendre 2006, Pater et al. 2007a,b), grammars assigns a weight
w(c) ∈ R+ to each c ∈ Con. This provides a morphism from V to T (i.e., summing m(c) × w(c), c ∈ Con

maps VCon into R+). The analysis in this section is applicable to either system.

13

August 24, 2009 Generating Contenders

A key strategy of dynamic programing is the identification of ‘overlapping sub-problems’

that can be factored out of larger problems (or classes of problems). The idea is to solve a

sub-problem just one time and save the results—a process called memoization—for plugging

back into larger problems. Following this strategy, I will start by solving a sub-problem that

recurs several times in the search for optimal paths in JEVALK(VC).

Suppose, one wanted to find the optimal path between each pair of states in JEVALK with

the caveat that this path should accept zero segments of the underlying form. Fig. 12 gives

a graph of the subset of the arcs in JEVALK that accept the empty string in the underlying

form, along with an adjacency matrix M for the graph in which entry Mi,j (i.e., the value

in the i-th row and j-th column) gives the weight on the arc from state i to state j.

ǫ:C
/dpc

ǫ:./noc ǫ:C/dpc

ǫ:V/ons,dpv

ǫ:.

ǫ:V
/dpv

1

2

3

4













































1

1

2

2

3

3

4

4

∅ dpc
ons,

∞
dpv

∞ ∅ dpv ∞

∅ ∞ ∅ dpc

noc ∞ ∞ ∅

Figure 12: JEVALK for the input /ǫ/ and the adjacency matrix for ǫ

The entries along the diagonal of M are ∅ because the zero-length path between each state

and itself accepts the empty string and costs nothing. Pairs of distinct states that are not

connected by a single arc are given infinite weight.

The matrix in Fig. 12 gives weights for paths that contain at most one arc. Finding

optimal paths of arbitrary length between pairs of states is often called the ‘all-paris shortest

paths’ problem. A standard dynamic programming approach to this problem is the Floyd-

Warshall algorithm (see Cormen et al. 1990:ch25). For weighted a graph with states Q that

are labeled (1, ..., |Q|), this approach starts with a |Q|×|Q| adjacency matrix M as in Fig. 12

and then iteratively updates the matrix with the rule in (13).

(13) The update rule

For each y ∈ Q, for each (x, z) ∈ Q×Q: set Mx,z = Mx,z minR (Mx,y ⊎My,z).

For each state y in the graph, the rule asks for each pair of states (x, z) whether it would

it be cheaper to get from x to z via the path x→ y → z. If the path through y is cheaper

then the value of Mx,z is updated accordingly.

14

August 24, 2009 Generating Contenders

λ=













































∅ dpc dpv, dpv,
dpc 2dpc

dpv ∅ dpv dpv,
dpc

∅ dpc ∅ dpc

noc noc
noc,

∅dpv,
dpc

Figure 13: The λ matrix

Updating the matrix for a graph with |Q| states

using the rule in (13) requires |Q|3 additions with the

⊎ operator and |Q|3 comparisons of violation profiles

with the minR operator. The resulting matrix, which

I will refer to as λ, is presented in Fig. 13. The λ

matrix gives the cost of the optimal path between

each pair of states made up entirely of arcs whose

input symbols are /ǫ/ (or made up of no arcs at all

in the case of the entries along the diagonal).

Fig. 14 gives adjacency matrices for the arcs in JEVALK that accept /V/ and /C/. In these

cases, the diagonal values are max because each arc must accept an underlying segment.

C:C

C:C

V:V/ons

V:V

X:ǫ/max

X:ǫ/max

X:ǫ
/max

X:ǫ
/max

1

2

3

4

v−→=













































max ∞ ons ∞

∞ max ∅ ∞

∞ ∞ max ∞

∞ ∞ ∞ max

c−→=













































max ∅ ∞ ∞

∞ max ∞ ∞

∞ ∞ max ∅

∞ ∞ ∞ max

Figure 14: Adjacency matrices for /V/ and /C/ in JEVALK

Using these matrices, the search for optimal paths in JEvalK(VC) can be broken into a

sequence of five sub-problems 〈λ × v−→ × λ × c−→ × λ〉 whose solutions can be combined via

standard matrix multiplication (using minR and ⊎ as if they were + and × respectively).

The product of an (m× n) matrix A and an (n × p) matrix B is an (m × p) matrix C

(the number of rows in A must be equal to the number of columns in B). In matrix C, the

value of entry Ci,j is the inner product of the i-th row in A and the j-th column in B. This

is defined more formally in (14).

(14)












A1,1 A1,2 ... A1,n

A2,1 A1,2 ... A1,n

...
...

. . .
...

Am,1 Am,2 ... Am,n













×













B1,1 B1,2 ... B1,p

B2,1 B1,2 ... B1,p

...
...

. . .
...

Bn,1 Bn,2 ... Bn,p













=













C1,1 C1,2 ... C1,p

C2,1 C1,2 ... C1,p

...
...

. . .
...

Cm,1 Cm,2 ... Cm,p













where Ci,j = (Ai,1 ⊎B1,j) minR (Ai,2 ⊎B2,j) minR ... minR (Ai,n ⊎Bn,j)

The matrices that result from taking the products (λ × v−→ × λ) = V and (λ × c−→ × λ) = C

can serve as the building blocks of optimization. These matrices give the cost of the most

harmonic path between each pair of states in JEVALK for exactly one underlying segment.

15

August 24, 2009 Generating Contenders

The product V C (denoted by juxtaposition of V and C) nicely illustrates the way matrix

multiplication computes optimality.

