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Frequency Biases in Phonological Variation 
Abstract. In the past two decades, variation has received a lot of attention in mainstream 
generative phonology, and several different models have been developed to account for variable 
phonological phenomena. However, all existing generative models of phonological variation 
account for the overall rate at which some process applies in a corpus, and therefore implicitly 
assume that all words are affected equally by a variable process. In this paper, we show that this 
is not the case. Many variable phenomena are more likely to apply to frequent than infrequent 
words. A model that accounts perfectly for the overall rate of application of some variable 
process therefore does not necessarily account very well for the actual application of the process 
to individual words. We illustrate this with two examples, English t/d-deletion and Japanese 
geminate devoicing. We then augment one existing generative model (noisy Harmonic 
Grammar) to incorporate the contribution of usage frequency to the application of variable 
processes. In this model, the influence of frequency is incorporated by scaling the weights of 
faithfulness constraints up or down for words of different frequencies. This augmented model 
accounts significantly better for variation than existing generative models. 

1 Introduction 

1.1 The changing prospects of variation 
Although the existence of phonological variation has been acknowledged since the early years of 
generative phonology (Postal 1966:185; 1968:14-15), variation received relatively little attention 
in mainstream generative phonology during the first 25 years of the history of this field. To the 
extent that variation was acknowledged, it was usually relegated to the late stages of phonology 
or to phonetic implementation, and was hence not considered a part of the core of phonological 
grammar. In Lexical Phonology, for instance, it was assumed that lexical rules apply obligatorily 
while “postlexical rules can be optional and subject to variation” (Kaisse and Shaw 1985:6; see 
also Kiparsky 1985:86).  

This low valuation of variation in mainstream generative phonology contrasts with how it 
was viewed in the Labovian variationist tradition. This research tradition, spearheaded by 
Labov’s work in the late 1960’s (Labov 1966; 1969; etc.), developed concurrently with 
mainstream generative phonology, but had little impact on this field. In this approach, variation 
is central to grammar rather than an accidental property that applies only on the edges of 
grammar. In fact, Labov (2004:6) claims that variation is “the central problem of linguistics”.   

In the past 15 years, the prospects of variation in generative phonology have changed 
dramatically. It now occupies a central place in the study of phonology, and to some extent 
dictates the architecture of phonological grammar. A clear indication of this change is how 
variation has been treated in handbooks of phonological theory. The first edition of the 
Blackwell Handbook of Phonological Theory (Goldsmith 1995), which reflects the situation in 
generative phonology at the beginning of the 1990’s, does not even contain the word “variation” 
in its subject index. In contrast, every handbook since contains a chapter dedicated to variation 
(Anttila 2002b, 2007; Coetzee to appear; Coetzee and Pater to appear; Guy 2011). Similarly, 
several articles on variation have appeared in theoretical, generatively oriented journals over the 
past decade (Anttila 2002a, 2006; Anttila et al. 2008; Boersma and Hayes 2001; Coetzee 2006; 
etc.).  
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This same period has seen the development of several versions of current generative 
phonological grammar intended to deal with variation. These models have all been developed in 
some version of a constraint-based grammar, be that classic discrete Optimality Theory (OT) 
(Anttila 1997, 2002a, 2006, 2007; Anttila et al. 2008; Bane to appear a, b; Coetzee 2004, 2006, 
2009c; Kiparsky 1993; Reynolds 1994), stochastic OT (Boersma 1997; Boersma and Hayes 
2001), or noisy Harmonic Grammar (HG) (Coetzee 2009a; Coetzee and Pater to appear; Jesney 
2007)1. 

In fact, variation has become so important that the ability of a grammatical model to account 
for variation is now often used as one of the measures of the model’s sufficiency. Anttila 
(2002b:211) claims that an adequate theory of phonology should account for the “locus of 
variation” (where variation is observed and where not), and the “degrees of variation” (the 
frequency of different variants). Using these two criteria as a measure of success, most of the 
models mentioned above have been very successful. All of these models have formal 
mechanisms that can account for the locus of variation. With the exception of Coetzee’s 
2004/2006-model, these models also predict the degrees of variation. In fact, they have all been 
shown to model the frequency with which different variants are observed very well for a range of 
variable phenomena. 

In spite of the obvious progress that has been made in accounting for phonological variation, 
much work still remains. All of the existing generative models mentioned above are purely 
grammatical models that do not incorporate the influence of non-grammatical factors on 
variation. Decades of research in variationist sociolinguistics and more recent investigation of 
large speech corpora, however, have shown that variation is influenced by many factors in 
addition to grammar. In this paper, we take the next logical step in accounting for phonological 
variation by developing an extension of one of the existing generative models of phonological 
variation (noisy HG) that allows both grammatical and non-grammatical factors to impact the 
pattern of observed variation. 

1.2 Non-grammatical influences on variation 
One of the persistent results of the variationist research tradition is that variation is influenced, in 
addition to grammatical factors, by many non-grammatical factors. In fact, reviewing this 
tradition, Bayley (2002:118) identified “the principle of multiple causes” as one of the four core 
principles of this tradition. These non-grammatical factors include speech genre (word lists, 
informal conversations, read speech, etc.), discourse situation, age, sex or educational 
background of the speaker, etc. 

Although mainstream generative phonology has adopted the variationist tradition’s higher 
valuation of variation over the past decade, mainstream approaches have focused nearly 
exclusively on the grammatical factors that impact variation. Existing generative models make 
no formal allowance for the influence of other factors. Yet, the variationist tradition has 
established that phonological variation is influenced by many factors in addition to grammar. 
The next step, then, is to augment generative models so that they can account for both the 
grammatical and non-grammatical factors that influence variation. This idea is not original to us. 
Boersma and Hayes (2001) mention this explicitly with regard to their stochastic OT model of 

                                                
1 Noisy HG was first implemented by Paul Boersma in Praat (Boersma and Weenink 2009) as early as 2006. 
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variation, and suggest a way in which their model could be augmented to incorporate some non-
grammatical aspects of variation. This paper follows up in more detail on their suggestion 
(although we will develop our model in noisy HG rather than their stochastic OT). 

1.3 Usage frequency as a non-grammatical influence on variation 
As mentioned above, many non-grammatical factors influence the application of variable 
phonological processes. In this paper, we focus on usage frequency – i.e. the observation that 
some variable processes apply at different rates to words that differ in frequency. Our selection 
of usage frequency is one of convenience: since frequency is already quantitative, it is 
straightforward to incorporate it into a quantitative model of variation. We also acknowledge that 
usage frequency would not be considered external to the grammar in all grammatical models. In 
fact, in several recent models of grammar, grammar can be described as structured memory 
encoding of frequency – see the usage-based and exemplar models of grammar, for instance 
(Bybee 2001, 2006, 2007; Gahl and Yu 2006, and papers therein; Pierrehumbert 2001; etc.). In 
the generative tradition, however, usage frequency is not encoded in the grammar – generative 
models do not treat two words differently merely because they differ in their usage frequencies. 
In this paper, we subscribe to the standard generative assumption, and we will hence treat usage 
frequency as external to the grammar. See also section 5.1 for further discussion. 

Some variable phonological processes (typically reduction or simplification processes, 
though see section 5.2) are more likely to affect words with higher than lower usage frequency. 
For example, Bybee reports that the schwa in frequent memory is more likely to delete than the 
schwa in the nearly identical, but infrequent, mammary (Hooper 1976; see also Bybee 2000:68). 

This correlation between frequency and simplification processes is widespread and has been 
reported for many different phonological processes. For instance, the variable deletion of word-
final t/d from consonant clusters in English is more likely to apply to frequent than infrequent 
words – i.e. more deletion from frequent just than infrequent jest (Bybee 2000:69-70, 2002; 
Coetzee 2009a:272-273, 2009c; Lacoste 2008:187-207). The same process also applies in Dutch, 
where the correlation between frequency and the probability of deletion also holds (Goeman 
1999:182; Phillips 2006:65). (See section 3 for a more detailed discussion of t/d-deletion.) A 
similar correlation of usage frequency and variation has also been illustrated for flapping in 
American English (Patterson and Connine 2001), word-medial t-deletion in English (Raymond et 
al. 2006), word-final s-lenition in Spanish (File-Muriel 2010), l-vocalization in American 
English (Lin et al. to appear), and for geminate devoicing in Japanese loans (on which more in 
section 4; see Kawahara 2011, to appear). See Phillips (2006) for a recent review of many more 
similar examples. 

A model of variation that incorporates only grammatical influences on variation cannot 
capture the influence of factors like usage frequency. As a concrete illustration, we include 
Figure 1 below. This figure represents the rate of t/d-deletion from word-final clusters in English 
for a selection of words from the Buckeye Corpus (Pitt et al. 2007), plotted against the log 
frequency of the words, as measured in CELEX (Baayen et al. 1995).2 (See section 3.1 on the 

                                                
2 Throughout this paper, all logarithmic transformations use a base of 10. For instance, the word and has a CELEX 
frequency of 514,946, and hence a log frequency of log10(514,946) = 5.71.  In the Buckeye Corpus, and appears in 
pre-vocalic context 3,273 times, and in 2,966 of these occurrences its final /d/ was deleted. In this context, and 
therefore shows a deletion rate of 90.6%. In the middle panel of Figure 1, the data point that appears in the upper 
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details of how these data were extracted from the Buckeye Corpus.) The three panels show the 
rate of deletion before consonant-initial words (west bank), vowel-initial words (west end), and 
before pause (west.). The broken horizontal lines show the overall deletion rate in each context – 
i.e. deletion rate based on token counts. In existing grammatical models of variation, these are 
the variation frequencies that are modeled. These rates capture the difference between the 
different grammatical contexts (most deletion pre-consonantally, then pre-vocalically, and least 
deletion pre-pausally). However the actual, observed rates deviate quite drastically from the 
overall rates, especially for words of lower frequency. To account not only for the grammatical 
influences on variation, but also for the influence of usage frequency, existing grammatical 
models would need to be augmented in some way. In the rest of this paper, we augment one of 
the existing grammatical models of variation (noisy HG). We add an extra parameter, 
incorporating usage frequency into the noisy HG model of variation, and show that this 
augmented model accounts significantly better for the deletion rates of words with different 
usage frequencies.  

 
 

 
 

 
 

 
 

 
Figure 1: Relation between deletion rate and frequency in the Buckeye Corpus. 

Although we treat frequency as if it is a standalone property of a word, it is actually only one 
subpart of the larger concept of predictability. A word’s predictability depends on many factors 
in addition to its frequency, as has been documented by many studies in speech processing and 
production. A word is, for instance, primed by other words to which it is semantically 
(McNamara 2005; etc.) or phonologically (Goldinger et al. 1992; etc.) related, or by repetition 
(Versace and Nevers 2003; etc.). On the other hand, a word is inhibited (i.e. becomes less 
predictable) if it inhabits a dense lexical neighborhood (Luce and Pisoni 1986; Vitevitch and 
Luce 1998, 1999; etc). Many studies have documented that factors such as these influence 
speech production, with the general result being that less predictable words (inhibited or less 
strongly primed) tend to be produced more slowly, and with more effort or clarity (Baese-Berk 
and Goldrick 2009; Bell et al. 2009; Gahl 2008; Jurafsky et al. 2001; Scarborough 2004, 2010; 
etc.). Similar results have also been reported in the literature on “Uniform Information Density” 
(Frank and Jaeger 2008; Jaeger 2010; etc.), which shows that speakers have a tendency to spread 
out information equally across an utterance. Since more predictable words carry less information, 

                                                
right-hand corner of the graph therefore corresponds to and at a log frequency of 5.71 on the x-axis, and at a deletion 
rate of 90.6% on the y-axis. 
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speakers tend to reduce these words. Ultimately, it would be necessary to determine an overall 
measure of the predictability of a word that includes contributions from all of these aspects. Our 
focus on usage frequency is only an initial step. 

2  Noisy Harmonic Grammar with weight scaling 
We develop our model in a noisy version of Harmonic Grammar (Pater 2009; Smolensky and 
Legendre 2006). HG is a constraint-based theory that is closely related to OT (Prince and 
Smolensky 1993, 2004) and is, in fact, an historical predecessor of OT (Goldsmith 1993; 
Legendre et al. 1990). The main difference between HG and OT is that HG works with weighted 
rather than ranked constraints. Noisy HG is a stochastic implementation of HG, similar to the 
noisy implementation of OT, known as stochastic OT (Boersma 1997; Boersma and Hayes 
2001). Noisy HG and stochastic OT are closely related; we could have developed our model in 
this paper just as successfully in stochastic OT rather than noisy HG (see Coetzee and Pater to 
appear for evidence that noisy HG and stochastic OT account for most variable phenomena 
equally well). In the rest of this section, we first show how noisy HG accounts for variation, and 
then how we will augment this model to incorporate the influence of frequency on variation. 

