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0  At Issue 
 
How many metrical parses are there for a string of n syllables? 
 
0.1  Going Meta 
 
Why would a linguist ask or seek to answer such a question, there being no immediate empirical 
consequences in sight? No quick advantage to be claimed for a favored theory? Idle curiosity is 
sufficient motive for some.2 Beyond that, we might hope that asking a fundamental formal 
question, purely because of its formal interest, would lead us to useful insights or tools that can 
shape our understanding of the things we want to understand.3 
 
0.2  Optimal 
 
A candidate is optimal if there is nothing better in its candidate set.4 To establish optimality, 
then, requires that we control every candidate in the set.5 Vast infinities of candidates may vanish 
at a glance, through harmonic bounding arguments. For example, Prince & Smolensky 
(1993/2004, ch. 6) in studying the Basic Syllable Theory, quickly reduce all candidate sets to 
finitude by establishing the (few) conditions under which epenthetic material can appear in 
optimal forms.  

But as Tesar has reminded us from time to time, infinity is often the easy part.6 The 
twists, imperspicuities, and surprisingly large numbers that arise from finite combinatorics can 
be daunting.7 In some cases, it may be necessary to contend directly with exhaustive lists of 
candidates; and, even when broad generalizations exist, it may be well useful to have exhaustive 
lists to ponder as a lead-in to finding those generalizations. 

To answer the how many parses question, we will construct a way (indeed: ways) to 
produce the exhaustive list of parses. We examine these methods of construction to determine 
the number of forms they generate. But it is only a matter of a change in perspective to be able to 
use these methods to generate the forms and thereby provide the analyst with the desired fodder 
for analysis. 
                                                 
1 Thanks to Brett Hyde and Naz Merchant for valuable suggestions, and to Paul Smolensky, Bruce Tesar, Jane 
Grimshaw, and Sara O’Neill for useful comments and general discussion. 
2 The author admits to membership in this group. 
3 A line that is promoted in “The Pursuit of Theory” (Prince 2007). 
4 See Prince & Smolensky 1993/2004, ch.5, and for a recent re-telling, Prince 2009, sheet “Optimality Defined.” 
5 It’s a fact that the literature is not replete with arguments to the effect that claimed optima are in fact optimal. But 
this does not lessen the need: live by the heuristic, die by incomprehension. Theories, if not theorists, are remarkably 
immune to assertions of personal belief. On showing optimality, see Prince & Smolensky (1993/2004, ch. 7). 
6 Qualitatively speaking, one might conjecture that this is so because reaching infinity typically requires a kind of 
uniformity of structural possibilities that leads to the availability of broad generalizations. 
7 In Harmonic Serialism, for example, candidate sets are strictly finite, but the plenitude and complexity of the 
derivations will (in certain perfectly ordinary cases) defeat current software (Mullin et al., 2010, §1.2, 7–11). 
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0.3  The Parses 
 
We work with an unremarkable conception of prosodic structure.8 Feet are bisyllabic or 
monosyllabic, and do not overlap.9 A licit metrical parse, for our purposes, is a PrWd (Prosodic 
Word) consisting of a sequence of feet and unfooted syllables.  

Any number of syllables may be left unfooted, including all of them. Every foot has one 
head; and one and only one foot may be distinguished as the head or (in a stress system) the 
main-stress-bearing constituent of the PrWd. For simplicity, we will refer to the head of a foot as 
a ‘stress’ and the head of the head foot as the ‘main stress’, bypassing questions of realization. 
We will occasionally abbreviate ‘syllable’ by σ. 

The term unit will be used here to refer to any child node of a PrWd: a foot or an 
unfooted syllable; and used only to refer to those entities.  

Here’s an example of our assumptions and usage: 
 
(1)  A 4σ parse     PrWd 

    /       \ 
   F′       F 
  /  \       | 
σ′ σ  σ   σ′   
 

This parse has three units: two feet (of which the first is bisyllabic, the second, monosyllabic) 
and one unfooted syllable. In this illustration, we portray headship by marking a head category C 
as C′: hence F′ (head of PrWd) and σ′ (head of foot).  
 This parse is of length 4. We reserve the term length to measure the size in syllables of 
the string being parsed. 
 