V =













































dpc 2dpc dpc 2dpc

∅ dpc ∅ dpc

dpc 2dpc dpc 2dpc

noc, noc,
dpc 2dpc

noc,
max

dpc

C=













































dpv ∅ dpv
dpv,

dpc

2dpv dpv 2dpv dpv

dpv ∅ dpv ∅

noc,
noc

dpv
noc,

max
dpv

V C=













































dpv,
dpc dpc

dpv,
dpc dpc

dpv ∅ dpv ∅

dpv,
dpc dpc dpv,

dpc dpc

noc,
dpv,

dpc

noc,
dpc

noc,
dpv,

dpc
2max

Figure 15: The V matrix, the C matrix, and their product the V C matrix

Entry V Ci,j is the inner product of the i-th row of V and the j-th column of C. The former

encodes optimal paths i → x (i.e., paths from state i to state x) while the latter encodes

optimal paths x → j. The optimal path i → j will go through whichever x gives the most

harmonic value for i→ x ⊎ x→ j. This is simply the inner product. For example:

V C1,2 = (HdpcI ⊎∅) min
R

(H2dpcI ⊎ HdpvI) min
R

(HdpcI ⊎∅) min
R

(H2dpcI ⊎ HnocI)(15)

= HdpcI min
R

H2dpc, dpvI min
R

HdpcI min
R

H2dpc, nocI

= HdpcI

Every underlying form in {C,V}∗ can be represented by a sequence of V and C matrices

and the product of this sequence will be a matrix of optimal costs for that underlying form.

The complexity of matrix multiplication is dominated by the ⊎ operation. When an

(m×n) matrix is multiplied by an (n×p) matrix there are m×n×p applications of the merge

operation. The complexity is generally said to be cubic because square matrices require n3

merges. In the case of optimization, however, square matrices are only necessary if one wants

to compute optimal paths for every pair of states. For optimal paths originating at a single

state (e.g. the start state) a single row of the matrix is adequate. I will call the row of the

λ matrix corresponding to the start state ‘λS ’; the product of λS =
[

∅ dpc dpv,
dpc

dpv,
2dpc

]

and matrix V is given in Fig. 16.

[

∅ dpc dpv,
dpc

dpv,
2dpc

]

×









































=
[

dpc 2dpc 2dpc dpc
]

dpc 2dpc dpc 2dpc

∅ dpc ∅ dpc

dpc 2dpc dpc 2dpc

noc, noc,
dpc 2dpc

noc,
max

dpc

Figure 16: λSV = optimal paths that originate at state 1 and accept /V/

16

August 24, 2009 Generating Contenders

Multiplying a (1 × n) matrix by an (n× n) matrix produces a (1 × n) matrix and requires

n2 applications of the ⊎ operator. The inclusion of the matrix λS as the base case in the

sequence of multiplications will restrict the computation to paths that originate at the start

state and thereby reduce the factor introduced by |Q| from cubic to quadratic.

If matrices like V and C are computed ahead of time for each underlying segment and

memoized, then the computation λS ×M1 × ... ×Mn for an underlying form containing n

segments involves n multiplications that each require |Q|2 merges. This puts the complexity

of optimization at n|Q|2, which is linear in the length of the input with a constant factor

that is quadratic in the size of JEVALK. If larger chunks are memoized then the amount of

computation will grow as a fraction of n. For instance, if the V C matrix in Fig. 15 had

already been memoized then computing V CV C would require just one multiplication.

Even if the matrices for individual segments are not computed in advance, doing some

memoization on the fly will eliminate repeated computations. For an underlying form with

n segments, after an initial investment of |Q|3 calculations to produce λ, the product of the

sequence 〈λS× x1−→ ×λ× x2−→ ×λ × ...× xn−→ ×λ〉 can be computed in 2n|Q|2 steps (where xi−→
is the adjacency matrix for the i-th segment). This puts the complexity at 2n|Q|2 + |Q|3,

which is still linear in the length of the underlying form, albeit with larger constants.

3.3 Collecting the candidates

Thus far, the objects of optimization have been matrices of violation profiles for paths

between pairs of states but have not contained any details about the surface forms that

correspond to those paths. In order to generate actual candidates, the information in the

matrices can be embellished to include fragments of surface forms along with the costs.

One way to do this is to represent candidates as (v, S) pairs where v ∈ VCon is a violation

profile and S ⊂ ∆∗ is a set of fragments of surface forms. Henceforth, the term candidate

will refer to pairs like these.7 The ⊗ operator for candidates will be a pair of operators (⊎, ·)

merge and concatenate, the second of which concatenates the strings in the sets of surface

form fragments (i.e., A · B = {ab : a ∈ A and b ∈ B}). Defining the behavior of minR for

candidates can be done as in (16).

(16) (v1,K1) minR (v2,K2) =











(v1,K1 ∪K2) if v1 = v2

(v1,K1) if v1 ≻R v2

(v2,K2) if v2 ≻R v1

If two candidates have identical violation profiles (i.e., there is a tie), they are unified into

a single candidate with the union of their surface forms. Otherwise, the minR operator

returns whichever candidate has a more harmonic violation profile under ranking R.

The reason that the surface forms can be integrated seamlessly into the computation

described in §3.2 is that the set of all sets of surface forms (i.e., the powerset, ℘∆∗) provides

7I will use the term candidate to describe the (v, S) pairs associated with single arcs, sequences of arcs,
and complete paths and the term complete candidate when it is necessary to distinguish the latter.

17

August 24, 2009 Generating Contenders

another idempotent semiring (℘∆∗,∪, ·, ∅, {ǫ}), the semiring of formal languages over ∆.

Note that ∅ will be used for the empty string-set and ∅ for the empty violation-set.