2.1 Noisy Harmonic Grammar 
HG, like OT, is a constraint-based theory of grammar. The main difference between HG and OT 
is that OT relies on constraint ranking, and HG on constraint weighting. This difference is 
illustrated in the tableaux in (2) using the familiar OT constraints in (1). These tableaux represent 
the grammar of a language that does not allow tautosyllabic consonant clusters, and that repairs 
such clusters via deletion. In the HG tableau, w(CON) stands for the weight of constraint CON.  
(1) MAX  Assign one violation mark for every segment in the input that lacks a  

   correspondent in the output (no deletion). (McCarthy and Prince         
   1995:371) 

DEP Assign one violation mark for every segment in the output that lacks a 
correspondent in the input (no epenthesis). (McCarthy and Prince 
1995:371) 

 *COMPLEX Assign one violation for every tautosyllabic consonant cluster. (Prince and 
Smolensky 1993:96) 

 

(2) a.     Optimality Theory: DEP >> *COMPLEX >> MAX 

 /lʊst/ DEP *COMPLEX MAX 
 lʊst  *!  
      lʊs   * 
 lʊs.ti *!   

 
 

 
 



6 

b.     Harmonic Grammar: w(DEP) > w(*COMPLEX) > w(MAX) 

 /lʊst/ 5 
DEP 

1.5 
*COMPLEX 

1 
MAX H 

 lʊst  -1  -1.5 
      lʊs   -1 -1 
 lʊs.ti -1   -5 

 
In HG, each constraint is weighted, and these weights are indicated with arabic numerals 

above the constraint names in HG tableaux.3 Constraint violations are marked with negative 
whole numbers rather than asterisks. A harmony score H is calculated for every candidate, using 
the formula in (3) – i.e. by taking the product of the weight of each constraint and the violation 
index of the candidate, and summing these products. These H-scores are indicated in the last 
column of the tableau. The H-score of the first candidate in (2b), for instance, is calculated as 
follows: The weight of DEP (=5) is multiplied by the violation index of the candidate in terms of 
DEP (zero, since this candidate does not violate DEP). The weight of *COMPLEX (=1.5) is then 
multiplied with the violation index of the candidate for *COMPLEX (-1), giving -1.5. Similarly, 
the weight of MAX (=1) is multiplied with the violation index of the candidate (zero again). 
Finally, these products are summed, giving an H-score of -1.5 for this candidate. Since H-scores 
are negative, the candidate with the H-score closest to zero wins. 

(3) H(cand) = 

€ 

wiCi cand( )
i=1

n

∑  

Where wi is the weight of constraint Ci, and Ci(cand) is the number of times that 
candidate cand violates Ci, expressed as a negative integer. 

The version of HG illustrated above is not noisy HG, and cannot generate variation – given 
these constraints and weights, the grammar will always map /lʊst/ onto [lʊs]. However, HG has 
an implementation known as “noisy HG” that can generate variable outputs (Coetzee 2009a; 
Coetzee and Pater to appear; Jesney 2007). Noisy HG is closely related to stochastic OT 
(Boersma 1997; Boersma and Hayes 2001). In stochastic OT, constraint ranking is along a 
continuous scale, rather than a discrete scale as in classic OT.  Every time that the grammar is 
used, the ranking of each constraint is perturbed by a negative or positive noise value (randomly 
selected from a normal distribution with a mean of zero). Because of this noisy evaluation, the 
relative ranking between two constraints can differ from one occasion to the next, resulting in 
variation. Noisy HG shares with stochastic OT this noisy evaluation procedure. The only 
difference is that, in noisy HG, the weights of constraints rather than their rankings are perturbed 
by random noise. If the weights of two conflicting constraints are close enough, the noisy 
evaluation can result in their relative weights flipping around between evaluation occasions, 
potentially causing variation.  

                                                
3 In noisy HG, the weights of the constraints are determined by a gradual learning algorithm, closely related to the 
learning algorithm developed by Boersma and Hayes (2001) for their stochastic OT model. For more on this, see 
section 3.2.2. 
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In (4), the HG tableau from (2) is repeated, this time with noise. In these tableaux, w stands 
for the weight of a constraint and nz for the noise added to a constraint at the specific evaluation 
occasion. The effective weight of constraints (the sum of w and nz) is given in parentheses after 
the constraint names. In the first tableau, the weight of *COMPLEX is adjusted down by the 
addition of noise at -0.4, and the weight of MAX is adjusted upward by a positive noise value of 
0.2. The effect is that violation of *COMPLEX is now less serious than the violation of MAX, so 
that the faithful candidate has the highest H-score, and is selected as the output. In the second 
tableau, the weight of *COMPLEX is adjusted upward and that of MAX downward, so that the 
deletion candidate has the highest H-score and is selected as the output. These tableaux show 
how the same grammar (the same constraints with the same weights) can select different outputs 
on different evaluation occasions because of the addition of noise to the evaluation. An updated 
version of the formula used to calculate H-scores that include noise is given in (5). 

(4) a.     Faithful candidate optimal 

 w nz w nz w nz 
 5 -0.7 1.5 -0.4 1 0.2 
 /lʊst/ DEP (4.3) *COMPLEX (1.1) MAX (1.2) H 
    lʊst  -1  -1.1 
 lʊs   -1 -1.2 
 lʊs.ti -1   -4.3 
 

b. Deletion candidate optimal 

 w nz w nz w nz 
 5 -0.8 1.5 0.1 1 -0.1 
 /lʊst/ DEP (4.2) *COMPLEX (1.6) MAX (0.9) H 
 lʊst  -1  -1.6 
   lʊs   -1 -0.9 
 lʊs.ti -1   -4.2 
 

(5) H(cand) = 

€ 

wi + nzi( ) Ci cand( )
i=1

n

∑  

Where wi is the weight of constraint Ci, nzi the noise associated with constraint Ci at this 
evaluation occasion, and Ci(cand) is the number of times that cand violates Ci, expressed 
as a negative integer. 

Several authors have shown have shown that this model of phonological variation can 
account for a variety of variable phenomena (Coetzee 2009a; Coetzee and Pater to appear; 
Jesney 2007). Coetzee and Pater (to appear), in particular, show that it performs at least as well 
as stochastic OT. This model, however, still treats all words exactly the same. There is no place 
in the formula in (5) where any factor such as usage frequency can impact the H-score of a 
candidate. In the next section, we augment this model to allow for factors such as usage 
frequency to impact the H-score of a candidate. 
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2.2 Weight scaling 
We need a model that can account for the fact that more frequent words are more likely to be 
treated unfaithfully. This correlation can be captured by scaling the weight of faithfulness 
constraints down for frequent words and up for infrequent words. Violating a faithfulness 
constraint will then contribute less to the H-score of a frequent word, resulting in unfaithfulness 
being more likely, while it will contribute more to the H-score of an infrequent word, resulting in 
faithfulness being more likely. There are precedents for this idea in the literature. Van 
Oostendorp (1997) and Itô and Mester (2001), for instance, suggested that the higher likelihood 
of faithfulness in more formal speech registers can be captured by ranking faithfulness 
constraints higher in formal speech situations – an idea that echoes the concept of “carefulness 
weights” in Lindblom’s Hyper- and Hypoarticulation theory of speech production (Lindblom 
1990). Boersma and Hayes (2001:Appendix C) similarly suggest scaling the ranking values of 
constraints to account for different rates of unfaithfulness observed with different speech 
registers. 

 By adding such weight scaling to the model, two words that differ in usage frequency may 
be evaluated differently in the same grammatical context. Continuing with the example from the 
previous section, assume that /lʊst/ and /nʊst/ differ in frequency such that /lʊst/ is frequent and 
/nʊst/ infrequent. For the sake of the illustration, assume that /lʊst/ will be associated with a 
weight scaling factor of -1, and /nʊst/ with a factor of +1. The weight of faithfulness constraints 
will be scaled down by one unit in the evaluation of /lʊst/, and up by one in the evaluation of 
/nʊst/. The tableaux in (6) show how this addition of scaling factors affects the evaluation of 
these words. In these tableaux, the same grammatical settings are used (the same constraint 
weights and noise values). All that differs is the scaling factors associated with the faithfulness 
constraints (marked by sf in the tableaux). The result is that frequent /lʊst/ is mapped onto its 
unfaithful candidate [lʊs], while infrequent /nʊst/ is mapped onto its faithful candidate [nʊst]. An 
updated version of the H-score formula that incorporates the scaling factor is given in (7). 

(6) a.     Evaluating frequent /lʊst/, with sf = -1 

 w nz sf w nz w nz sf 
 5 0.7 -1 1.5 0.1 1 0.2 -1 
 /lʊst/ DEP (4.7) *COMPLEX (1.6) MAX (0.2) H 
 lʊst  -1  -1.6 
   lʊs   -1 -0.2 
 lʊs.ti -1   -4.7 
 

b. Evaluating infrequent /nʊst/, with sf = +1 

 w nz sf w nz w nz sf 
 5 0.7 1 1.5 0.1 1 0.2 1 
 /nʊst/ DEP (6.7) *COMPLEX (1.6) MAX (2.2) H 
  nʊst  -1  -1.6 
 nʊs   -1 -2.2 
 nʊs.ti -1   -6.7 
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(7) H(cand) = 

€ 

wi + nzi( ) Mi cand( ) + wj + nzj + sf( ) Fj cand( )
j=1

m

∑
i=1

n

∑  

Where Mi is the i-th markedness constraint, wi the weight associated with Mi, nzi the noise 
associated with Mi at this evaluation occasion, and Mi(cand) the number of times that 
cand violates Mi (expressed as a negative integer); and where Fj is the j-th faithfulness 
constraint, wj the weight associated with Fj, nzj the noise associated with Fj at this 
evaluation occasion, and Fj(cand) the number of times that cand violates Fi (expressed as 
a negative integer); and where sf is the scaling factor associated with the specific word 
being evaluated. 

In this model, only faithfulness constraints have scaling factors. The same effect could also 
be achieved by scaling markedness weights, or even by scaling the weights of both markedness 
and faithfulness constraints. In fact, Boersma and Hayes (2001:Appendix C) propose scaling the 
ranking values of both markedness and faithfulness constraints to incorporate style effects into 
their stochastic OT model. Although there are subtle differences in the variation patterns 
predicted by these different options, any of these options could have accounted equally well for 
the data that we discuss in this paper. We return to this issue briefly in section 5.2, but leave the 
question of the difference between these options for future research.  

2.3 A linking function between frequency and scaling factors 
The final part of our model is a linking function between frequency and scaling factors: Given a 
word of some frequency, what is the scaling factor that should be used in evaluating this word? 
This problem could be approached from two different directions. One possibility is that the 
mapping between frequency and scaling factors has to be learned on a language-by-language 
basis. The language learner will then have to take note of how words that are equivalent in their 
phonological properties but differ in frequency are treated differently by the grammar. From this 
information, he/she will deduce a function that best maps from frequency to scaling factors. 
Since the linking function is then determined on a language particular basis, we would not 
necessarily expect to see universal tendencies in how frequency maps to scaling factors. See 
Coetzee (2009a) for an implementation of this kind of approach.  

A different possibility is that there is some universal linking function that applies similarly to 
all languages. The expectation would then be that frequency has the same basic influence in all 
languages. Given the large amount of evidence that frequency has the same basic influence in all 
languages (more frequent words are more likely to undergo reduction processes – see the 
references above in section 1.3 and the discussion in section 5.2 below), we pursue the second 
option – that is, that the same basic linking function applies in all languages. In this paper, we 
illustrate how such a universal mechanism accounts well for two different variable phenomena in 
two unrelated languages (t/d-deletion in English, and geminate devoicing in Japanese).  

We propose that every word is associated with a distribution function, whose shape is 
determined by the frequency of the word. These functions are modeled as instantiations of the 
beta distribution (Gupta and Nadarajah 2004), and the scaling factor associated with a word is 
read off its distribution function.4 The formula of the beta distribution is given in (8). In addition 
                                                
4 See later in this section on why we use the beta distribution rather than a more well-known distribution such as the 
normal distribution. 
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to its argument x, the distribution has three parameters. ρ specifies the range of the function as 
spanning from -ρ to ρ. α and β are shape parameters that determine the skewness of the 
distribution. When α = β, the distribution is symmetric around zero. When α > β, it is left-
skewed, and when α < β, it is right-skewed. Additionally, the larger the difference between α and 
β, the more severe the skewness of the distribution is. 

(8) 

€ 

f x,α,β,ρ( ) = ρ
xα−1 1− x( )β −1

xα−1 1− x( )dx
0

1
∫

 

 Frequent words must have a negative, and infrequent words a positive scaling factor. But 
what counts as “frequent” or “infrequent”? A reference frequency has to be established such that 
words that appear more frequently than this reference frequency will be treated as frequent, and 
words that appear less frequently as infrequent. There are several ways in which such a reference 
point can be established. The average or median frequency of all the words in the lexicon could 
be used, for instance. We explored several different options, and settled on the one that resulted 
in the best fit of our model to the data. Specifically, the reference frequency is set in such a way 
that (at least) half of the tokens in the corpus are being treated as frequent, and (at most) half as 
infrequent. The exact way in which we determine the reference frequency is stated in (9).  