In building the argument, we will proceed analytically from the simpler to the more complex by 
introducing distinctions into previously analyzed parse-classes that lack them. 
 We separate out the Quantity Insensitive (QI) systems, in which metrical terminals 
(syllables) are treated as being metrically equivalent. These contrast with Quantity Sensitive 
(QS) systems, in which a relevant binary distinction exists between syllable types.10 This move 
is fully justified because the QS parse count can be derived from the more basic QI count. 

                                                

 We also recognize a class of systems with no main stress (NM) where all feet are 
prominentially nondistinct, with the head of the PrWd ignored.  These we distinguish from 
systems where the head of the PrWd is attended to: systems recognizing main stress (M). This 
move is analytically justified because the count of M systems can be determined directly from 
the count of NM systems. 
 
The course of analysis will run from QI/NM, the simplest class, which honors the fewest 
structural distinctions, to QI/M, and thence to QS/NM and QS/M. 
 

 
8 Of course, it was remarkable at certain points in recent history, and derives from inter alia Liberman 1975, Prince 
1976, and more proximately, Selkirk 1980 and Hayes 1980. 
9 Hyde 2002 finds a number of striking properties in an overlapping foot theory. 
10 For the terms abbreviated by QS and QI, and much else, see Hayes 1995. 
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0.4  Strategies of Enumeration 
 
We use two different strategies for enumerating parses, which we will name idiosyncratically: 
the method of continuations, and the method of arrangements. The first has a bottom-up flavor; 
the second, top-down. 
 

• The method of continuations asks this question: given a (partially completed) structure, 
how many ways can we continue it one syllable further?11 

 
• The method of arrangements asks: given that a parse has a certain number of units, how 

may we arrange them to form licit structures? 
 
0.5  Preview of the Counting Results 
 
Using the method of continuations, we will determine that PNM(n), the number of No Main QI 
parses of n syllables, n > 0, is as follows, where round(x) denotes ‘the nearest integer to x’:  
 

(2)  QI/NM 
1

NM

(1 3)
P ( ) round

2 3

n

n
+ +=   

 
 

 
Using the method of arrangements, we will find another expression for the same quantity, in 
which we write U for the number of units in the parse, B for the number of binary feet, and use 
the notation [n/2] to mean ‘the largest integer less than or equal to n/2’. 
 

(3)  QI/NM 
[ /2]

NM
0

P ( ) 2
n

U

B

U
n

B=

 
=  

 
  

 
We’ll see that U = n − B, and since we fix n, this relation will allow us to compute with eq. (3). 
 
Equation (3) uses the binomial coefficient, which has this interpretation: 
 

(4)  Binomial coefficient 
!

! ( )!

U U

B B U B

 
=  − 

 

 
This counts the number of ways of choosing B things out of a collection of size U, and hence 
would often be read ‘U choose B’.12 

                                                 
11 See Riggle 2004 for major development of the finite state machine idea, of which this is an instance.  
12 Qualitatively speaking, the factor B! shows up in the denominator because we don’t care about the order of 
choosing the B things. Similarly, we don’t care about the order of the things we don’t choose, hence the appearance 
of (U − B)!. This entity is called the ‘binomial coefficient’ because it appears when we expand the expression (1+x)n 
as the sum of terms akx

k, each of which  involves some number ak  times xk, 0 £ k £ n: that number ak  is n-choose-k. 
This is so because any single  xk arises from the selection of an element, either 1 or x, from each of the n factors in 
the product (1+x) × …× (1+x). We have to choose k x’s and (n − k) 1’s to get xk. Each such choice gives us one xk. 
The number of ways to make the choice is the total number of xk terms we get, and this is just the number of ways 
we can choose k things from n possibilities. 
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Using the method of arrangements, we determine that the number of QI parses containing a main 
stress, PM(n), is as follows: 
 

(5)  QI/M M NMP ( ) ( )
2

n
n P n  =

 
Quantity sensitive totals are obtained by noting that each QI parse of a string of n syllables gives 
rise to 2n QS parses, since each QI syllable independently yields two QS syllables (light/heavy). 
 
(6)  QS  QS QIP ( ) 2 P ( )nn n=
 
We will encounter various other expressions of interest along the way. In the end, the methods of 
arriving at these formulas may be of more interest than the formulas themselves. 
 
0.6  By the Numbers 
 
We close the preliminaries with a glance at the resulting numerics. 
 