(17) a. The violation semiring: (VCon,minR,⊎,∞, ∅)

b. The language semiring: (℘∆∗,∪, ·, ∅, {ǫ})

c. The candidate semiring: (VCon × ℘∆∗,minR, (⊎, ·), (∞, ∅), (∅, {ǫ}))

(17c) is similar to Goodman’s (1998) Viterbi-derivation semiring for computing the most

likely derivations in probabilistic context-free grammars. In Goodman’s case the violation

semiring is replaced by the Viterbi semiring ([0, 1],max,×, 0, 1) over probabilities. While

the Viterbi-derivation semiring collects the set of parses that are tied as the most probable,

the candidate semiring collects the set of surface forms that are tied as most harmonic.

For a concrete illustration of how the new operators work, consider the computation

of the matrix V C as the product of the V and C matrices. Figure 17 gives the V and C

matrices for candidate fragments consisting of (violations, surface forms) pairs.

V =

















HdpcI, {CV.} H2dpcI, {CV.C} HdpcI, {CV} H2dpcI, {CVC}

∅, {V.} HdpcI, {V.C} ∅, {V} HdpcI, {VC}

HdpcI, {.CV.} H2dpcI, {.CV.C} HdpcI, {.CV} H2dpcI, {.CVC}

Hnoc, dpcI, {.CV.} Hnoc, 2dpcI, {.CV.C} Hnoc, dpcI, {.CV} HmaxI, {ǫ}

















C =

















HdpvI, {CV.} ∅, {C} HdpvI, {CV} Hdpv, dpcI, {CVC}

H2dpvI, {V.CV.} HdpvI, {V.C} H2dpvI, {V.CV} HdpvI, {VC}

HdpvI, {.CV.} ∅, {.C} HdpvI, {.CV} ∅, {C}

Hnoc, dpvI, {.CV.} HnocI, {.C} Hnoc, dpvI, {.CV} HmaxI, {ǫ}

















Figure 17: The V and C matrices for candidate fragments

The value for V C1,1 is the inner product of the first row in V and the first column in C.

HdpcI, {CV.} ⊎ HdpvI, {CV.} = Hdpv, dpcI, {CV.CV.}(18)

H2dpcI, {CV.C} ⊎ H2dpvI, {V.CV.} = H2dpv, 2dpcI, {CV.CV.CV}

HdpcI, {CV} ⊎ HdpvI, {.CV.} = Hdpv, dpcI, {CV.CV.}

H2dpcI, {CVC} ⊎ Hnoc, dpvI, {.CV.} = H2dpc, noc, dpvI, {CVC.CV.}

Hdpv, dpcI, {CV.CV.} ← optimal candidate

Because state 1 is the start state and the only final state in JEVALK, the value at V C1,1

represents the optimal candidate in JEVALK(VC). If there is more than one final state, the

optimal candidate is selected by minR from the union of the candidates at the final states.

18

August 24, 2009 Generating Contenders

With candidates represented as (violation-profile, surface-form-set) pairs there can be no

ties among candidates because each ranking provides a total ordering of violation profiles.

Yet, it is reasonable to ask how big the surface-form-sets can be. If JEVALK contains a free

epenthetic loop that incurs no violations, accepts the empty string, and outputs something

other than the empty string (i.e., π such that s[π] = t[π], w[π] = ∅, i[π] = ǫ, and o[π] 6= ǫ),

then the set of surface forms that share any given violation profile may be infinite.8

If (∅, {epsilon}) is the only candidate with ∅ violations then it follows that the candidate

semiring is bounded and infinite surface-form-sets cannot occur. For instance, candidates

with epenthetic loops will be harmonically bounded if a constraint like *Struc is present.

Alternatively, if a specific machine like JEVALK in Fig. 9 contains no free epenthetic loops

(i.e., due to the presence of Dep), then the sets of surface forms in candidates will always

be finite even though the semiring admits the possibility of infinite surface-form-sets.

3.4 Generating Contenders

In this section, I present a generalization of the optimization strategy described in §3.2 that

makes it possible to do optimization for multiple rankings simultaneously. If optimization is

done for all rankings then the resulting forms are the entire set of contenders. Coupled with

the assumptions in 1.2 about the active constraints, the use of complete sets of contenders in

OT analyses guarantees that the analyses are stable in the sense that (i) only the constraints

in Con determine the relative harmony of the candidates and (ii) none of the omitted can-

didates are relevant competitors. An additional practical benefit of the approach advocated

here is that the algorithmic generation and evaluation of candidates prevents simple errors

from corrupting OT analyses.9

3.5 Detecting (relative) harmonic bounding

As defined in (4), candidates that cannot be not optimal under any ranking of the active

constraints are relatively bounded. Consider the candidates in (19):

(19)

a.

b.
c.

d.
e.

b

/VC/ Onset NoCoda Dep Max

VC. * *

CV. * *

CV.CV. **

CV.CVC. * ***
ǫ **

8Infinite summations and infinite sets of surface forms are well defined in the semiring of formal languages
over ∆. These are concisely represented by regular expressions where the notation * corresponds to the loops.

9This latter point is the motivation behind software packages like OTSoft (Hayes et al. 2003) and
OT-Help (Becker et al. 2007), which are designed to assist the researcher with reasoning about rankings.
Algorithmically generating candidates and assigning violations takes the automation one step further to help
prevent errors from creeping into analyses.

19

August 24, 2009 Generating Contenders

It is fairly easy to see that candidate d is superfluous in (19); it cannot win under any ranking

of these four constraints because it has a strict superset of candidate c’s violations.10 The

fact that candidate b is also bounded is far less obvious; it is doomed to perpetual sub-

optimality by the combined competition from candidates c and e in what Samek-Lodovici

and Prince (1999) call collective harmonic bounding. Fortunately, even subtle bounding

can be readily detected via Recursive Constraint Demotion (RCD; Tesar 1995, Tesar and

Smolensky 1996). This works roughly as follows: for each candidate k, the constraints that

favor k are identified (i.e., those for which no competitor k′ has fewer violations than k)

and then all competitors that do worse than k on those constraints are thrown out. This

process is iterated until no competitors remain, in which case k is a contender, or until k is

not favored by any constraint, in which case k is harmonically bounded.