(9) Let N be the total number of tokens in the corpus. 
i. Order the words in the corpus in terms of frequency. 
ii. Determine the point on this ordering such that at least N/2 of all the tokens are 

above this point. 
iii. Determine the log frequency of the word just above this point, and the word just 

below this point. 
iv. Let the reference frequency be halfway between these two log frequencies. 

We illustrate how this algorithm works with an example. In section 3, we work with a corpus 
of t/d-deletion examples, extracted from the Buckeye Corpus (Pitt et al. 2007). Our corpus 
contains 16,460 tokens. Ordering the tokens according to their CELEX frequencies (Baayen et 
al. 1995), the word and occupies the topmost position. It also accounts for more than half of the 
tokens in the corpus (and appears 8,827 times in our corpus). The reference point is halfway 
between the log CELEX frequency of and, and the log CELEX frequency of just, the next most 
frequent word in our corpus. For reasons that we explain in section 3, we grouped words together 
into larger log groups. Just was placed into the 4.4 log frequency group, while and went into the 
5.8 log frequency group. The midpoint between these two is 5.1, and this value serves as the 
reference point in our modeling of the data in our t/d-deletion corpus. 

Having established the reference frequency, the values of the shape parameters (α and β) of 
the beta distribution associated with each word, as well as the scaling factor associated with each 
word, can now be determined. Specifically, we propose that α is set equal to the log reference 
frequency, and β to the log frequency of the specific word. The α-parameter therefore represents 
the reference frequency (i.e. neither frequent nor infrequent). The β-parameter represents the 
frequency of a specific word. For a word that appears less often than the reference frequency (so 
that α > β), the distribution will be left-skewed and hence have a positive mode – see the 
distribution for interrupt in Figure 2. We propose that the mode is used as the frequency scaling 
factor associated with a specific word. For a word that appears less frequently than the reference 
frequency, the scaling factor will therefore be positive. The weight of faithfulness constraints 
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will be scaled up in the evaluation of such a word, so that the word will resist an unfaithful 
mapping more strongly. On the other hand, for a word that appears more often than the reference 
frequency (so that α < β), the distribution will be right-skewed, and the mode thus negative – see 
the function for and in Figure 2. The scaling factor of such a frequent word (the mode of the beta 
distribution) will be negative, diminishing the contribution of faithfulness constraints in 
evaluating the word, resulting in a higher likelihood of an unfaithful mapping. The table in (10) 
summarizes the effect of the values of α and β on the skewness of the beta distribution, and the 
effect that this has on the mode of the distribution (and the scaling factors in the model that we 
propose here). 
(10) Determining the values of α, β, and the scaling factor associated with each word 

Shape parameters   
Reference 
frequency 

 Frequency of 
specific word Skewness Mode (= scaling factor) 

α < β Right negative 
α = β Symmetrical zero 
α > β Left positive 

The last parameter to set is the range parameter ρ. ρ does not influence the shape of the beta 
distribution, but only its range. In particular, it specifies the minimum and maximum value of the 
function on the x-axis: The higher the value of ρ, the higher the absolute value of the mode. The 
higher ρ is, the higher the scaling factors will be. And the higher the scaling factors, the more 
influence the frequency of words can have on their evaluation. ρ therefore determines how much 
frequency is allowed to influence how the grammar functions. We propose that the value of ρ be 
fit to the data – i.e. for every corpus, the value of ρ that results in the best fit between the model 
and the data is used.5 

In (11), we give examples of the parameter values and the modes for three words from our 
t/d-deletion corpus. And is used as an example of a frequent word. And’s distribution function is 
right-skewed, so that the mode of this function, and hence and’s scaling factor, is negative. 
Interrupt and weekend both appear less frequently than the reference frequency, and both serve 
as examples of infrequent words. Their distributions are left-skewed, so that their modes are 
positive, and the scaling factors associated with these two words are also positive. Although both 
interrupt and weekend are infrequent, they differ in frequency. Interrupt has a CELEX log 
frequency of 1.98 and weekend of 2.76. In the distribution function associated with interrupt, the 
difference between the values of α and β is hence larger than in weekend (α = 5.1, β = 1.98 vs. α 
= 5.1, β = 2.76). We include both of these words to show that the larger the difference between α 
and β, the more skewed the distribution, and hence the more extreme the mode of the 
distribution. The more the frequency of a word (represented by β) differs from the reference 
frequency (represented by α), the more its scaling factor will differ from zero. Faithfulness will 

                                                
5 We also leave open the possibility that the value of ρ can vary across different speech styles. A larger value for ρ 
results in a larger range for the beta distribution, and hence in modes that deviate more from zero. Since the mode of 
the beta distribution is used as the scaling factor in the evaluation of some word, a larger ρ (and hence more extreme 
mode and scaling factor) will increase the influence that frequency can have on the determination of H-scores. It is 
therefore possible that the value of ρ may fluctuate to account for speech situations in which frequency has a bigger 
or smaller impact. We do not explore this possibility further in this paper, however. 
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hence be scaled down more for more frequent words, and up more for less frequent words. The 
table also gives the modes for these distributions at three different values of ρ. Note how a 
change in ρ influences only the absolute value of the modes, and not their sign. In Figure 2 we 
show the shape of the distribution functions for these tokens when ρ = 5 (the value that we use 
for ρ in section 3).6 
(11) Examples of scaling factors in the t/d-deletion corpus (see section 3.3) 

Shape parameters Mode (scaling factor) 

Word 
α 

(reference frequency) 
β 

(log frequency of word) Skew ρ = 1 ρ = 5 ρ = 10 
and 5.1 5.71 Right -0.07 -0.35 -0.70 

weekend 5.1 2.76 Left 0.40 2.00 4.00 
interrupt 5.1 1.98 Left 0.61 3.07 6.14 

 
       weekend 

 
            and        interrupt 

 
 

 
 

 
 

 
 

Figure 2: Beta distributions for words from (11) with ρ = 5. Vertical broken lines mark the 
modes for the distributions, and hence the scaling factors associated with these words. 

In principle, scaling factors could be deduced from a more well-known distribution such as 
the normal distribution. Our selection of the beta rather than the normal distribution is motivated 
by the fact that the beta distribution has a finite range (specified by ρ), while the normal 
distribution has an infinite range. The finite range of the beta distribution places an absolute limit 
on the influence that non-grammatical factors such as frequency can have via weight scaling. If 
scaling factors were taken from the normal distribution with its infinite range, there would be no 
principled limit on how much non-grammatical factors could influence the application of 
variation. See section 5.1 for more detailed discussion. 

                                                
6 An Excel file for the calculation of the beta distribution’s mode under different settings of the three parameters is 
available from http://www.quantitativeskills.com/sisa/rojo/distribs.htm. In this file, the range parameter ρ is 
represented by A and B, with A = -ρ and B = ρ. The shape parameter α is represented by p, and β by q. 
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3 English t/d-deletion 
Word-final t/d variably deletes from consonant clusters in English, so that a word like west can 
be pronounced as [wɛst] or [wɛs]. This deletion process has been described in detail for countless 
dialects of English (see Coetzee 2004:Chapter 5 for a review), and even for languages other than 
English (on Dutch, see Goeman 1999; Goeman and van Reenen 1985; Schouten 1982, 1984). 
Since this process has been studied so extensively, the factors (both grammatical and non-
grammatical) that influence its application are reasonably well understood. We begin this section 
by first reviewing some of the grammatical and non-grammatical factors that are known to 
influence this process, focusing on those aspects for which we will provide an account. We then 
develop a purely grammatical account in the noisy HG framework. Once the grammatical 
account has been established, we augment it to account for the influence of usage frequency 
according to the method described above in sections 2.2 and 2.3.  

3.1 Grammatical and non-grammatical influences 
We first review evidence that this process is influenced by the same kinds of grammatical 
considerations as those that influence “ordinary” non-variable phonological rules. Echoing an 
idea that has been present throughout the variationist research tradition for nearly four decades, 
Anttila (1997:44) takes this fact to be a motivation for expecting phonological grammar to 
account for at least part of variation: “… if variation preferences are based on phonological 
variables, then it seems reasonable to expect phonology to make sense of them.” 

In a summary of the grammatical factors that influence t/d-deletion, Labov (1989) includes 
the following: (i) Stress: t/d is more likely to delete from an unstressed syllable (cúbist) than a 
stressed syllable (insíst); (ii) Cluster size: Deletion is more likely from tri-consonantal (tanked 
[tæŋkt]) than from bi-consonantal clusters (tacked [tækt]); (iii) Similarity to preceding segment: 
Deletion is more likely after consonants that share more features with t/d than consonants that 
share fewer features – more deletion from kissed, where [s] shares place (coronal) and sonorancy 
(non-sonorant) with the following [t], than from seemed where [m] shares no major features with 
the following [d]; (iv) Morphology: t/d that functions as the past tense suffix of a regular past 
tense verb (missed) is less likely to delete than t/d that functions as the past tense suffix in a sem 
i-weak verb (kept), which is less likely to delete than t/d that is part of a morphological root 
(mist). 

Another grammatical factor that influences t/d-deletion is the context that follows the word-
final t/d. We will use this factor as an example of a grammatical factor in the rest of this section, 
and therefore discuss it in more detail. In every dialect of English for which t/d-deletion has been 
studied, it has been found that deletion is most likely if the next word begins with a consonant 
(west bank). Dialects diverge on whether a following vowel-initial word (west end) or a pause 
(west.) results in more deletion. The table in (12) contains a sample of the data available on the 
influence of the following context.7 The data on all but Columbus English are taken from the 
literature, with references given in footnote 8. See below on how the data for Columbus English 
were attained.  

                                                
7 These data are simplified with regard to the pre-consonantal context. Labov (1989) and Guy (1991), among others, 
show that t/d-deletion rates are different before consonants of different types. We follow the practice in the vast 
majority of the t/d-deletion literature of lumping all of the consonants together.  
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(12) Percent t/d-deletion in different English dialects in pre-consonantal, pre-vocalic, and pre-
pausal contexts.8 

 
Relative deletion rate 

 Pre-C 
west bank 

Pre-Pause 
west. 

Pre-V 
west end 

AAVE (Washington, DC) 76 73 29 
Jamaican English 85 71 63 
Tejano English 62 46 25 

Pre-C > Pre-Pause > Pre-V 

Trinidadian English 81 31 21 
Chicano English 62 37 45 

Pre-C > Pre-V > Pre-Pause 
Columbus English 80 63 76 

The data on Columbus English were extracted from the Buckeye Corpus (Pitt et al. 2007). 
This is a corpus of conversational speech collected from 40 lifelong residents of Columbus, 
Ohio. All of the speech was both orthographically and phonetically transcribed. In order to 
compile a list of words from the corpus to which t/d-deletion could apply, we extracted all words 
that end orthographically in -Ct or -Cd (where C stands for any consonant). Since t/d that 
corresponds to the past tense suffix is consistently treated differently (see discussion above), and 
since our focus is on the influence of the phonological context, we excluded words with this 
suffix. The principle by which we selected tokens from the corpus already excluded past tense 
forms that end orthographically in -ed. We manually removed also the semi-weak past tense 
forms, such as kept. We also removed a few other classes of words. First, due to the difficulty of 
determining whether word-final t/d has been realized before a word that starts with [t] or [d], we 
removed all such tokens from the list. Secondly, we removed words that end orthographically in 
-rt/-rd or -lt/-ld. These tokens showed unexpectedly low deletion rates in the corpus. In these 
tokens, r and l were often phonetically realized as coloring on the preceding vowel rather than as 
a separate consonant, so that -rt/-rd and -lt/-ld words often do not actually end in consonant 
clusters phonologically (Guy and Boberg 1997). Lastly, we removed words such as thought and 
could, that end orthographically but not phonologically in -Ct/-Cd. This whole procedure left a 
list of 16,460 tokens, representing 459 different words. The phonetic transcription in the corpus 
for each of the token words was then consulted, and each token was coded as either “t/d deleted”  
or “t/d retained”.9 Each token was also classified as pre-consonantal, pre-vocalic, or pre-pausal 
based on the context in which the token appeared in the corpus.10,11 

                                                
8 Sources: AAVE (Fasold 1972), Jamaican (Patrick 1992), Tejano (Bayley 1995), Trinidad (Kang 1994), Chicano 
(Santa Ana 1991). See below for how the data on Columbus English were attained. 
9 A token was coded as “t/d deleted” if no segment was transcribed for the underlying t/d. In the Buckeye Corpus, 
underlying t/d was transcribed with several different surface realizations, including faithful realizations [t] or [d], 
glottalized realizations [tʕ] or [dʕ], flap [ɾ], etc. All tokens transcribed with one of these realizations were coded as 
“t/d retained”. Since the corpus contains no articulatory data, deletion is defined here as the absence of any acoustic 
evidence of t/d. An actually articulated t/d might not have any acoustic realization when it is articulated before a 
labial consonant. If the labial closure of the following consonant is made before the release of the t/d, the potential 
acoustic effect of the coronal release is masked by the labial closure, and hence becomes inaudible (Browman & 
Goldstein 1990). The actual articulatory t/d-deletion rate before consonants may therefore be somewhat lower than 
the acoustic rate reported here. As a check of the potential influence that this acoustic masking could have on our 
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Several non-grammatical factors that influence the application of t/d-deletion have also been 
documented in the variationist literature. For example, biographical factors, such as the age, sex, 
or ethnicity of the speaker, have been shown to influence application of the process. 
Additionally, speech register also influences the deletion rate, with less formal registers 
associated with higher deletion rates. Browman and Goldstein (1990), for instance, found little 
evidence of t/d-deletion in the reading of a word list, but they did find evidence for the process in 
a more casual conversational speech style. Mitterer and Ernestus (2006) studied the analogous 
process in Dutch in two speech corpora. One corpus consisted of read speech (literally, novels 
read on tape for the blind) – i.e. a rather formal speech register. The other corpus consisted of 
recordings of casual speech. They found evidence of deletion in both corpora, but at very 
different rates (8% for the read speech vs. 45% for the casual speech). 