(7)  Quantities of Parses 
 

Sylls QI No Main QI w/ Main QS No Main QS w/ Main 
1 2 1 4 2 
2 6 6 24 24 
3 16 24 128 192 
4 44 88 704 1,408 
5 120 300 3,840 9,600 
6 328 984 20,992 62,976 
7 896 3,136 114,688 401,408 
8 2,448 9,792 626,688 2,506,752 
9 6,688 30,096 3,424,256 15,409,152 
10 18,272 91,360 18,710,528 93,552,640 
11 49,920 274,560 102,236,160 562,298,880 
12 136,384 818,304 558,628,864 3,351,773,184 
13 372,608 2,421,952 3,052,404,736 19,840,630,784 
14 1,017,984 7,125,888 16,678,649,856 116,750,548,992 
15 2,781,184 20,858,880 91,133,837,312 683,503,779,840 

 
Two things to note: 
 

1. The ‘w/ Main’ category reckons only those parses that actually have a main-stressed 
syllable; footless forms are not included in this count. We amplify below, in §4. 

 
2. The QS counts aggregate over all possible QS inputs, thereby summing all possible 

faithfully-parsed output candidates from any QS input string whatever. Each QI length 
has, of course, only one input, whereas under QS, for a string of n syllables, we have 
2n distinct inputs, namely all length-n sequences over {light, heavy}. See §5 below. 
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The rate of growth in the QI sector settles down so that each successive length provides 
approximately 2.7 times the number of parses of its predecessor. The QS sector ultimately grows 
at approximately twice this rate. 
 Given any OT system, of course, the total number of violation-distinct optima in any 
candidate set—forms optimal under some ranking—is limited by the interactions of the 
constraint system, regardless of the number of candidates. It will therefore be capped, and must 
stop growing, even though the total number of parses grows, nay explodes, with candidate 
length. For example, a QI/NM version of the system studied in Alber 2005, with seven 
constraints, has just 9 even-length possible optima and 14 of odd-length, for any length above 
three syllables (Alber & Prince 2008). Indexing these findings against the table, we note that 
whereas about 20% of the length-4 candidates are optimal in some language, a mere 0.0005% of 
length-15 forms are. And so on, downhill all the way. This forcefully illustrates the fact that, 
even in systems like those studied here , where each candidate set is finite, almost all forms are 
harmonically bounded. And it highlights the tremendous power of a constraint system to 
exclude, as well as the remarkable effectiveness in plucking optima from the formal welter of 
possibilities obtained by the diverse computational methods of Tesar 1995 and Riggle 2004. 
 
 
1  Counting NM Parses by Arrangements 
 
Let’s begin with the method of arrangements, which is conceptually akin to the hierarchical way 
of thinking about metrical constituency and which uses familiar techniques to do its counting. 
We’ll then move to the method of continuations, which yields a very simple and practical 
generation scheme. 
 
A syllable string is exhaustively parsed into units, each of which is a foot or unfooted syllable. 
Consider all metrical parses that contain U units: how many of these are there?13 To answer, we 
need to distinguish the number of binary units, B, from the number of monosyllabic units, M. 
The total number of units is merely their sum: 
 
(8)  U = M + B 
 
What we want to know first is how many distinct ways a collocation of U = M + B units may be 
linearly arranged. This is simply a matter of taking U sequential units and choosing B of them to 
binary: U-choose-B, the binomial coefficient (see fn. 12 for a brief characterization), whose 
definition we repeat here: 
 
(9)  Number of ways of choosing B things out of U things. 
 

 
!

! ( )!

U U

B B U B

 
=  − 

 

 

                                                 
13 Where have all the syllables gone? No worries: we’ll re-connect with them shortly. 
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Next, we ask how many distinct full structures there are on U units, distinguishing among the 
types of units. Observe that each binary unit comes in two varieties, (σ′σ)F and (σ σ′)F,  and each 
monosyllabic unit comes in two varieties, (σ′)F and unfooted σ. With two independent choices 
for each unit, whether binary or monosyllabic, there are 2U full parses for each distinct sequence 
of U units. Putting these observations together:  
 

(10)  Number of parses with U units, B binary:   2U U

B

 
 
 

 

 
To make use of this, we need to be able to go through the parses of a length-n string, classified 
by the number of units each parse contains. That is: we need to relate U to B and n. Straight from 
the definition of M and B, we have that the number of syllables must equal the number of 
monosyllabic units plus twice the number of bisyllabic units: 
 