Prince (2002) recasts RCD as a strategy for checking the internal consistency of sets

of Elementary Ranking Conditions (ERCs). ERCs are logical statements about how the

constraints must be ranked for one candidate to be more harmonic than another. In (20) for

example, Ons and Noc favor candidate a while Dep and Max favor b. Thus, the conditions

under which b is optimal are described by the ERC “Dep or Max outranks Ons and Noc.”

(20)

a.

b.

b/VC/ Ons Noc Dep Max

VC. * *

CV. * *

Candidate fragments are denoted by (v, S) pairs where v is a violation profile and S is a set

of strings. The function erc(a, b) yields a pair (W,L) where W are the constraints for which

candidate a has fewer violations and L are the constraints for which b has fewer violations.

(21) erc((v1, S1), (v2, S2)) = ({c ∈ Con : mv1
(c) < mv2

(c)}, {c ∈ Con : mv1
(c) > mv2

(c)})

The meaning of an ERC is that at least one of the constraints in the W set must outrank all

of the constraints in the L set. Any ranking that meets this condition satisfies the ERC.

(22)

a.

b.
c.

d.

b

/VC/ Ons Noc Dep Max

VC. * *

CV. * *

CV.CV. **
ǫ **

erc(b, a) = ({ons, noc}, {dep, max})

erc(b, b) = ({}, {})

erc(b, c) = ({dep}, {max})

erc(b, d) = ({max}, {dep})

Given a set of candidates K, like the ones in (22), the function ercs(k,K) yields the set of

ERCs describing the rankings under which candidate k more harmonic than each k′ in K.

(23) ercs(k,K) = {erc(k, k′) : k′ ∈ K}

10The intuitively appropriate term ‘superset’ lines up neatly here with its formal definition for multisets
(i.e., A ⊇ B iff each element in B has equal or greater multiplicity in A: ∀x ∈ B, mB(x) ≤ mA(x)).

20

August 24, 2009 Generating Contenders

For an ERC set E, the union of the left projections of the ERCs (the W sets) will be denoted

w(E) and the union of the right projections (the L sets) will be denoted l(E).

E is consistent just in case there is at least one ranking that satisfies all ERCs in E.

Consistency can be checked by recursively removing any e ∈ E for which w({e}) * L(E)

(i.e., any ERC that can be satisfied by ranking a constraint in w({e}) above those in l(E)).

This process is repeated until l(E) = ∅, which means that all the ERCs can be satisfied, or

no removal is possible because w(E) ⊆ l(E), which means that no ranking can satisfy E.

(24) consistent(E) =











true if l(E) = ∅, else

false if w(E) ⊆ l(E), else

consistent({e ∈ E : w({e}) ⊃ l(E)})

When an ERC set is generated for one candidate in a tableau, the process of checking

consistency via the function in (24) is very similar to recursive constraint demotion. For

example, if E = ercs(b,K) for the candidates in (22), the computation goes as in (25).

1. E = {({ons, noc}, {dep,max}), ({}, {}), ({dep}, {max}), ({max}, {dep})}(25)

2. l(E) = {dep,max}

3. Is l(E) = ∅? No.

4. Is w(E) ⊆ l(E)? No, because {ons, noc} from the first ERC are not in l(E).

5. E′ = {e ∈ E : w({e}) ⊃ l(E)} = {({}, {}), ({dep}, {max}), ({max}, {dep})}

6. l(E′) = {dep,max}

7. Is l(E′) = ∅? No.

8. Is w(E′) ⊆ l(E′)? Yes, thus E is not consistent.

After removing ({ons, noc}, {dep,max}) at step 5, what’s left is the empty ERC ({},{})

and a pair of ERCs that describe a circular ranking in which Dep outranks Max and Max

outranks Dep. This circularity is exposed at step 8 by the fact that no ERC in E′ has a

constraint in its W set that is not also in the L set of another ERC.

An especially useful property of this set-up is that it is possible to add ranking conditions

to the consistency check. Given a set of candidates K, if we want to know which candidates

are both unbounded and consistent with a particular partial ranking R, then we need only

add ERCs describing R to the consistency check as in (26).

(26) contenders(K,R) = {k ∈ K : consistent(ercs(k,K) ∪R)}

Henceforth I assume thatR is a set of ERCs. IfR describes a total ranking of the constraints

then contenders(K,R) will return the candidate in K that is optimal under that ranking,

if R is empty then contenders(K,R) will return the candidates that are not relatively

bounded, and in any other case contenders(K,R) will return the unbounded candidates

that meet the conditions in R. This approach subsumes the optimization in §3.2 as a special

21

August 24, 2009 Generating Contenders

case and makes it possible to generate tableaux that represent the complete micro-typology

that follows from any ranking conditions that can be specified with ERCs.

Finding contenders in candidate set K requires |K| consistency checks of |K| − 1 ERCs

(setting aside the ERCs in R). Each consistency check has at most |Con|−1 recursive steps,

that involve computing l(E), w(E), and {e ∈ E : w({e}) ⊃ l(E)} which each require at

most |K| × |Con| operations.11 Thus the overall complexity is on the order of |K|2|Con|2.

Using the contenders function might seem like overkill in the case where R is a total

ranking because, in this case, the optimal candidate can be found in |K||Con| steps by

simply listing the candidates 〈k1...kn〉 and then keeping the best in each comparison ki−1

vs. ki for i = 2 ... n. However, when R is a total ranking the size of |K| is always 2 when

generating optimal candidates, so the difference is negligible in practice.

Finding contenders among a finite set of candidates is always possible. However, the

candidate set for any underling form is generally taken to be infinite. This is where the

dynamic programming approach is vital. By breaking OT optimization into a sequence of

sub-problems we guarantee that the set of candidate fragments at each step is finite (and as

small as possible because bounded candidates can be removed early and often).