The non-grammatical factor on which we focus is usage frequency, and we therefore report 
on it in more detail. As we already showed in section 1.3, phonological processes such as t/d-
deletion usually apply at higher rates to words of higher frequency – i.e. more deletion from 
frequent just than from phonologically similar but infrequent jest. Bybee (2000:69-70), for 
instance, analyzes Santa Ana’s 1991 corpus of Chicano English, and finds a deletion rate of 
54.4% in high frequency words compared to 34.4% for low frequency words.12 Phillips 
(2006:65) shows that frequency has the same influence in the analogous process in Dutch.  

In order to investigate the influence of frequency on t/d-deletion in the Buckeye Corpus, we 
determined the frequency of each of the words that we selected from this corpus in CELEX 
(Baayen et al. 1995), and then transformed these counts by taking their logarithms (with base 
10).13,14 Because the Buckeye Corpus is relatively small, words with a low CELEX frequency 
                                                
data, we counted the number of tokens in our pre-consonantal category followed by labial and non-labial 
consonants. We found that more than 80% of the pre-consonantal tokens appear before non-labial consonants. 
10 The coding conventions in the Buckeye Corpus do not actually include a category for pauses. We coded as pre-
pausal the following tokens: (i) Tokens where the corpus indicates that silence followed an utterance; (ii) Tokens 
where the corpus indicates that an utterance was followed by the interviewer speaking, and where it was clear from 
the context that the interviewer did not interrupt the interviewee mid-utterance; (iii) Utterances followed by some 
kind of non-speech vocalization noise, and where the context made it clear that this vocalization noise did not occur 
mid-utterance. 
11 The corpus of t/d-words that we used is available as “supplementary material” on the Springerlink for this article, 
or from the first author upon request. 
12 Bybee (2001) and Jurafsky et al. (2001:252-255) show that mere lexical usage frequency does not capture the full 
influence of frequency. Just as important, and in some instances maybe even more important, is frequency of use 
within a specific syntagmatic context. That is, the [t] in best may delete more often from a more frequent phrase 
such as best friend than from a less frequent phrase such as best fruit. Although an adequate account of phonological 
variation will ultimately have to incorporate all relevant types of frequency influences (and all other relevant 
influences), we will focus only on lexical usage frequency in this article. 
13 Since log of zero is undefined, a constant of one was added to all frequencies before they were log transformed. 
14 One could raise some concerns about using CELEX to measure usage frequency. First, CELEX is a British 
corpus, and usage frequency may differ between CELEX and the American speakers included in the Buckeye 
Corpus. Second, although CELEX includes some spoken sources, the majority of the frequency counts in CELEX 
come from written texts. Usage frequency may be different between spoken and written language.  

A possibly more accurate measure of the usage frequency of words for the speakers who contributed to the 
Buckeye Corpus would be the Buckeye Corpus itself – i.e. just counting the frequency with which each token 
appears in the corpus. However, since the Buckeye Corpus is comparatively small, it does not differentiate well 
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count appear infrequently in the corpus (in fact, several words appears only once). It is 
consequently not possible to calculate reliable deletion rates for individual words, and we 
therefore divided the words into frequency bins before calculating deletion rates (cf. also Bybee 
2000:69-70; Lacoste 2008:188-189). Most of the frequency bins span 0.1 intervals on the log-
transformed frequency values. If some bin contained fewer than 50 tokens, we combined it with 
one of its adjacent bins so that a few bins span a wider range than 0.1. In total, 23 frequency bins 
were created ranging in log-transformed frequency from (0 to 2.0) up to (5.7 to 5.8).15 The 
deletion rate in each of the three contexts (pre-vowel, pre-consonant, pre-pause) was then 
calculated for each frequency bin. This procedure gives a data set where deletion rates in each of 
the contexts can be plotted against frequency to look for a correlation, as in Figure 3. This figure 
shows a positive correlation between frequency and deletion rate in all three contexts. In fact, the 
correlation is significant in all three contexts (Pre-C: r2 = .46, p < .01; Pre-V: r2 = .39, p < .01; 
Pre-Pause: r2 = .43, p < .01).16 

 

 
 

 
 

 
 

 

Figure 3: The relation between frequency and deletion rate in Columbus English in Pre-C, Pre-V 
and Pre-Pause contexts. The x-axis represents log-transformed CELEX frequencies. Deletion rate 

is plotted on the y-axis. 
                                                
between words with low usage frequencies – many words appear only once in the corpus. Facing the same problem 
with regard to the Buckeye Corpus and CELEX, Raymond et al. (2006) showed that CELEX and Buckeye 
frequencies are highly correlated (r = .82). In fact, using CELEX for frequency counts, even when dealing with 
American English, is standard practice in the field (Albright 2009; Coetzee 2005, 2008). We therefore follow the 
standard practice, using CELEX for frequency counts in our study. 
15 The decision to use 23 frequency bins is to some extent arbitrary. A finer-grained division into more bins could 
potentially give a more detailed picture of how usage frequency interacts with deletion. However, relying on more 
bins also results in some bins containing too few data points to reliably calculate deletion rates. There is a trade-off 
between the reliability of the deletion rate for each frequency bin and the fine-grainedness with which the frequency 
range is sampled. We decided to use bins that contain at least 50 tokens each, resulting in the 23 bins used here. 
16 On each of the three graphs, there is one data point with an extremely high log frequency, just below 6. This data 
point corresponds to the word and, which accounts for more than half of all the tokens in our corpus. If this data 
point is removed, the positive correlation between frequency and deletion rate remains, even if it is less strong (Pre-
C: r2 = .21, p < .05; Pre-V: r2 = .22, p < .05; Pre-Pause: r2 = .14, p < .11). Due to the fact that extremely high 
frequency words such as and show much higher deletion rates, these words are often excluded from the data sets 
used in variationist sociolinguistic studies of t/d-deletion (Patrick 1992:172). By including frequency as a factor in 
our model, we do not have to exclude frequent words. Their seemingly anomalous behavior is no longer anomalous, 
but rather expected given the model that we develop. 
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In the next section, we first develop an account for the influence of the following 
phonological context on t/d-deletion in Columbus English, as given in (12). In doing this, we will 
abstract away from the influence of usage frequency, shown in Figure 3. Once this grammatical 
account is in place, we will augment it to incorporate the influence of frequency. 

3.2 A grammatical account 
In this section we develop a noisy HG account for the overall deletion rates observed in 
Columbus English, as shown in the table in (12). For similar accounts of the other data from this 
table, see Coetzee and Pater (to appear). 
3.2.1. Constraints 
The constraints that we use are given in (13). The two contextual faithfulness constraints are in 
the spirit of Steriade’s “licensing by cue” constraints – i.e., they protect segments from deletion 
in contexts where the cues for their perception are saliently licensed (Steriade 1999, 2001; Côté 
2004). 

(13) *CT]Word  Assign one violation mark for every word that ends in the  
sequence [-Ct] or [-Cd].17 

MAX   Assign one violation mark for every input segment lacking an output 
correspondent (no deletion). (McCarthy and Prince 1995:371) 

MAX-PRE-V   Assign one violation mark for each segment that appears in pre- 
  vocalic context in the input, and that does not have a correspondent  
  in the output (no deletion before a vowel). (Côté 2004:22) 

MAX-PRE-PAUSE Assign one violation mark for each segment that appears in pre-
pausal context in the input, and that does not have a correspondent in 
the output (no deletion before a pause).  

Steriade proposes that a segment is protected by special faithfulness constraints in contexts 
where its perceptual cues are robustly licensed. The consonant release burst can cue both place 
(Lahiri et al. 1984; Stevens and Blumstein 1978) and manner information (Stevens and Keyser 
1989). The formant transitions into a following vowel also carry information about both place  
(Martínez-Celdrán and Villalba 1995; Eek and Meister 1995; Fowler 1994; Fruchter and 
Sussman 1997; Kewley-Port 1983; Kewley-Port et al. 1983; Nearey and Shammas 1987; Stevens 
and Blumstein 1978; Sussman et al. 1991; etc.) and manner (Diehl and Walsh 1989; Walsh and 
Diehl 1991). To motivate the existence of the positional versions of MAX, it is therefore 
necessary to show that release bursts and formant transitions are more robustly licensed in pre-
vocalic and pre-pausal position than in pre-consonantal position. 

                                                
17 This constraint is a special version of the more general *COMPLEX, which applies only to a subclass of consonant 
clusters, and only when these clusters appear in word-final position. As it stands, the constraint is too specific. For 
instance, deletion of [p] from words like ramp, wisp, etc., and deletion of [k] from words like whisk, task, etc. are 
also observed. To account for these deletions, the constraint should probably be generalized so that it penalizes all 
[…C+stop] sequences. However, the literature contains virtually no information on the deletion of [p] and [k], 
probably because there are so few […Cp] and […Ck] words in English. For this reason, we assume the more 
specific constraint here. See Coetzee (2004:Chapter 5) for an exploration of a more general constraint. 



18 

In pre-consonantal position, the likelihood of a consonantal release being realized is 
relatively small. Zsiga (2000:78) reports a release rate of as low as 18% in this context for 
English (see also Browman and Goldstein 1990). Except when the following consonant is a 
sonorant, there is also no opportunity for the realization of formant transitions, and even into a 
following sonorant, robust transitions are less likely than into a following vowel. Pre-consonantal 
position is hence the context in which t/d is least well cued, so that there is no special 
faithfulness constraint that protects against deletion specifically in this context. 

In pre-pausal position, formant transitions into a following segment cannot be realized. 
However, it is possible to release stops in this position – Byrd found that 57% of alveolar stops 
were released in the TIMIT corpus (Byrd 1992:37). There is also evidence that utterance-final 
released consonants are perceived more accurately than unreleased consonants (Malécot 1958). 
In pre-vocalic position, both formant transitions and releases can be realized. Only one of the 
cues can therefore be realized pre-pausally while both cues can be realized pre-vocalically. On 
the other hand, the pre-vocalic cues can only be realized across a word boundary. The crossing of 
the word boundary may result in a penalty for cue robustness in pre-vocalic position. The listener 
may, for instance, incorrectly perceive the t/d as the first segment of the following word rather 
than the last segment of the preceding word. As such the additional acoustic cue available in this 
context would not necessarily result in easier perception and lexical access for the listener. A 
question is whether there is a universal difference in cue robustness between pre-pausal and pre-
vocalic contexts. In Steriade’s “licensing by cue” model of faithfulness, constraints protecting 
inherently more robust sponsoring contexts universally rank higher than constraints protecting 
less robust sponsoring contexts. If there is an inherent robustness difference between pre-vocalic 
and pre-pausal contexts, the two positional versions of MAX will therefore be in a universally 
fixed ranking. 

Exactly how the ranking between cue-licensing constraints is established is still an 
unresolved topic. These rankings could be hard-wired into Universal Grammar or they could 
emerge during acquisition, influenced by misperception on the side of the language learner 
(Boersma 2008). In English dialects where pre-pausal t/d is seldom released, the child acquiring 
the grammar will more often not perceive t/d in this position, even if his/her parents actually 
produced t/d in this context. Such a learning situation might lead to the lower ranking of the 
constraint MAX-PRE-PAUSE in the grammar of such a child. On the other hand, a child acquiring 
a dialect where pre-pausal stops are more often released may actually perceive t/d more often in 
this context, resulting in a higher ranking of MAX-PRE-PAUSE in the grammar of such a child. 
The rankings could therefore result from the concrete experience of the language learner as a 
listener. This is also in agreement with Kawahara’s claims that rankings between cue-based 
faithfulness constraints are based on the actual perceptibility of contrasts in different contexts 
(Kawahara 2006). On the other hand, Moreton (2008, 2010) has shown that some typological 
tendencies may result from hard-coding of rankings into UG rather than from experience with 
actual perceptibility.  