(11)  n = M + 2B 
 
Subtracting eq. (11) from eq. (8) and rearranging, we obtain 
 
(12)  U = n − B 
 
Observe that the number of binary feet in the parse of a length-n string runs from a minimum of 
zero, with all units monosyllabic, to [n/2], the greatest integer less than or equal to n/2, obtained 
when we deploy as many binary units as possible. (For example, a five-syllable string can host a 
maximum of two binary feet.) Putting this together with eqs. (10) and (12), we arrive at the 
desired expression for the total number of parses: 
 
(13)  QI/NM 

 

[ /2]

NM
0

[ /2]

0

P ( ) 2

2

n
U

B

n
n B

B

U
n

B

n B

B

=

−

=

 
=  

 

− 
=  

 





 

 
Let’s do an explicit calculation for length 5, noting that [5/2] = 2. 
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(14)  QI/NM: length 5 

  

[5/2]
5

NM
0

5 4 3

5
P (5) 2

5 4
2 2 2

0 1 2

32 1 16 4 8 3

32 64 24

120

B

B

B

B
−

=

− 
=  

 
     

= ⋅ + ⋅ + ⋅     
     

= ⋅ + ⋅ + ⋅
= + +
=


3

 
2  Counting NM Parses by Continuations 
 
For purposes of analysis, we introduce a convenient notation that refers to the structure of 
constituency and headship: 
 

Unstressed syllable  x 
Stressed syllable  X 
Main-stressed syllable  Y 
Unit edge marker   

 
Here are some examples of usage: 

XxXx Two binary trochaic feet, No Main 
XxYx Two binary trochaic feet, of which the second is the PrWd head 
xxXX Two unfooted syllables followed by two monosyllabic feet, No Main 
xxYX Ditto footwise, except that the penultimate foot is the head of the PrWd 
YxxX Example (1) above 

 
NB: in accord with our descriptive assumptions, we notate the unfooted syllable as a demarcated 
unit which is structurally on a par with a monosyllabic foot: x vs. X, Y. 
 
To enrich to QS, when the time comes, we can regard x, X, and Y as denoting light syllables, and 
use h, H, and K to denote their heavy-syllable cognates. 
 
The vocabulary of characters used to encode QI/NM parses has three members: {X, x, }, of 
which the first two represent syllables. Assume that we have built all strings of length n − 1 
syllables ending in one of these three characters. Let’s consider how any such string may be 
continued, advancing to strings of length n syllables. (We work arbitrarily left-to-right.) 
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(15)  Table of Continuations  
 

 IN:  

Ends in: 

OUT: 

May continue with: 

Yielding a string ending in: 

1a … x X bisyllabic iamb 
1b  x unstressed syllable 
1c  X stressed syllable 
    
2a … X x bisyllabic trochee 
2b  x unstressed syllable 
2c  X stressed syllable 
    
3a …  x unstressed syllable 
3b  X stressed syllable 

 
Examples:  

• The 3σ parse Xxx would continue via clause 1a to the 4σ parse XxxX.  
• This 4σ parse can continue to 5σ in only two ways: 

- XxxXx   (by 3a) 
- XxxXX  (by 3b). 

 
Representing the continuations in this manner has several useful properties: 

(a) The output continuations end only in symbols mentioned in the inputs. 
(b) Continuation advances by exactly one syllable. 
(c) The foot status of final x is left open at stage n − 1,  and determined at the next stage. 
(d) We may stop at any time and have a complete parse.14 

 
Property (c) permits us to look at the single character lying at the right edge of the stage n input. 
We never need to examine the footing status of a final x, which would require us to know what 
characters precede and follow it. 
 
In this scheme, a final “” turns out to mark the end of a binary foot. Monosyllabic feet are 
demarcated at the next step, when there is one; or by quitting, leaving them final in the string. 
 
The continuations therefore fall into two classes:  

• those ending in the unit-boundary marker “”, indicating the end of a binary foot 
• those ending in a syllabic symbol, x or X 

Let’s write b(n) for the number of parses of length n ending in the boundary marker (‘b-parses’), 
and s(n) for the number of parses ending in a syllable character x or X (‘s-parses’). 
 