3.6 The contender semiring

In this section I propose a generalization of the candidate semiring that makes it possible to

generate sets of contenders in exactly the same way that optimal candidates were generated

in §3.3. Recall that candidates are (v, S) pairs where v is drawn from VCon (i.e., all violation

profiles including ∞) and S is drawn from ℘∆∗ (i.e., the set of all sets of surface forms).

(27) a. The set of all sets of surface forms is S = ℘∆∗

b. A candidate set is a function from VCon to S

c. The set of candidate sets is K = SVCon

d. The set of contender sets is KR = {K ∈ K : contenders(K,R) = K}

In (27b), I assume that candidate sets are functions from violation profiles to surface forms.

All that is meant by this is that there are no ties; surface forms that correspond to the same

violation profile are grouped together as a single candidate. Thus, the set of candidate sets

K is the set of all functions from violation profiles to surface-form-sets SVCon . The minR

operator can be generalized to cover sets of candidates with the definition in (28).

(28) A ⊔R B = contenders(A ⊔B,R)

The notation A⊔B indicates that the candidate sets are unified ; this is just union with the

caveat that any (v1, SA) ∈ A and (v2, SB) ∈ B where v1 = v2 are collapsed into a single

11E.g. l(E) is the conjunction of |E| boolean vectors of length |Con| describing the constraints in the L

sets and E′ is obtained by checking at most |Con| constraints in each ERC to see if they occur in l(E).

22

August 24, 2009 Generating Contenders

candidate (v1, SA ∪ SB).12 This ensures that the candidate set is a function from violation

profiles to surface-form-sets and avoids duplicate computations in the contenders function.

If R is expressed with ERCs, there are as many ⊔R operators as there are ERC-sets over

VCon, but in every case ⊔R is a closed binary operator that takes two sets of candidates from

KR and returns a set of candidates from KR. Because union is commutative, so is ⊔R and

because A ⊔R B ⊔R C = contenders(A ⊔B ⊔ C,R) the ⊔R operation is also associative.13

Candidates are constructed by merging violations and concatenating surface forms as in

§3.3. Because we are now working with sets of candidates, the operation A×R B will create

a new candidate from every pairing of a candidate from A with a candidate from B, and

then unify this set to collapse any ties, and return the subset that are contenders under R.

(29) A×R B = contenders
(
⊔

{

(v1 ⊎ v2, S1 · S2) : (v1, S1) ∈ A, (v2, S2) ∈ B
}

,R
)

×R is a closed binary operator that maps a pair of contender sets to a contender set. The

operator is associative because ⊎, ·, and × are associative, but it is not commutative.

Along with singleton sets containing the ‘annihilator’ candidate ({∞}, ∅) and the ‘empty’

candidate (∅, {ǫ}), these operators form the semiring of contenders for ERC-set R, CR.

(30) CR = (KR, ⊔R, ×R, {(∞, ∅)}, {(∅, {ǫ})}) obeys the following conditions:

1. (KR,⊔R, {(∞, ∅)}) is a commutative monoid with {(∞, ∅)} as identity,

∀ a, b, c ∈ KR, ⊔R is associative: (a ⊔R b) ⊔R c = a ⊔R (b ⊔R c)

⊔R is commutative: (a ⊔R b) = (b ⊔R a)

a ⊔R {(∞, ∅)} = {(∞, ∅)} ⊔R a = a

2. (K,×R, {(∅, {ǫ})}) is a monoid with {(∅, {ǫ})} as identity,

∀ a, b, c ∈ KR, ×R is associative: (a×R b)×R c = a×R (b×R c)

a×R {(∅, {ǫ})} = {(∅, {ǫ})} ×R a = a

3. ×R distributes over ⊔R,

∀ a, b, c ∈ KR, (a ⊔R b)×R c = (a×R c) ⊔R (b×R c),

c×R (a ⊔R b) = (c×R a) ⊔R (c×R b),

(a ⊔R b)×R c = (a×R c) ⊔R (b×R c)

4. {(∞, ∅)} is an annihilator for ×R,

∀ a ∈ KR, a×R ({∞}, {}) = ({∞}, ∅) ×R a = ({∞}, ∅).

The contenders semiring is not commutative because the order matters for the ×R operator,

but it is idempotent (i.e., x ⊔R x = x for all x ∈ KR). The idempotency follows from the

distributivity law and the fact that {(∅, {ǫ})} ⊔R {(∅, {ǫ})} = {(∅, {ǫ})}. This means that

CR is monotonic and can be used in the dynamic programming strategy given in §3.2.

12Unification of candidate sets is a particularly simple case of the kind of unification used in Feature
Unification Grammar, Lexical-Functional Grammar, and Generalized Phrase Structure Grammar, (cf. Kay
(1979), Bresnan (1982), Gazdar et al. (1985)) in which the profiles in VCon are the labels, S are the values,
all of which are both atomic and compatible via union.

13Associativity follows from the fact that the boundedness of x ∈ X is unaffected by the removal of any
y ∈ X that is harmonically bounded. For more on this, see Samek-Lodovici & Prince (2002).

23

August 24, 2009 Generating Contenders

Though the 0̄ element {(∞, ∅)} is universally worse than every candidate set in KR,

the contender semiring is not bounded because 1̄ is not universally better in the sense that

{(∅, {ǫ})} is not an annihilator for ⊔R (i.e., other candidates can also have ∅ violations). As

with the candidate semiring in §3.3, allowing infinite surface-form-sets is not problematic;

the surface-sets can be represented with regular expressions which are well behaved under

concatenation in the ×R operation and subset-of-union in the ⊔R operation. Though these

sets are formally well defined, they are hard to relate to real-world linguistic data.