Given that this issue is still unresolved, we will not take a stance here on how exactly the 
ranking between cue-based faithfulness constraints comes about. We do note that, given the data 
reported in (12), it is necessary to allow MAX-PRE-PAUSE and MAX-PRE-V to rank differently in 
the grammars of different dialects/languages in order to account for the difference between 
dialects that show more deletion in pre-pausal position and those that show more deletion in pre-
vocalic position. 
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3.2.2. The learning simulation and results 
The constraint weights for Columbus English were determined by running a learning simulation 
with Praat’s noisy HG learning algorithm (Boersma and Weenink 2009). For details on this 
learning algorithm, see Boersma and Pater (2008) and Coetzee and Pater (2008). In creating an 
input file for the algorithm, we assumed that each of the contexts (pre-consonantal, pre-vocalic, 
pre-pausal) appears 100 times. Deletion was represented in the 100 tokens in each context 
proportional to the overall deletion rates from (12) – i.e. in pre-consonantal context, 80 tokens 
were coded as pronounced with deletion and 20 with a final t/d, in pre-pausal context 63 with 
deletion and 37 with retention, and in pre-vocalic context 76 with deletion and 24 with 
retention.18 We based the learning input file on the overall deletion rate, following the tradition 
in the literature. The account that we develop here will therefore not take into account the 
contribution of the usage frequency of individual words. In the next section, we will augment our 
account by implementing weight scaling. In running the learning simulation, we set the “decision 
strategy” to “Linear OT” (Praat’s implementation of the noisy HG learning algorithm). All other 
settings were kept at Praat’s defaults.19 Once the grammar has been learned, Praat’s “To output 
Distributions” function was used to test the predicted output of the grammar.20 

The constraint weights that were learned are given in (14). Before this grammar is used to 
evaluate output candidates, noise is added to the constraint weights. In the noisy HG 
implementation in Praat, this noise is randomly selected from a normal distribution with a mean 
of zero. Under the default Praat setting, the standard deviation of the distribution is 2.21 
(14) *CT]Word   101.16 
 MAX   98.84 
 MAX-PRE-V  -1.51 

MAX-PRE-PAUSE  0.96 

                                                
18 The Praat input file is available as “supplementary material” on the Springerlink for this article, or from the first 
author upon request. 
19 In particular, the following settings were used: (i) The initial weights of all constraints were set to 100. Changing 
the initial weights may influence the speed of learning, but as long as sufficient learning time is allowed, it will not 
influence the final grammar that is learned; (ii) An evaluation noise of 2.0 was used. Changing the evaluation noise 
may influence the absolute difference in weight between constraints, but will not influence the eventual performance 
of the grammar; (iii) The initial plasticity was set to 1.0, with 4 decrements of 0.1 in plasticity at every 100,000 
replications. As explained by Boersma and Hayes (2001) with regard to their GLA for stochastic OT, starting out 
with a higher initial plasticity results in faster initial learning. Decreasing plasticity later in learning results in more 
accurate frequency matching of the learning input. An equally good grammar could be learned by starting out with a 
small plasticity, but more learning time might be required. 
20 For this production oriented simulation, we also used Praat’s default settings: (i) An evaluation noise of 2.0 was 
used – the same value used during the learning simulation; (ii) Each input type (pre-consonantal, pre-vocalic and 
pre-pausal) was submitted to the grammar 100,000 times, and the frequency with which each output candidate 
(deletion or retention) was selected is tallied. 
21 If the sum of a constraint’s weight and the noise added to this weight at a particular evaluation occasion is less 
than zero, Praat resets it to zero during evaluation. This adjustment prevents a candidate from being rewarded in its 
H-score for violating a constraint – a negative constraint weight multiplied by the negative integer used to mark 
constraint violation would have increased the H-score. 
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In (15), we show the output patterns generated by a grammar with the weights in (14). As 
expected, there is a close match between the observed deletion rates (on which the learning input 
file was based), and the deletion rates predicted by the grammar. As has been shown before, 
noisy HG can replicate variation rates extremely well (Coetzee 2009a; Coetzee and Pater to 
appear; Jesney 2007). However, as we had shown earlier, words of different frequencies are 
subject to deletion at very different rates. Since high frequency words contribute more to the 
overall deletion rate, the deletion rate predicted by the grammar learned in this section, based on 
the overall deletion rate in the corpus, is relatively close to the deletion rates observed for high 
frequency words. Low frequency words, on the other hand, show deletion rates that are 
considerably lower than this overall deletion rate. In the next section, we augment this grammar 
to take into account the difference between words of different frequencies. 

(15)  Context Observed deletion Expected deletion 

 Pre-C 80% 79.6% 
 Pre-V 76% 76.2% 
 Pre-Pause 63% 62.8% 

3.3 Incorporating the frequency bias through weight scaling 
In order to apply weight scaling, the scaling factors for words of different frequencies need to be 
determined, and to do that, the values of the parameters (α, β, and ρ) of the beta distribution 
associated with words of different frequencies need to be determined. We start by showing how 
the values of α and β are determined. As explained in section 2.3, the value of α is set to the 
logarithm of the reference frequency – i.e. that frequency that divides the words into the frequent 
and infrequent sets. Following the procedure illustrated in (9) in section 2.3, the log reference 
frequency, α, for our Columbus English t/d-deletion corpus was determined to be 5.1. For all 
words, the value of α is hence set to 5.1. The value of β is set to the log frequency of the bin to 
which the word belongs. For the word and, for instance, α is set to 5.1, and β to the log bin to 
which and belongs, namely 5.8. 

As shown in section 2.3, ρ only influences the size of the scaling factors and not their signs. 
Its role is to determine how much influence usage frequency (via weight scaling) can have on the 
functioning of the grammar. We propose that the value of ρ is determined by fitting the model to 
the data. This value therefore has to be determined separately for each language (represented by 
some corpus). To determine the value of ρ that results in the best fit to our data, we ran multiple 
simulations, keeping the values of α and β constant while increasing the value of ρ by whole 
number steps from 1 upwards. We then compared the weight scaled models with the baseline 
model without weight scaling in terms of their mean square errors relative to the observed 
deletion rates. The improvement of the weight scaled grammars at different integer values of ρ 
can then be compared, and the value of ρ can be selected where the improvement reaches its 
maximum.22 

 

                                                
22 Using whole number increments for ρ is motivated by practical considerations. If smaller increments were used, it 
is possible that a slightly better fit could be achieved.  
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(16) Scaling factors for words of different frequencies, at different values of ρ. 

   ρ  
   Baseline 3 4 5 6 7  
 2.0 0.0 1.82 2.43 3.04 3.65 4.26 
 2.6 0.0 1.32 1.76 2.20 2.63 3.07 
 3.0 0.0 1.03 1.38 1.72 2.06 2.41 
 3.5 0.0 0.73 0.97 1.21 1.45 1.69 
 4.0 0.0 0.47 0.62 0.78 0.93 1.09 
 4.4 0.0 0.28 0.37 0.47 0.56 0.65 
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5.8 0.0 -0.24 -0.32 -0.40 -0.47 -0.55 

Scaling factor 

In (16), we give the scaling factors associated with words belonging to different frequency 
bins in our corpus at different values of ρ. As the frequency increases (top to bottom), the scaling 
factors decrease, corresponding to the fact that faithfulness constraints play a less important role 
in the evaluation of more frequent words. For the most frequent frequency bin (5.8), the scaling 
factor is negative, since for words in this bin α (the reference value, 5.1) is smaller than β (the 
log frequency of the bin, 5.8), resulting in a right-skewed beta distribution with a negative mode. 
As the value of ρ increases (from left to right), the absolute values of all the scaling factors 
increase, even though their signs do not change. This correlation corresponds to the fact that 
frequency has a larger influence (via the scaling factors) at larger values for ρ. The “baseline” 
column represents the basic grammar without frequency scaling. 

Once the scaling factors for words of different frequencies at different values of ρ have been 
determined, weight scaling can be implemented formally. We use the scenario with ρ = 5 as an 
example. The same procedure is followed for all other values of ρ. The scaling factors listed in 
(16) represent the amount with which the weight of each faithfulness constraint has to be 
increased or decreased in the evaluation of words with a specific usage frequency. For instance, 
when evaluating a word with a usage frequency of 2.0 the weight of all faithfulness constraints 
has to be increased by 3.04. When evaluating a word with a frequency of 5.8, the weight of all 
faithfulness constraints has to be decreased by 0.40, etc. In (17), we show the weight scaled 
grammars for different frequency bins when ρ = 5. To get these grammars we added the scaling 
factors from (16) to the faithfulness constraint weights of the baseline model from (15). Once 
these weight scaled grammars were determined, we manually edited the Praat grammar file for 
the baseline model that was learned in section 4.2 above. Specifically, we created separate 
grammar files for each of the different frequency bins by changing the weights of the faithfulness 
constraints according to the scaling factor for each of the frequency bins, as reflected in (17). 
Once different grammar files for each frequency bin have been created, we again used Praat’s 
“To output Distributions” function to determine the deletion frequency predicted by each of 
these frequency scaled grammars. 
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(17) Frequency scaled grammars at ρ = 5 

  Scaling factor *CT]Word MAX MAX-PRE-V MAX-PRE-PAUSE 
Baseline 0 101.16 98.84 -1.51 0.96 

2.0 3.04 101.16 101.88 1.53 4 
2.6 2.20 101.16 101.04 0.69 3.16 

3.0 1.72 101.16 100.56 0.21 2.68 
3.5 1.21 101.16 100.05 -0.3 2.17 

4.0 0.78 101.16 99.62 -0.73 1.74 

4.4 0.47 101.16 99.31 -1.04 1.43 Fr
eq

ue
nc

y 
bi

n 

5.8 -0.40 101.16 98.44 -1.91 0.56 

In (18) we show the deletion rates in pre-consonantal position predicted for a selection of 
frequency bins, at the different values of ρ from (16). Since frequency has no influence in the 
baseline grammar, the same deletion rate is expected for all frequency bins. For all of the other 
values of ρ, deletion rates increase as frequency increases (top to bottom), given that the scaling 
factors decrease as frequency increases. Lower scaling factors imply lower effective weights for 
faithfulness constraints, and hence higher rates of unfaithfulness. For all but frequency bin 5.8, 
deletion rates decrease as the value of ρ increases (left to right). These frequency bins represent 
words that appear less often than the reference frequency, and as shown in (16), these bins are 
therefore associated with positive scaling factors. Also shown in (16) is that the values of the 
scaling factors increase with ρ. At higher values of ρ, the faithfulness constraints will hence have 
higher effective weights, and therefore exert more influence on the selection of the output, with 
the resulting higher rates of faithfulness. Frequency bin 5.8 is the only bin with a frequency 
higher than the reference frequency of 5.1. As shown in (16), the scaling factors associated with 
this bin are hence negative, and decrease as ρ increases. As a result, for this frequency bin, 
deletion rates increase as ρ increases. The contribution of ρ to the model should now be clear. 
Higher values of ρ result in an increased contribution of frequency to the selection of the output. 
If a word is frequent and therefore has a higher than overall deletion rate, its deletion rate will be 
even higher at higher values of ρ. On the other hand, if a word is infrequent and therefore has a 
lower than overall deletion rate, its deletion rate will be even lower at higher values of ρ.  
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(18) Predicted deletion rates (%) in pre-consonantal context at different values of ρ. 

   ρ  
   Baseline 3 4 5 6 7  
 2.0 79.4 56.9 48.4 39.7 32.0 24.5 
 2.6 79.4 63.7 58.0 51.4 45.9 39.5 
 3.0 79.4 67.7 63.0 57.9 53.6 48.9 
 3.5 79.4 71.1 68.3 64.4 62.0 58.6 
 4.0 79.4 74.5 72.8 70.3 68.5 67.1 
 4.4 79.4 76.5 75.6 74.1 73.2 72.2 
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5.8 79.4 81.6 82.4 82.9 83.9 84.2 

Predicted %
 deletion 

The table in (19) compares the performance of the model at different values for ρ in terms of 
mean square errors.23 For each value of ρ, we also give the percent improvement of the model 
relative to the baseline model. The performance of the model steadily increases up to a value of 5 
for ρ, after which it starts declining again. Based on this, we set the value of ρ for the Columbus 
English t/d-deletion corpus at 5. Figure 4 shows the performance of the baseline model relative 
to a frequency scaled model with ρ = 5. The broken line represents the baseline model, and the 
solid line the frequency scaled model. The scaled model predicts a higher than overall deletion 
rate for words in frequency bin 5.8, and lower than overall deletion rates for other frequency 
bins. This figure also shows that the frequency scaled model fits the data better than the baseline 
model. In fact, as shown in (19), it improves on the baseline by nearly 80%.  
(19) Mean square errors and percent improvement relative to the baseline, unscaled grammar 

at different values of ρ. 