                                                 
14 If we stop by just ceasing to continue, a final unit may be explicitly demarcated by “” as in the example 
XxxX, or not, as in Xxx. This orthographic inhomogeneity is irrelevant to the counting project and will be 
ignored. To fix it, we need merely add a stopping step which affixes the edge-marking character  when necessary. 
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Writing PNM(n) for the number of parses on n syllables, our first observation is simply that this 
quantity is the sum of the number of s-parses and the number of b-parses. 
 
(16)  PNM(n) = s(n) + b(n)  
 
Less trivially, an examination of table (15) discloses that there is exactly one b-parse of length n 
syllables for each s-parse of length n − 1 syllables. These are shown in rows 1a and 2a. 
 
(17)  b(n) = s(n− 1) 
 
From this, it follows that solving for either s(n) or b(n) will solve the whole problem. Returning 
to the table, we observe that each parse of length n − 1 leads to two s-parses of length n, as 
shown in rows 1bc, 2bc, 3ab. 
 
(18)  a.  s(n) = 2 PNM(n − 1) 

b. = 2 s(n − 1) + 2 b(n − 1)  from eq. (16)  
c. = 2 s(n − 1) + 2 s(n − 2)  from eq. (17) 

 
We have now obtained a linear recurrence relation defining the value of the function s at length n 
in terms of its values at lengths n − 1 and n− 2. This kind of relation has a unique solution, once 
we fix its two initial conditions, the values of s(0) and s(1). Since the length-0 string has just one 
parse (which would be “” in the notation, to start continuation off properly) and the length-1 
string has two, namely as an unfooted syllable “x” and as a monosyllabic foot “X”, we have 
exactly the following problem to solve: find the function s meeting these conditions: 
 
(19)  s(n) = 2 s(n − 1) + 2 s(n − 2) 

s(0) = 1 
s(1) = 2 

 
The usual methods15 yield the following solution: 
 

(20)  QI/NM 
(1 3) (1 3)

( )
3

n n

n
+ − −=s  

 
From eqs. (16) and (17), we have the following: 
 
(21)  PNM(n) = s(n) + b(n)  

= s(n) + s(n − 1) 
 
As Paul Smolensky notes, eq. (18)c gives us, by dividing out the 2 on its right-hand side: 
 
(22)  s(n) + s(n − 1) = ½ s(n + 1) 

                                                 
15 See, for example, “Recurrence Relations” in Wikipedia; or search on “recurrence relation” and take your pick. 
Finding the solution requires no more than solving a quadratic equation and a pair of linear equations. Another 
linguistic application to a prosodic theory is found in Prince 1993. 
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Thus from eqs. (21) and (22), we obtain 
 
(23)  PNM(n) = ½ s(n + 1) 

 
With eq. (20) in hand, this yields a closed-form expression for the total number of QI parses with 
no main stress on a syllable string of length n: 
 

(24)  QI/NM 
1 1

NM

(1 3) (1 3)
P ( )

2 3

n n

n
+ ++ − −=  

 
Observe that the subexpression 
 

(25)  
1(1 3)

2 3

n+−
 

 
is small for n = 1, at approximately 0.155, and only gets smaller as n increases. For all values of 
n > 0, it cannot carry us far from the integer we are seeking. Therefore, we arrive at the 
following, using the function ‘round(x)’ to deliver ‘the closest integer to x’. 
 

(26)  QI/NM 
1

NM

(1 3)
P ( ) round 0

2 3

n

n n
+ += >  

 
 

 
Returning to the full unrounded result in eq. (24), we note that expressions of the form 
 

(27)  
(1 ) (1 )

2

n nx x

x

+ − −
 

 
are ripe for simplification via expansion of the numerator’s terms by the binomial theorem. 
Clearly, the constant terms and all terms containing x2k will drop out and all the surviving 
numerator terms will contain x2k+1, with both parenthesized numerator terms in the above 
contributing one such, which will simplify, when divided by 2x, to a term containing x2k. This is 
convenient when x = 3 = 3½, and the final result looks like this: 
 

(28)  QI/NM 

1
[ ]

2

NM
0

1
P ( ) 3

2 1

n

k

k

n
n

k

+

=

+ 
=  + 
  

 
We write [q] for the greatest integer less than or equal to q, and we take the value of the binomial 
coefficient symbol to be zero when the lower number exceeds the upper.  
 