If candidates are instead defined as (v ∈ VCon, S ∈ ℘∆∗) pairs where |S| ∈ N then we

have another contender semiring, C̈R ⊂ CR, in which surface-sets are finite. As in §3.3, if one

assumes that (∅, {ǫ}) is the only candidate with ∅ violations (e.g. by virtue of *Struc),

then it follows immediately that C̈R is bounded because a ⊔R {(∅, {ǫ})} = {(∅, {ǫ})} for

all a. This is sometimes called the economy principle and it has analogs in the syntactic

literature (e.g. Chomsky 1991). This idea has, however, been criticized in the domains of

syntax and phonology by Grimshaw (2001) and Gouskova (2003) with the argument that

economy should not be reified as an explicit mechanism of grammar but rather should emerge

as a consequence of other mechanisms. Gouskova also points out that *Struc makes odd

predictions when highly ranked. With respect to the latter critique, it is noteworthy that

*Struc will render C̈R bounded even if it is universally dominated by all other constraints.

Even without the economy assumption, if a particular weighted automaton M has no

free epenthetic loops (e.g. JEvalK in Fig. 9), then all candidates in JMK(x) are guaranteed

to stay within C̈R. Mohri (2002) calls weighted automata with this property regulated.

3.7 Optimization for all rankings simultaneously

Figure 18 presents the set of arcs in JEVALK whose input label is the empty string along with

the adjacency matrix ǫ−→ containing the violation profiles and surface forms for the ǫ-arcs.

ǫ:C
/dpc

ǫ:./noc ǫ:C/dpc

ǫ:V/ons,dpv

ǫ:.

ǫ:V
/dpv

1

2

3

4













































1

1

2

2

3

3

4

4

∅, {ǫ} HdpcI, {C} H ons

dpv
I, {V} ∞, ∅

∞, ∅ ∅, {ǫ} HdpvI, {V} ∞, ∅

∅, {ǫ} ∞, ∅ ∅, {ǫ} HdpcI, {C}

HnocI, {.} ∞, ∅ ∞, ∅ ∅, {ǫ}

Figure 18: JEVALK for the input /ǫ/ and the adjacency matrix for ǫ

As in §3.2, a Floyd-Warshal-style update rule can be used to find the optimal paths between

every pair of states in JEVALK. When generating contenders, the notion of ‘optimal’ is more

loosely construed to mean any path that is a contender. The update rule in (31) will generate

sets of contenders.

24

August 24, 2009 Generating Contenders

(31) The contenders update rule

For each y ∈ Q, for each (x, z) ∈ Q×Q: set Mx,z = Mx,z ⊔R (Mx,y ×R My,z).

Iteratively applying the update rule to the matrix in Fig. 18 produces a matrix that encodes

the contender candidates (under R) for getting from any state in JEVALK to any other state

in JEVALK by a sequence of insertions. This matrix, which I will call λR, is given in Fig. 19.























{

(∅, {ǫ})
} {

({dpc}, {C})
}

{

({ons, dpv}, {V })
({dpv, dpc}, {CV })

} {

({ons, dpv, dpc}, {V C})
({dpv, 2dpc}, {CV C})

}

{

({dpv}, {V.})
} {

(∅, {ǫ})
} {

({dpv}, {V })
} {

({dpv, dpc}, {V C})
}

{

(∅, {.})
} {

({dpc}, {.C})
} {

(∅, {ǫ})
} {

({dpc}, {C})
}

{

({noc}, {.})
} {

({noc, dpc}, {.C})
}

{

({ons, noc, dpv}, {.V })
({noc, dpv, dpc}, {.CV })

}

{

(∅, {ǫ})
}























Figure 19: λR, the lambda matrix with contenders for R = ∅ (i.e., all contenders)

In each of the |Q|3 applications of the contenders update rule, the contenders function is

used twice, once for ⊔R and once for ×R. Thus the cost of computing λR is dominated by

2|Q|3 applications of the contenders function.

As in §3.2, optimization is carried out via matrix multiplication. For two matrices of

contenders A∈K(m×n)
R

, and B ∈K(n×p)
R

, the product [AB]R =C ∈K(m×p)
R

, where the value

Ci,j =
(

(Ai,1×R B1,j)⊔R ...⊔R (Ai,n×R Bn,j)
)

. As before, matrix products are denoted by

juxtaposition, but in this case the annotation []R indicates the R for ⊔R, ×R, and KR.

Contenders for the underlying form /VC/ under ranking conditions R are generated by

the product
[

λ v−→λ c−→λ
]

R
. For the case R = ∅ (i.e., no ranking conditions imposed), the

value of V C1,1 is given on the left in Fig. 20. Because state 1 is the start and the only final

state, these are the contenders among all complete candidates in JEVALK(VC) and thus they

provide the candidates for the familiar OT tableau on the right in Fig. 20.

V C1,1 =


















































({max, dpv}, {CV.})
({max, dpc}, {CV.})
({ons, noc}, {VC.})

({dpv, dpc}, {CV.CV.})
({ons, dpv}, {V.CV.})

({2max}, {ǫ})

({ons,max}, {V.})
({noc, dpc}, {CVC.})



















































/VC/ Onset Noc Max DepV DepC

a. CV.
b. CV.
c. VC.
d. CV.CV.
e. V.CV.
f. ∅
g. V.

h. CVC.

* *

* *

* *

* *

* *

**

* *

* *

Figure 20: All contenders for the underlying form /VC/ under R = ∅

The complexity of contender generation is basically identical to that of optimization in §3.2

save for the fact that the computation is now dominated by calls to the contenders function.

25

August 24, 2009 Generating Contenders

For an underlying form of length n, if matrices of contenders are computed for λR and each

input segment ahead of time, then contender generation requires n|Q|2 calls to contenders,

otherwise it requires 2n|Q|2 + |Q|3. In either case, the number of calls is linear in the length

of the underlying form.