  ρ 
  Baseline 3 4 5 6 7 
 Mean Square Error 1,009.7 354.0 280.4 208.2 218.8 425.9 
 % Improvement 

Relative to Baseline 0% 64.9% 72.2% 79.4% 78.3% 57.8% 

 

 

                                                

23 Mean square error is calculated according to the formula 

€ 

Pi −Oi( )2
i=1

n

∑ , where Pi is the value predicted for 

observation i, and Oi the observed value for observation i. This value is an overall index of the deviation between the 
model prediction and the actually observed data. Improvement relative to the baseline model is calculated by first 
determining the difference in mean square error between the baseline and the model being evaluated – this 
difference represents the improvement of the new model relative to the baseline in terms of mean square error. This 
difference is then converted to a percentage improvement. For instance, to determine the improvement of a model 
with ρ = 5 relative to the baseline in (19), we first determine the difference in mean square error between the two 
models (i.e. 1,009.7 – 208.2 = 801.5). We then convert this to a percentage (i.e. 801.5/1,009.7 × 100 = 79.4%). 



24 

0 

25 

50 

75 

100 

1 2 3 4 5 6 

%
 D

el
et

io
n 

Log CELEX Frequency 

Pre-C (west bank) 

0 

25 

50 

75 

100 

1 2 3 4 5 6 

%
 D

el
et

io
n 

Log CELEX Frequency 

Pre-V (west end) 

0 

25 

50 

75 

100 

1 2 3 4 5 6 

%
 D

el
et

io
n 

Log CELEX Frequency 

Pre-Pause (west.) 

 

 

 

 

 

 

 

Figure 4: Observed and predicted t/d-deletion rates in Columbus English. The broken line 
indicates the predictions based on the baseline, unscaled HG. The solid line shows the 

predictions based on the frequency weighted HG with a ρ-value of 5. 

The fact that the scaled model fits the data better is not surprising – the scaled model 
incorporates one more parameter (frequency) than the baseline model, and given that frequency 
significantly impacts application of t/d-deletion, it is to be expected that a model with this 
additional parameter will fit the data better. To determine whether this improvement of 80% is 
sufficient to warrant the additional complexity we used the Akaike Information Criterion (AIC; 
Akaike 1973, 1983). Roughly speaking, AIC is an estimate of the amount of information lost 
when using a specific model relative to the true model. A smaller AIC value associated with a 
model therefore indicates that the model more closely approximates the true model. To calculate 
the AIC for the baseline and scaled models, we use the partial AIC derivation (Burnham and 
Anderson 2004:268-269). The formula used is given in (20) where MSE is the mean square error 
associated with a model and k the number of parameters used in the model. A model that fits the 
data better will have a smaller MSE and, all else being equal, hence a smaller (or better) AIC. On 
the other hand, the larger the number of parameters included in a model, the larger k will be. All 
else being equal, a model with more parameters will therefore have a higher (or less good) AIC 
than a model with fewer parameters. AIC therefore rewards a model for a better fit with the data 
(lower MSE), but penalizes a model for including more parameters (higher k), so that AIC gives 
a measure of the tradeoff between model complexity and model fit. The value of n is the number 
of observations in the dataset being modeled. 

(20) AIC = n loge(MSE) + 2k 
In calculating AIC for the baseline and frequency scaled models, we assume that each of the 

constraints in our HG grammar counts as one parameter. The baseline model therefore has 4 
parameters. The frequency scaled model has one additional parameter (i.e. 5) due to the addition 
of the frequency scaling factor to this model. Using the MSE’s for the respective models reported 
in (19) above, the formula in (20), and setting n = 65 (since there are 65 total data points in the 
corpus), the AIC for the two models can be calculated: AICBaseline = 457.6, AICScaled = 357.0. As 
Burnham and Anderson (2004:271) note, a model with an AIC that is more than 10 units larger 
than the best model has “essentially no support”. Given that the frequency scaled model has an 
AIC that is 100 units smaller than the baseline model, we can hence conclude that the additional 
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complexity of the scaled model is well warranted by the better fit that this model achieves 
relative to the baseline model. 

4 Geminate devoicing in borrowings in Japanese 

4.1 The data 
In this section, we present another case study to show the generality of the model that we 
developed above. Although Japanese native phonology does not tolerate voiced geminates, these 
sounds have been introduced into Japanese via borrowings. Due to Japanese coda restrictions (Itô 
1988), closed syllables are frequently borrowed with an epenthetic vowel. Additionally, when 
the coda consonant in a borrowed word is preceded by a lax vowel, the consonant is often 
geminated (Katayama 1998). When the coda consonant is also a voiced obstruent, the 
combination of these processes results in a voiced geminate. In words that contain another 
voiced obstruent, the geminate optionally devoices, as in the examples in (21) (all examples from 
Kawahara 2006:538). 

(21) guddo      ~  gutto  ‘good’ 
beddo      ~  betto  ‘bed’ 
deibiddo  ~  deibitto ‘David’ 
doggu      ~  dokku  ‘dog’ 
baggu      ~  bakku  ‘bag’ 
doraggu   ~  dorakku ‘drug’ 
biggu      ~  bikku  ‘big’ 

This optional devoicing in loanwords has received a lot of attention in recent years so that the 
factors that condition its application are now well understood. We refer the reader to the 
literature for a discussion of these factors (Crawford 2009; Kaneko and Iverson 2009; Kawahara 
2005, 2006, 2008, 2011, to appear; Nishimura 2003, 2006; Tanaka 2009 and references cited 
there). Our focus here will be on how this process is influenced by usage frequency. In two 
recent studies, Kawahara has found a strong positive correlation between geminate devoicing 
and word frequency (Kawahara 2011, to appear). We will develop an account of the results of 
Kawahara (2011) here. We summarize the most important aspects of his results below, and refer 
the reader to the original paper for more details on the design of the experiment. 

Kawahara presented 52 native Japanese speakers with 28 loanwords like those in (21) with 
the task of rating the naturalness of a pronunciation in which the voiced geminate has been 
devoiced. Participants indicated their responses on a 5-point scale, with [5] corresponding to 
“very natural”, and [1] to “very unnatural”. The raw usage frequency of each loan word token 
was taken from the Amano and Kondo Japanese lexical corpus (Amano and Kondo 2000), and 
log-transformed. Figure 5 plots the average naturalness rating that each token received against its 
log-transformed frequency. Performing a linear regression on these data confirms that log 
frequency and naturalness are positively correlated (r2 = .43, p < .01). 
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Figure 5: The relation between frequency and devoicing in Kawahara (2011). The x-axis 
represents log-transformed frequencies from Amano and Kondo (2000). The naturalness rating 

of devoicing is plotted on the y-axis. The line indicates the best-fit linear regression line. 
The best way to collect data on devoicing rates in actual speech production would be to 

investigate the prevalence of devoicing in a large, phonetically transcribed, corpus of spoken 
Japanese – similar to how we investigated the prevalence of t/d-deletion in the Buckeye Corpus 
above. Unfortunately, no such corpus exists for Japanese that is large enough to contain enough 
examples of loanwords. A second option would be to conduct a production experiment, designed 
to collect data on loanwords. Participants in such experiments usually use a rather formal speech 
style in which optional processes, such as geminate devoicing, are often inhibited. We therefore 
work under the assumption that naturalness ratings such as those in Kawahara (2011) originate in 
the same grammar that governs speech production, and that these naturalness ratings therefore 
also reflect the frequency with which devoicing will apply to the loanwords in actual speech. 
Even if this is accepted, it is still necessary to convert the 5-point naturalness scale to devoicing 
rate in some manner. Little is known about how naturalness ratings are related to production 
patterns (though see Kempen and Harbusch 2008 for some ideas involving syntactic data), and 
we therefore explored several different options for transforming the naturalness ratings of 
Kawahara (2011) to devoicing rates. In all of the transformations that we explored, the positive 
correlation between frequency and rate of devoicing was preserved. We report here on only one 
of these transformations, a simple linear transformation.24 This is the transformation on which 
our model had the best performance. 

                                                
24 Specifically, in addition to the linear transformation defined in (22), we also used an exponential and sigmoid 
transformation. The formulas used in these two transformations are given below. Under both of these 
transformations, the positive correlation between frequency of devoicing and usage frequency is preserved: 
exponential: r2 = .34, p < .01; sigmoid: r2 = .41, p < .01.  

Let r be the average naturalness rating that some token t received, and devoice(t) the rate of devoicing in token t. 
Let normr be the standardized value of r. Then: 

 Exponential transformation  

€ 

devoice(t) =
er

e5
 

 
 

 

 
 100( )   

 Sigmoid transformation  

€ 

devoice(t) =
1

1+ r−norm
r

 

 
 

 

 
 100( ) 
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In order to transform the natural ratings to devoicing rates, we made the assumption that a 
rating of [5] corresponds to a token that is always produced with devoicing, a rating of [4] to a 
token that is produced with devoicing 4/5 of the time (i.e. with 80% devoicing), etc. The formula 
used to transform the naturalness ratings is given in (22).  Figure 6 plots the deletion rate under 
this transformation against the log frequency of the tokens. As this figure shows, the correlation 
between frequency and devoicing is preserved under this transformation (r2 = .43, p < .01). 

(22) Let r be the average naturalness rating that some token t received, and devoice(t) the rate 
of devoicing in token t.  Then: 

€ 

devoice t( ) =
r
5
 

 
 
 

 
 100( )

 
To determine the overall devoicing rate under this transformation, we created a corpus 

assuming that each loanword appears in the corpus with its frequency in Amano and Kondo 
(2000). The loanword /budda/ ‘Buddha’, for instance, has a frequency of 99 in Amano and 
Kondo, and /budda/ was hence represented 99 times in our corpus. Each token was represented 
with devoicing according to the transformation given in (22). Devoicing in /budda/ received an 
average rating of 4.39. Performing the transformation on this score results in a devoicing rate of 
87.8%, and this percentage of the 99 occurrences of /budda/ in the corpus was hence represented 
with devoicing (i.e. 87 tokens with and 12 without devoicing). The same was done for all 
loanwords in the corpus. The overall devoicing rate in the corpus was then calculated to be 
82.4%. This overall rate is marked with a broken line in Figure 6.  As with the overall rate of t/d-
deletion in the Buckeye Corpus (see Figure 1), the overall rate of devoicing is closer to the rate 
observed for the more frequent words. 

 
 
 
 
 

 

 
 
 
 
 

Figure 6: The relationship between frequency and rate of geminate devoicing under a simple 
linear transformation of the natural ratings from Kawahara (2011). The solid line represents the 

result of a linear regression. The broken line represents the overall devoicing rate. 

In the rest of this section, we develop an account for this transformed corpus. As with t/d-
deletion, we first develop a purely grammatical model based on the overall devoicing rate in the 
corpus. We then augment this model with weight scaling according to the method described 
above in sections 2.2 and 2.3. 
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4.2 A grammatical account 
We rely on the three constraints in (23) – see Nishimura (2003), Kawahara (2006) and Pater 
(2009) for analyses using slightly different constraints. As with t/d-deletion, we used the noisy 
HG learning algorithm in Praat to learn the weights associated with these constraints. The 
learning input file contained 100 tokens, with the proportion of tokens represented with 
devoicing determined by the overall rate of devoicing in the corpus (i.e. 82 out of the 100 
tokens).25 The learning file was submitted to Praat’s learning algorithm, using all of the default 
settings in Praat. The constraint weights that were learned are given in (24). Once the grammar 
has been learned, the “To output Distributions” function in Praat was used to determine the 
predicted rate of devoicing for the learned grammar. This returned an expected devoicing of 
82.2%, which very closely matches the observed deletion rate of 82.4% in our corpus. However, 
as before, this grammar produces devoicing at the overall devoicing rate in the corpus, and treats 
all words of all frequencies the same. In the next section, we augment this account to incorporate 
the contribution of usage frequency to the rate of devoicing.  
(23) *GEMINATE Assign one violation mark for every consonant linked to two timing slots. 

*VOICEDOBS Assign one violation mark for every voiced obstruent. 

IDENT[voice] Assign one violation mark for every output segment that has a different 
specification for the feature [voice] than its input correspondent. 

(24)  *GEMINATE 100.0 
 *VOICEDOBS 101.3 
 IDENT[voice] 98.7 

4.3 Incorporating the frequency bias through weight scaling 
We incorporate the contribution of usage frequency into the model developed in the previous 
section in the same way as we did for t/d-deletion in section 3.3. What is required is to scale the 
weight of the faithfulness constraint IDENT[voice] up for infrequent words so that they are more 
likely to be treated faithfully, and conversely to scale the weight of IDENT[voice] down for 
frequent words. First, we determined the reference point between frequent and infrequent words 
according to the method described in (9). In total, our corpus contains 11,000 tokens. The two 
most frequent words account for over half of the 11,000 tokens (/baguddado/ ‘Baghdad’, 
frequency: 3,951;26 /baggu/ ‘bag’, frequency: 2,103). The reference point is hence halfway 
between the log frequency of /baggu/ (3.32) and the log frequency of the next most frequent 
word, /bajji/ ‘badge’ (3.05)27, or 3.19. With this reference value in hand, the beta distribution 

                                                
25 The learning input file is available as “supplementary material” on the Springerlink for this article, or from the 
first author upon request. 
26 The high frequency of /baguddado/ in Amano and Kondo is a result of their frequency counts being taken from a 
corpus of newspapers including the time after the American invasion of Iraq. Although it is not clear that 
/baguddado/ will still have such a high frequency for the average Japanese speaker, we opted not to adjust its 
frequency for the purposes of this paper. The participants in Kawahara’s experiment were mostly university students 
who were probably familiar with this event, so that /baguddado/ would have had a high frequency for them  The fact 
that /baguddado/ pronounced with devoicing, i.e. as [baguttado], received a high naturalness rating in Kawahara 
(2011) suggests that this might be correct. 
27 Following standard conventions in the literature on Japanese phonology, we use /j/ here for the affricate /dʒ/. 