 10



Looking at eq. (28), with its powers of 3 from the method of continuations, and at eq. (13), with 
its powers of 2 from the method of arrangements, one might not imagine that they come to the 
same thing. Since both count the same set, we can be quite confident that that they do. 
 
To get a sense of the way this formula plays out, let’s recalculate the length-5 example: 
 
(29)  QI/NM: length 5 

 

5 1
[ ]

32

NM
0 0

2 3

6 6
P (5) 3 3

2 1 2 1

6 6 6
1 3 3 3

1 3 5

1 6 3 20 9 6 27 0

6 60 54 0

120

k k

k kk k

+

= =

   
= =   + +   

       
= ⋅ + ⋅ + ⋅ + ⋅       

       
= ⋅ + ⋅ + ⋅ + ⋅
= + + +
=

 
6

7

 

3  Main Stress 

Now that we have expressions for the number of mainstressless QI parses on an arbitrary syllable 
string of length n, we inquire as to the status of the next level of complexity: metrical parses 
containing single head foot (giving us the main stress when footheads are interpreted as stresses). 

Here’s the result: 

(30)  QI/M M NMP ( ) ( )
2

n
n P n  =

To show that this is correct, let us associate each parse with (what we will call) its X/x-dual, π
π π

π

, which is obtained from  by switching every x for X and every X for x. The X/x-dual swaps 
iamb and trochee, monosyllabic foot and unfooted syllable, uniformly throughout the string. Call 
the set { ,π } a dual pair (NB: unordered). Consider the entire collection DP(n) of dual pairs of 
parses of length n syllables, writing Π(n) for the set of individual QI parses on a length-n string. 

(31)  Set of Dual Pairs DP(n) = { {π ,π }| π ∈ Π(n) } 

We make four observations: 

I. DP(n) = Π(n). 

II. For every ∈ Π(n), there is exactly one δ ∈ DP(n) such that ∈ δ.  π π

III. There are ½ PNM(n) elements in DP(n). 

IV. Each element { ,π π }∈ DP(n) contains a total of n X’s.  

With regard to II and III, note that and π π give rise to just one dual pair. 
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To establish IV, consider any pair { ,π π } and say contains k X’s and (n − k) x’s, k ³ 0. Then π
 contains (n − k) X’s. Sum across the pair to obtain the total of k + (n − k) = n X’s. π

To generate the totality of main stress possibilities, take each dual pair and produce from it all 
individual parses in which one of the X’s in one of its members has been replaced by a Y. Each 
pair, which has n X’s by IV, then produces exactly n parses with one syllable identified as the 
main stress. Since there are half as many dual pairs as parses (noted in III), we obtain eq. (30).   

This method of counting reckons only with those parses that contain at least one stress. If we 
include parses without feet, we add for each length exactly one parse with no stresses at all. Call 
the number of these inclusive parses PM+∅(n). We have:   
 

(32)  All QI/M parses M NMP ( ) ( ) 1n  
2

n
n P+∅ = +

 
 
4  QS, All Types 

Each QI parse, under either the NM or M regimes, blows up to a set of QS parses by taking each 
syllable independently to be either light or heavy. Since there are two independent choices for 
each of the n syllables in a length-n parse, we get the following counts: 

(33)  PNM/QS (n)  =  2n PNM/QI (n) 

(34)  PM/QS (n)  =  2n PM/QI (n) 

(35)  PM+∅/QS (n) =  2n PM+∅/QI (n) 

Observe that this covers all the possibilities of QS parses: no new groupings, or assignments of 
stress/unstressed status, are made available when the quantity distinction is imposed. Recall that 
in the QS count we are lumping together all parses from every possible QS input. 
 

5  Generative Schemes 

The counting strategies can be turned into procedures that produce the parses. 

5.1  QI Generation 
 
The method of continuations can be put to use quite directly. Let K1, K2,… be sets of output 
parses, where Kn is based on input of length n syllables. Let’s set up K1 by hand: 

(36)  K1 = { x, X } 
 
We notate carefully, so as to feed properly into the continuation recipe. 
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Now we iterate through this set, examining the final symbol of each parse, storing for each of 
them all of its licit continuations, following the recipe of table (15) above.16  

(37)  1σ parses to 2σ parses 
 

-x → xX 
xx 
xX 

 
-X → Xx 

 Xx 
 XX 

This gives us the six possible parses on a length-2 input. Continue in this fashion, iterating 
through each of these six, producing the continuations, and we’ll get the 16 length-3 parses; and 
so on. 