The cost of each call can be quite large because there can be |Con|! contenders. This

value is a constant for any given constraint set and it is the bound on the size of the answer

to the question: What are the non-harmonically-bounded candidates for input x? Thus,

it is reasonable to pull this factor out in evaluating the efficiency of algorithms for gener-

ating contenders. Put differently, though the number of contenders can be astronomical,

it is important to know how hard it is to generate n contenders for the cases where n is

manageable.

3.8 Recursive typology construction

The tableau in Fig. 20 is essentially a micro-typology consisting of the eight ‘languages’

realized by the underlying form /VC/ for the constraints used to build JEVALK. This general

approach can be straightforwardly extended to sets of tableaux to generate the typology that

is realized by any given lexicon of underlying forms.

I will take a typology T to be a set of pairs (E , L) where E is a set of ERCs and L is a

language comprising a set of (i, k) pairs in which i is an underlying form and k = (v, S) is

the candidate (violation-profile, surface-form-set) that is optimal for i under the conditions

described by E . The recursive strategy in (32) will construct such a typology.

(32) Recursive typology construction – Given a VCon-weighted transducer JEvalK, an

ERC-set R over Con, and Lexicon ⊂ Σ∗, a typology T can be constructed as follows:

a. The ‘base’ typology T is {(R, ∅)}.

b. For each underlying form i ∈ Lexicon:

c. for each (E , L) ∈ T , remove (E , L) from T ,

d. then for each contender k ∈ K = JEvalKR(i),

e. if Ê = ercs(k,K) ∪ E is a consistent ERC-set,

f. add language L̂ = L ∪ {(i, k)}: T = T ∪ {(Ê , L̂)}.

The complexity of this procedure depends on the number of contenders for each input and

the number of points in the typology which are both bounded at k! for k active constraints.

This highlights the utility of focusing on a specific set of active constraints. That is, fixing

the rankings for most of Con relative to a set of active constraints Con, can make it feasible

to actually generate typologies that focus on the linguistic variation predicted by specific

constraint interactions. Furthermore, building typologies from contenders is far more likely

to reveal unexpected predictions and constraint interactions than building them from hand-

crafted sets of tableaux.

26

August 24, 2009 Generating Contenders

4 Conclusions

Without some restriction on what kinds of formal objects constraints are, we cannot know

whether optimization can be done efficiently or even whether it is computable. A common

solution to this quandary among computational phonologists has been to assume that Gen

and all the constraints are rational (i.e., representable by weighted finite state automata).

The approach here is slightly more nuanced. Without making assumptions about the formal

complexity of all the constraints in the universal set Con, the complexity of optimization

can be evaluated for specific sets of active constraints that are drawn from a specified

complexity-class.

For rational constraint sets, the complexity of generating optimal candidates is a linear

function of the length of the underlying form with a multiplicative constant (|E|, |Q|) pro-

vided by the size of the finite state representation of the set of constraints. If the constraint

set in question is the entire rational subset of the universal constraint set, then, even though

it is a constant, (|E|, |Q|) is likely to be so large as to preclude any practical strategy for

optimization. On the other hand, if the active constraints are all rational and (|E|, |Q|) is

not too large then optima and contenders can be feasibly generated.

The approach presented here can be readily extended beyond finite-state constraints

to those representable with context-free expressions. To do this, a chart-parsing strategy

like the one Goodman (1998) uses to generate the n-most likely parses in a probabilistic

context free grammar can be straightforwardly adapted to the OT case. All that is needed

is to replace the function that selects the n-most-likely parse-fragments at each step with a

function that selects the parse-fragments that are contenders (and, of course, the probability

semiring is replaced with the violation semiring).

Using contenders can ensure that OT analyses are valid by guaranteeing that the con-

clusions follow from the premises, the premises in this case being the assumptions about

the underlying forms and the active constraints. However, this does not guarantee that the

analyses are sound, because that will depend ultimately on factors like having made the

right assumptions about the underlying forms and active constraints.

References

Barton, Jr., G. Edward, Robert C. Berwick, & Eric Sven Ristad (1987) Computational
Complexity and Natural Language. Cambridge, MA: MIT Press.

Becker, Michael, Joe Pater, & Christopher Potts (2007) OT-Help 1.2 software package,
University of Massachusetts, Amherst.

Bresnan, Joan (1982) Control and Complementation. Linguistic Inquiry 13: 343–434.

Chomsky, Noam (1991) Some notes on economy of derivation and representation, chap. 14.
Cambridge, Mass.: MIT Press, 417–454.

Cormen, Leiserson, & Rivest (1990) Introduction to Algorithms. Cambridge Mass.: MIT
Press.

27

August 24, 2009 Generating Contenders

Dijkstra, Edsger. W. (1959) A note on two problems in connexion with graphs. Numerische
Mathematik 1: 269–271.

Droste, Manfred & Werner Kuich (2007) Semirings and formal power series. In Handbook
of Weighted Automata, Manfred Droste, Werner Kuich, & Heiko Vogler, eds., Tübingen:
Springer-Verlag, 1–26.

Eisner, Jason (1997a) Efficient Generation in Primitive Optimality Theory. In Proceedings of
the 35th Annual Meeting of the Association for Computational Linguistics (ACL), Madrid,
313–320.

Eisner, Jason (1997b) What Constraints Should OT Allow? Talk handout available online
(22 pages), Linguistic Society of America (LSA), Chicago.

Ellison, T. Mark (1994a) Phonological derivation in optimality theory. In Proceedings of
the 15th conference on Computational linguistics, Morristown, NJ, USA: Association for
Computational Linguistics, 1007–1013.