29 

associated with each word can now be determined. For all words, the value of α is the reference 
log frequency of 3.19, and the value of β is the log frequency of the specific word. The value of 
the range parameter ρ is set to maximize the fit of the model’s predictions with the data being 
modeled, exactly as it was done for t/d-deletion above in section 3.3, and for the corpus with 
which we are working here, this value for ρ was found to be 1. 

           
Figure 7: Observed and predicted devoicing rates. The broken line indicates the prediction based 

on the basic, unscaled HG. The solid line shows the predictions based on the frequency  
weighted HG. 

Once the value of ρ for a corpus has been determined, the scaling factor associated with each 
word can be determined. The weight of the faithfulness constraint can then be scaled according 
to this scaling factor for each word, and the predicted rate of devoicing can be determined for 
individual words using the “To output Distributions” function in Praat. Figure 7 shows how the 
baseline, unscaled HG model compares with the frequency scaled model. The broken line plots 
the prediction of the baseline model, and the solid line the prediction of the scaled model. This 
figure clearly shows that the scaled model fits the data better. This is confirmed by the mean 
square errors (MSE) of each of the models. The MSE of the baseline model is 52.7, and that of 
the scaled model 24.5, so that the scaled model represents a 53.5% improvement over the 
baseline model.28 As with the t/d-deletion account above, this improved fit is to be expected, 
given that the scaled model contains an extra parameter (frequency) that is known to be relevant. 
In order to determine whether the additional complexity of the scaled model is warranted by the 
increase in fit, we calculated AIC values for the baseline and scaled models, as we did above for 
t/d-deletion. We found the values AICBaseline = 109.1, AICScaled = 91.2. Since the scaled model 
has an AIC that is more than 10 units smaller than the baseline model, we conclude with 
confidence that there is sufficient support for the additional complexity of the scaled model. 

                                                
28 As explained in footnote 24, we also explored an exponential and sigmoid transformation of the naturalness 
ratings. Frequency scaled models for corpora based on these transformations also performed better than baseline 
models, although the improvement was slightly less good than what we found for the linear transformation reported 
in the text. Improvement of the frequency scaled model over the baseline model: exponential transformation =  
49.0%; sigmoid transformation = 42.1%.  
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5 Discussion 
The model of phonological variation that we developed above incorporates the effects of usage 
frequency into a generative phonological grammar. Two case studies have shown that this model 
performs better than a model based on grammar alone. In this section, we discuss some general 
properties of our model, as well as some still unresolved and underexplored issues. 

5.1 Grammar dominance 
Although the model that we propose in this paper allows non-grammatical factors such as usage 
frequency to influence phonological variation, it is a grammar dominant model. Grammar sets 
the limits of what patterns of variation are possible, and all that the frequency can do is to 
determine how variation is realized within these limits. The dominance of grammar realizes itself 
in both universal terms and in the grammars of individual languages. 

First consider the universal aspects of grammar dominance. In HG (as in OT), Universal 
Grammar is represented in the constraint set. Classic OT (Prince and Smolensky 1993, 2004) 
assumes that the constraint set is universal, so that the grammar of every language contains 
exactly the same constraints. From this assumptions follows that there are certain logically 
possible grammatical constraints that do not exist, and if some constraint does not exist then 
some logically possible grammatical patterns cannot be expressed. For example, in our analysis 
of t/d-deletion, we proposed positional MAX constraints for pre-vocalic and pre-pausal position, 
but argued that no such positional constraint exists for pre-consonantal position. If this is a true 
restriction on the constraint set, deletion in pre-consonantal context will always violate only a 
subset (MAX) of the faithfulness constraints violated by deletion in pre-vocalic (MAX, MAX-PRE-
V) or pre-pausal (MAX, MAX-PRE-PAUSE) position. In (25), we show the consequences that this 
stringency relationship has for the H-score of deletion candidates in the different contexts. The 
H-score of deletion in pre-consonantal position will always be higher than that of deletion in the 
other two contexts. This effect cannot be overridden by weight scaling in our model, since we 
assume that all faithfulness constraints are scaled by the same factor (i.e. the scaling factor is not 
indexed to a particular faithfulness constraint).  In any language, for a word of any frequency, 
deletion will always be most likely in pre-consonantal position. All that frequency can do is to 
increase or decrease the likelihood of deletion in all three contexts, but it will do so to the same 
extent in all three contexts.29 

(25)  
 MAX 

MAX- 
PRE-V 

MAX- 
PRE-PAUSE H 

 /wɛst bæŋk/ → [wɛs_ bæŋk] -1   -w(MAX) 

 /wɛst ɛnd/ → [wɛs_ ɛnd] -1 -1  -w(MAX) - w(MAX-PRE-V) 

 /wɛst/ → [wɛs_] -1  -1 -w(MAX) - w(MAX-PRE-PAUSE) 

 A similar point can be made with regard to geminate devoicing in Japanese. In our analysis, 
we assumed a markedness constraint that penalizes voiced obstruents, but no constraint that 
penalizes voiceless obstruents. If no constraint against voiceless obstruents exists, a language 
                                                
29 Since a process cannot apply at a rate of higher than 100%, this statement has to be qualified. Imagine a grammar 
where pre-consonantal context has a base deletion rate of 80% and pre-pausal context of 50%. Deletion in pre-
consonantal position can be increased by at most 20% by the contribution of scaling factors. The same holds for 
scaling factors that reduce the application of a simplification process and the floor of application, 0%. 
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that has context-free voicing of obstruents (whether as a categorical or variable process) is 
impossible. It does not matter how frequent a word is: since this process is ruled out by the 
grammar, it is predicted never to be observed. 

Grammar also takes precedence over usage frequency at the level of individual languages. In 
the grammar developed for Columbus English above, the weight of MAX-PRE-V (-1.51) is lower 
than that of MAX-PRE-PAUSE (0.96), corresponding to the fact that this dialect of English shows 
more deletion in pre-vocalic than pre-pausal position. Since the weights of all faithfulness 
constraints are scaled by the same amount, the relative difference in the effective weights of 
MAX-PRE-V and MAX-PRE-PAUSE will be preserved under all scaling conditions. No matter how 
frequent a specific word is, on average a pre-vocalic deletion candidate will have a higher H-
score than a pre-pausal deletion candidate. The grammar of Columbus English dictates that 
deletion is more likely in pre-vocalic context, and frequency cannot override this. 

This dominance of grammar depends on the assumption that at a given instance of using the 
grammar (evaluation of a specific word, at a specific instance) the weights of all faithfulness 
constraints are scaled by the same amount. If weight scaling could variably affect different 
faithfulness constraints, the dominance of grammar could be lost. In this regard, our proposal 
diverges from the related proposal made by Boersma and Hayes (2001:Appendix C). Their 
model is developed in stochastic OT, and they therefore assume constraint ranking rather than 
weighting. They propose that the ranking values of some constraints can be changed in different 
speech situations. But crucially, they propose that some constraints can be ranked higher, others 
lower, and that constraint rankings do not have to be changed by the same amount. As a 
consequence, their model does not have the property of grammar dominance. 

The dominance of grammar is also not a property of other models of phonological variation. 
In some implementations of usage-based models (Bybee 2001, 2006, 2007; etc.), or exemplar 
models (Gahl and Yu 2006 and papers therein; Pierrehumbert 2001; etc.), no formal distinction is 
made between grammatical and non-grammatical factors. In fact, in describing usage-based 
grammar, Bybee first defines the usage-based conceptualization of grammar as “the cognitive 
organization of one’s experience with language” (Bybee 2006:711). Later on the same page she 
describes how this organization is done as follows: “… the general cognitive capabilities of the 
human brain, which allow it to categorize and sort for identity, similarity, and difference, go to 
work on the language events a person encounters, categorizing and entering in memory these 
experiences.” Grammar is the result of cognitive organization achieved with general cognitive 
abilities, not with grammar or language specific abilities. Exactly the same cognitive abilities 
that organize our experience with social interactions and with our physical environment organize 
our experience with language. No formal distinction is made between how language and other 
aspects of our experience are processed or stored in the mind. If a child acquiring a language 
were to be exposed to a set of experiences where deletion happens to be observed more often in 
pre-vocalic than pre-consonantal context, the general abilities of the mind to classify would 
notice this pattern, and codify this as the grammar. This view of grammar is fundamentally 
different from the type of approach that we advocate above. Under our approach, there are 
language specific cognitive capacities (Universal Grammar represented in the constraint set, as 
well as the principles for how constraints interact via their weights). Language is processed 
according to these principles and not with general cognitive capabilities. This places a limit on 
the types of grammars that can be learned. As we showed above, the assumptions about 
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Universal Grammar under which we operate imply that no grammar that produces more deletion 
in pre-vocalic than pre-consonantal context is possible.  

More research is necessary to determine to what extent certain types of grammars are truly 
impossible. A long tradition of typological research has established strong universal patterns 
across languages, a result that could be interpreted as favoring a system that includes a strong 
Universal Grammar. Recent research in artificial grammar learning has also shown that linguistic 
patterns that counter such universal trends are either unlearnable or at least not easily learnable 
(Carpenter 2006, 2010; Coetzee 2009b; Moreton 2008; Pater and Tessier 2006). On the other 
hand, there are also unambiguous examples of languages with grammars that counter universal 
trends (Coetzee and Pretorius 2010; Hyman 2001), showing that it should be possible for 
language learners to acquire grammars that do not fit neatly into the limits of Universal 
Grammar. Along similar lines, Bybee (2002:275) shows that in one dialect of English some 
words, under some circumstances, show more word-final t/d-deletion in pre-vocalic than pre-
consonantal context. With conflicting data from the current literature it is impossible to choose 
definitively between a model with grammar dominance, and a model in which grammar is 
afforded no special place. However, given that the evidence for strong universal tendencies is 
currently more copious than evidence for linguistic systems that counter these tendencies, we opt 
for the more restrictive model where Universal Grammar places limits on possible languages.  

5.2 What processes are influenced by frequency? 
In the model that we developed above, only the weights of faithfulness constraints are affected 
by frequency. From this restriction follows that all and only those phonological processes that 
violate some faithfulness constraint will be affected by frequency scaling. In this paper, we have 
focused on two such processes – consonant cluster simplification and geminate devoicing. In 
both of these processes, it is the relative weight of some faithfulness constraint(s) (MAX/MAX-
PRE-V/MAX-PRE-PAUSE or IDENT[voice]) and some markedness constraint(s) (*CT]Word or 
*VOICEDOBS/*GEMINATE) that determines whether the process applies. Since weight scaling 
affects the weights of the faithfulness constraints, it affects the relative weights of faithfulness 
and markedness constraints, and hence the likelihood that these processes will apply. 

The processes on which we focused in this paper are both examples of simplification or 
reductive processes – i.e. the form that has undergone the process is in some sense articulatorily 
simpler or more reduced than the input. There is ample evidence from the literature that such 
reductive processes are indeed subject to the influence of frequency as predicted by the model 
that we developed above. In section 1.3, we provided references for word-final obstruent 
deletion, unstressed vowel deletion, obstruent devoicing, and l-vocalization as examples. 

However, the application of augmentation processes also depends on the relative weights of 
markedness and faithfulness constraints. In a language that avoids tautosyllabic consonant 
clusters via epenthesis, for instance, the application of epenthesis (arguably not a reductive 
process) depends on the relative weights of the anti-cluster markedness constraint *COMPLEX 
and the anti-epenthesis faithfulness constraint DEP. In a language in which such a process applies 
variably, the model developed above would predict that epenthesis will be observed more often 
in more frequent words than in less frequent words. Although there are examples in the literature 
that discuss such variable augmentation processes (see Auger 2001 on variable epenthesis in 
Vimeu Picard; Nevins 2007 on variable epenthesis in Brazilian Portuguese), we do not know of 
any example where the application of these processes is discussed in relation to usage frequency. 
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If indeed variable augmentation processes are affected by frequency in the same way as variable 
reductive processes are, it would be additional evidence for the model that we developed above. 
On the other hand, if augmentation processes are not affected by frequency in the same manner, 
the model would need to be revised in some way in order to differentiate between augmentation 
and reduction processes. 