Let’s lay out the results for the first half of the length-3 set: 

(38)  2σ parses to 3σ parses (half) 
 
 a. xX → xXx, xXX 
 
 b. xx → xxX, xxx, xxX 
 
 c. xX → xXx, xXx, xXX 

 
The remaining half, we see, consists of the X/x-duals of these forms. 
 

5.2  QS Generation: Copy & Change 

The basic problem here is to take a sequence of n characters and produce the full set of 
sequences in which each character freely takes on one of two distinct forms. 

Here’s one way to do it. For purposes of illustration, let’s take T and F as our two basic 
characters. Suppose we have a list containing a sequence of three T’s: TTT. The following 
procedure will generate every sequence of length 3 over {T,F}. 
 
(39) Generation of all 3-character sequences over {T,F} 

1a. Copy the list and attach it to the original, producing 
  TTT 
  TTT 

1b. Turn all first characters in the copy to their opposite value: 
  TTT 
  FTT 

                                                 
16 Akers 2008 is the first work to convert the counting scheme of table (15) into a candidate generator. 
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2a. Copy this whole list, and attach it to itself: 

TTT 
FTT 
TTT 
FTT 

2b. Turn all second characters in the copy to their opposite value: 
TTT 
FTT 
TFT 
FFT 

3a. Copy this, and attach: 
TTT 
FTT 
TFT 
FFT 
TTT 
FTT 
TFT 
FFT 

3b. Now turn all third characters in the copy to their opposite value: 
TTT 
FTT 
TFT 
FFT 
TTF 
FTF 
TFF 
FFF 

 
In this method, there are n steps for a length-n string. We start out at step 1 with a one-element 
list containing a single length-n string.  
 Here’s the algorithm. Let L0 be the original string. On the mth step, copy the result Lm− 1 
of the (m − 1)th step and subjoin the copy to the original, creating a list of the form Lm− 1 + Lm− 1. 
Then change each character in the mth serial position in each string of the copy to its opposite 
value. Perform as many steps as there are characters to be targeted in the string. That’s it. 
 
We will certainly want to obtain all faithful prosodic parses from a given input; in this case, the 
input must have the same quantitative profile as all of its output parses. To generate, we must 
therefore change the input and everything in its output-set appropriately and simultaneously. So 
we apply the method to a list structure that attaches the input to its QI parses. 
 
To illustrate, let’s construct the QS parses on all inputs of length 2. This will require two steps of 
copy & change. We write ch(k) for the procedure that changes the copy’s kth syllabic character.  
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(40) Generation of all 2σ QS parses 

0. L0  xx →  xx, xX, Xx, xX, Xx 

1a. L0 + L0 xx →  xx, xX, Xx, xX, Xx 
  xx →  xx, xX, Xx, xX, Xx 

1b. L1: ch(1) xx →  xx, xX, Xx, xX, Xx 
   hx →  hx, hX, Hx, hX, Hx 

2a. L1 + L1 xx →  xx, xX, Xx, xX, Xx 
   hx →  hx, hX, Hx, hX, Hx 
   xx →  xx, xX, Xx, xX, Xx 
   hx →  hx, hX, Hx, hX, Hx 
 

2b. L2: ch(2) xx →  xx, xX, Xx, xX, Xx 
   hx →  hx, hX, Hx, hX, Hx 
   xh →  xh, xH, Xh, xH, Xh 
   hh →  hh, hH, Hh, hH, Hh 

 
There is now a clear path all the way from a starting point{x, X}17 to the full panoply of QS 
parses. The method of continuations produces the QI/NM parses up to any desired length, and 
the copy & change procedure expands to QS. Parses marked for main-stress can be constructed 
by working through the NM parses, iteratively selecting each X or H for promotion to Y or K. 
 

6  Concluding Remarks 
 
Resolving a natural formal question—how many parses?—has led to simple, effective methods 
for constructing the parses in their entirety. Knowledge of parsing numerics emerges along with 
control of the entire range of forms admitted by the structural assumptions. Thus equipped, the 
analyst may turn to the conduct of sound analysis. 
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