Ellison, T. Mark (1994b) Phonological derivation in optimality theory. In Proceedings of the
15th International Conference on Computational Linguistics (COLING), Kyoto, 1007–
1013.

Fink, E. (1992) A survey of sequential and systolic algorithms for the algebraic path problem.

Gazdar, Gerald, Ewan Klein, Geoffrey K. Pullum, & Ivan Sag (1985) Generalized Phrase
Structure Grammar Cambridge. Harvard University Press.

Gerdemann, Dale & Gertjan van Noord (2000) Approximation and Exactness in Finite State
Optimality Theory. In Coling Workshop Finite State Phonology, Luxembourg.

Goldsmith, John (1993) Harmonic phonology. Chicago: University of Chicago Press, 221–
269.

Goodman, J. (1998) Parsing Inside-Out. Ph.D. thesis, Harvard University, Harvard.

Gouskova, Maria (2003) Deriving Economy: Syncope in Optimality Theory. Ph.D. thesis,
University of Massachusetts Amherst.

Grimshaw, Jane (2001) Economy of structure in ot.

Hayes, Bruce, Bruce Tesar, & Kie Zuraw (2003) OTSoft 2.3 software package:
/www.linguistics.ucla.edu/people/hayes/otsoft/.

Heinz, Jeffrey, Gregory Kobele, & Jason Riggle (2009) Evaluating the complexity of Opti-
mality Theory. Linguistic Inquiry 40: 277–288, ROA 968-0508.

Hopcroft, John E. & Jeffrey D. Ullman (1979) Introduction to automata theory, languages,
and computation. Reading, Mass.: Addison-Wesley, 78067950 John E. Hopcroft, Jeffrey
D. Ullman. Addison-Wesley series in computer science. Includes index. Bibliography: p.
396-410.

Idsardi, William J. (2006) A Simple Proof That Optimality Theory Is Computationally
Intractable. Linguistic Inquiry 37(2): 271–275.

Kay, Martin (1979) Functional Grammar. In BLS-79, Berkeley, CA, 142–158.

Kay, Martin (1980) Algorithm schemata and data structures in syntactic processing. Tech.
Rep. CSL-80-12„ Xerox PARC, Xerox PARC, Palo Alto, CA.

28

August 24, 2009 Generating Contenders

Kuich, Werner (1997) Semirings : A basis for a mathematical automata and language theory.
In Developments in Language Theory, 49–60.

Legendre, Géraldine, Yoshiro Miyata, & Paul Smolensky (1990) Harmonic Grammar—A
Formal Multi-Level Connectionist Theory of Linguistic Well-Formedness: Theoretical
Foundations. In Proceedings of the Twelfth Annual Conference of the Cognitive Science
Society, Lawrence Erlbaum Associates, 388–395.

Mohri, Mehryar (2002) Semiring Frameworks and Algorithms for Shortest-Distance Prob-
lems. Journal of Automata, Languages and Combinatorics 7(3): 321–350.

Papadimitriou, Christon (1994) Computational Complexity. Addison Wesley.

Pater, Joe, Rajesh Bhatt, & Christopher Potts (2007a) Linguistic Optimization. Ms., ms.
UMASS Amherst.

Pater, Joe, Christopher Potts, & Rajesh Bhatt (2007b) Harmonic Grammar with Linear
Programming, ms.

Prince, Alan (2002) Entailed Ranking Arguments. Rutgers Optimality Archive 500: 1–117,
rOA-500. roa.rutgers.edu.

Prince, Alan & P. Smolensky (1993) Optimality Theory. Ph.D. thesis, Rutgers University
and University of Colorado.

Riggle, Jason (2004) Generation, Recognition, and Learning in Finite State Optimality The-
ory. Ph.D. thesis, University of California, Los Angeles.

Riggle, Jason (2009) Violation Semirings in Optimality Theory. Research on Language &
Computation July 2009: 1570–7075.

Roche, Emmanuel & Yves Schabes (1997) Finite-State Language Processing. Cambridge
(MA): MIT Press.

Samek-Lodovici, Vieri (1992) Universal constraints and morphological gemination: A
crosslinguistic study. Ph.D. thesis, Brandeis University.

Samek-Lodovici, Vieri & Alan Prince (1999) Optima, ms.

Samek-Lodovici, Vieri & Alan Prince (2002) Fundamental Properties of Harmonic Bounding.
Tech. rep., Rutgers Center for Cognitive Studies, rutgers Center for Cognitive Science,
RuCCS-TR-71.

Simon, Imre (1988) Recognizable Sets with Multiplicities in the Tropical Semiring. In MFCS
’88: Proceedings of the Mathematical Foundations of Computer Science 1988, London,
UK: Springer-Verlag, 107–120.

Smolensky, Paul & Géraldine Legendre (2006) The Harmonic Mind: From Neural Computa-
tion to Optimality-Theoretic GrammarVolume I: Cognitive Architecture (Bradford Books).
The MIT Press.

Tesar, Bruce (1995) Computational Optimality Theory. Ph.D. thesis, University of Colorado.

Tesar, Bruce & Paul Smolensky (1996) Learnability in Optimality Theory (long version).
Tech. rep., The Center for Cognitive Science/Linguistics Department, Rutgers University.

Wareham, H.T. (1998) Systematic Parameterized Complexity Analysis in Computational
Phonology. Ph.D. thesis, University of Victoria.

29

	Introduction
	Optimization and Complexity
	Relative bounding

	OT with Rational Constraints: OTR
	Rational faithfulness constraints
	Rational markedness constraints
	Putting the pieces together
	Working with infinite tableaux

	Generating Contenders
	Violations multisets and the violation semiring
	Optimization via dynamic programing
	Collecting the candidates
	Generating Contenders
	Detecting (relative) harmonic bounding
	The contender semiring
	Optimization for all rankings simultaneously
	Recursive typology construction

	Conclusions