Given that only the weights of faithfulness constraints are affected by frequency scaling in 
the model developed above, variable phonological phenomena that do not depend on faithfulness 
constraints should not be affected by frequency in the same way. Under the assumption that there 
are no faithfulness constraints for prosodic structures (McCarthy 2003:section 6), variable 
prosodification is not expected to be sensitive to frequency. As an example, consider 
Hammond’s analysis of variable stress placement in Walmatjari (Hammond 1994; see also 
Anttila 2002b). In Walmatjari, tri-syllabic words are either stressed on the initial or the second 
syllable so that the underlying form /kaŋani/ ‘carried’ can be realized as [káŋani] or [kaŋáni]. 
Neither surface form violates any faithfulness constraints. The selection between the candidates 
is hence done by markedness constraints alone – in Anttila’s account, by the constraints 
TROCHEE, FTBIN and *LAPSE (Anttila 2002b). Since only faithfulness constraints are sensitive to 
weight scaling, and since faithfulness constraints are irrelevant in the choice between these two 
variants, this choice cannot be influenced by frequency in the model developed above. We do not 
know of any literature that discusses such variable phenomena in relation to usage frequency, 
and we therefore cannot determine whether this prediction is borne out by actual data. If, in fact, 
processes such as these are also sensitive to frequency, the model developed above will need to 
be augmented in some way to account for this. 

There is another set of variable phenomena that are known to be sensitive to usage frequency, 
but that are not accounted for in the model that we developed above. Morphological 
regularization (analogical leveling) is less likely to apply to more frequent words. As an 
example, Bybee (1985:119-120; also Hooper 1976) shows that regularization of the English past 
tense is more likely to apply to infrequent words than to frequent words – a regular past tense 
form for infrequent weep (weeped instead of wept) is more likely than for frequent keep (keeped 
instead of kept). See also Phillips (1984, 2001) for more similar examples. Processes such as 
these are governed by the relations between morphologically related words, and hence by output-
output correspondence constraints (Benua 2000) rather than by regular faithfulness constraints. 
Although our model cannot account for the role of frequency in these types of phenomena, the 
model could be extended in a straightforward manner to do so. An infrequent word (such as 
weep) is more likely to have a uniform paradigm. This implies that the OO-correspondence 
constraints that are responsible for enforcing paradigm uniformity should have higher weights in 
the evaluation of infrequent words than in the evaluation of frequent words. In the same way that 
we scale the weight of faithfulness constraints up for infrequent words, the weights of OO-
correspondence constraints can be scaled up for infrequent words. However, we leave full 
development of this option for future research. 

5.3 Modeling acquisition 
In sections 3.2 and 4.2, we illustrated how a variable grammar can be learned using the noisy HG 
learning algorithm implemented in Praat. We also showed how this model can be augmented to 
account for the influence of usage frequency on variation. Two more questions need to be 
considered in this regard: (i) what predictions does this approach make with regard to the 
acquisition of variable phonological processes, and (ii) do these predictions correlate with how 
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variable processes are acquired in reality? Although both of these questions are worth 
considering, we also want to make explicit that our goal in this paper is not to model the actual 
acquisition process of variable phenomena, but rather to show what a grammatical model would 
look like that can account for the variation observed in speech, and to show that such a 
grammatical model is in principle learnable. The goal of learnability theory is not to model how 
language is actually acquired, but to show whether a specific grammar is learnable from a given 
set of data (Pullum 2003:432.) Although we consider the possible implications of our model for 
acquisition, we do not believe that the value of our model crucially depends on how well it 
models actual acquisition processes. 

We first want to set aside two simplifying assumptions that we made, and that do not 
constitute claims about actual acquisition. We assume that the learner has access to the correct 
underlying form of the words encountered. In the English t/d-deletion case, for instance, upon 
hearing an utterance like [wɛs bæŋk] for ‘west bank’, we assume that the learner knows that the 
underlying form of the first word in the utterance is really /wɛst/. This assumption is part of all of 
the main learning algorithms used in phonology (Boersma and Hayes 2001:51; Tesar and 
Smolensky 1998:237). The learning discussed here is hence learning at a later stage of 
acquisition, after underlying forms have already been acquired. For a development of the formal 
mechanisms involved in learning underlying forms in a constraint-based grammar, see Tesar and 
Smolensky (1996:40-44) and especially Merchant and Tesar (2005) and Tesar (2006). 

The second simplifying assumption has to do with the role of usage frequency during 
grammar learning. We modeled the grammar learning stage above as if usage frequency of 
individual words plays no role during grammar learning, since we augmented the grammar with 
weight scaling only after the grammar has been learned (see also Hayes and Londe 2006 for a 
similar two-stage approach to learning). Another option that should be explored is one where 
usage frequency is incorporated into the grammar learning stage itself. 

The noisy HG learning algorithm implemented in Praat is an error-driven learning algorithm. 
The basic steps in the learning process are: (i) The learner receives a learning input (a surface 
form produced by an adult); (ii) The learner determines the underlying form of the learning 
input, and submits this underlying form to his/her current grammar; (iii) The learner compares 
the output generated by his/her current grammar to the learning input. If these two forms differ 
(i.e. the learner’s grammar generated an error), the learner adjusts his/her grammar to increase 
the likelihood that the grammar will generate an output identical to the learning input. In step (ii) 
of the learning cycle, the grammar is used to generate an output. In our modeling of learning 
above, this step did not include weight scaling. An alternative model of acquisition could 
incorporate weight scaling also during this stage of grammar learning. The final state of the 
grammar that will be learned if weight scaling is incorporated during learning will be comparable 
to the final weight scaled grammars that we developed above. The most important difference 
between these two approaches is expected to be in the path of acquisition – i.e. how the grammar 
changes slowly during the learning period. 

Although we did not incorporate frequency scaling during learning in our model, we can 
speculate about what would be expected from a model in which this is done. We use t/d-deletion 
as an example, but we expect the same basic pattern to be observed also in the acquisition of 
other variable processes. During the earlier stages of learning, when the learner has not yet built 
up a large corpus of learning inputs, chances are that the learner would have encountered mostly 
more frequent words. A child learning English, for instance, is more likely to hear a frequent 
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word like ‘want’ (CELEX log frequency = 4.1) than an infrequent word like ‘gourd’ (CELEX 
log frequency = 0.9). Since more frequent words have higher deletion rates overall, and since the 
child is expected to hear mostly more frequent words, the corpus of learning inputs to which the 
child is exposed will have a higher t/d-deletion rate than the actual, complete adult production 
corpus. If the child aims to replicate the deletion rate in the learning corpus that he/she is 
exposed to, we would expect the child to show a higher overall deletion rate than what adults 
actually produce overall. This prediction agrees with the fact that child speech is often 
characterized by more reduction and simplification than adult speech. 

Additionally, since during early acquisition the child will mostly be exposed to words from 
the higher end of the frequency spectrum, the range of the frequency distribution in the child’s 
learning corpus is expected to be smaller than that in the actual adult speech corpus (the range 
between the highest and lowest frequency words in the child’s corpus is expected to be smaller 
than that in an adult’s speech corpus). In the model that we developed above, weight scaling is 
done based on how much the usage frequency of a specific word differs from the reference 
frequency in the corpus. In the child’s early learning corpus, the usage frequencies are expected 
to differ less than in the adult corpus. The expectation is hence that usage frequency will have 
less of an influence during the early stages of acquisition than in an adult grammar. During early 
acquisition, all words are expected to be treated more or less the same. Only during the later 
stage of acquisition will the difference between how frequent and infrequent words are treated 
emerge more clearly. To the best of our knowledge, there is no study that specifically 
investigates how usage frequency interacts with first language acquisition of variation. There is, 
however, suggestive evidence from second language acquisition that learners make less fine 
distinctions in terms of usage frequency than native speakers. Lacoste (2008) studies the 
acquisition of standard Jamaican English by Jamaican primary school children, with a focus on 
words that ends in -Ct/-Cd clusters (i.e. exactly the words to which t/d-deletion could apply). She 
shows that the teachers make at least a three-level distinction in terms of usage frequency 
(2008:198), while children in the early stages of acquisition make only a two-level frequency 
distinction (2008:190). 

Ultimately, more research is necessary to probe in detail how children acquire variation and 
to track specifically how the production of individual words changes during the course of 
acquisition. Similarly, the learning algorithm needs to be augmented to include weight scaling. 
Only once both of these things have been done will it be possible to go beyond speculation with 
regard to how variation is acquired, and with regard to how well the predictions of the model 
developed above matches the actual acquisition trajectory. 

5.4 Final remark 
In this paper, we developed a model of phonological variation that incorporates influences from 
both grammatical and non-grammatical factors. Our model retains some of the core 
characteristics of a classic generative grammar, while also embracing insights from usage-based 
and exemplar models of grammar. In the phonological literature, the generative approach and the 
usage-based/exemplar approaches have often been presented as opposites and as incompatible 
with each other. We believe this to be a false dichotomy. Not only is it possible to integrate these 
approaches, but such an integration also enables phonological theory to account better for many 
phenomena than what either of the two approaches could do in isolation. If such an integration is 
indeed the correct route to go, then future research will have to focus on two issues. First, the 
proper way to integrate the contributions from the two types of models needs to be determined. 
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This paper contains one proposal, and the success of this proposal leads us to believe that it has 
merit. But other ways of integration are possible, and more research is necessary to determine all 
of the viable options, and to evaluate their success. Secondly, more targeted data collection 
would need to be performed. The data on phonological variation that are currently available are 
usually not suited to address the questions raised by an integrated model such as that proposed in 
this paper. We hope that the line of research reported in this paper will stimulate research into 
these issues. 
 
Acknowledgements. The ideas expressed in this paper were presented in various forms at NAPhC 5, 
NELS 38, NELS 41, the University of Michigan, the University of Massachusetts, Michigan State 
University, Stanford University, and SUNY Stony Brook. The feedback and reaction of the audiences at 
these events contributed significantly to the development of our thoughts. This work has also been 
discussed in detail with many individuals, and we acknowledge our gratitude for their contribution. This 
list includes Joe Pater, John McCarthy, John Kingston, Anne-Michelle Tessier, Pam Beddor, San 
Duanmu, Ricardo Bermúdez-Otero, William Labov, Paul Smolensky, Matt Goldrick, Colin Wilson, 
Kevin McGowan, and Susan Lin. We also acknowledge the help of Amelia Compton in running many of 
the Praat simulations in this paper. The three reviewers and the associate editor similarly helped us to 
improve the paper and to express our ideas more clearly. As always, any remaining errors and 
shortcomings are our own. 

 

 

 

References 
Akaike, Hirotugu. 1973. Information theory as an extension of the maximum likelihood 

principle. In Petrov, Boris N. and Frigyes Csaki (eds.) Second International Symposium on 
Information Theory. Budapest: Akademiai Kiado, 267-281. 

Akaike, Hirotugu. 1983. Information measures and model selection. International Statistical 
Institute 44, 277-291. 

Albright, Adam. 2009. Feature-based generalisation as a source of gradient acceptability. 
Phonology 26, 9-41. 

Amano, Shigeaki and Tadahisa Kondo. 2000. NTT Database Series: Lexical Properties of 
Japanese, 2nd Release. Tokyo: Sanseido. 

Anttila, Arto. 1997. Deriving variation from grammar. In Hinskens, Frans, Roeland van Hout 
and Leo Wetzels (eds.) Variation, Change and Phonological Theory. Amsterdam: John 
Benjamins, 35-68. 

Anttila, Arto. 2002a. Morphologically conditioned phonological alternations. Natural Language 
and Linguistic Theory 20, 1-42. 

Anttila, Arto. 2002b. Variation and phonological theory. In Chambers, Jack K., Peter Trudgill 
and Natalie Schilling-Estes (eds.) Handbook of Language Variation and Change. Oxford: 
Blackwell, 206-243. 

Anttila, Arto. 2006. Variation and opacity. Natural Language and Linguistic Theory 24, 893-
944. 

Anttila, Arto. 2007. Variation and optionality. In de Lacy, Paul (ed.) The Cambridge Handbook 
of Phonology. Cambridge: Cambridge University Press, 519-536. 



37 

Anttila, Arto, Vivienne Fong, Stefan Benus and Jennifer Nycz. 2008. Variation and opacity in 
Singapore English consonant clusters. Phonology 25, 181-216. 

Auger, Julie. 2001. Phonological variation and Optimality Theory: evidence from word-initial 
vowel epenthesis in Vimeu Picard. Language Variation and Change 13, 253–303. 

Baayen, R. Harald, Richard Piepenbrock and Leon Gulikers. 1995. The CELEX Lexical 
Database (CD-ROM. Philadelphia: Linguistic Data Consortium. 

Baese-Berk, M. and Matt Goldrick. 2009. Mechanisms of interaction in speech production. 
Language and Cognitive Processes 24, 147-185. 

Bane, Max. to appear a. A combinatoric model of variation in the English dative alternation. 
Proceedings of the 36th annual meeting of the Berkeley Linguistics Society. Berkeley: 
Berkeley Linguistics Society. 

Bane, Max. to appear b. Deriving the structure of variation from the structure of non-variation in 
the English dative. Proceedings of the 28th annual meeting of the West Coast Conference on 
Formal Linguistics. Somerville: Cascadilla Press. 

Bayley, Robert. 1995. Consonant cluster reduction in Tejano English. Language Variation and 
Change 6, 303-326. 

Bayley, Robert. 2002. The quantitative paradigm. In Chambers, J.K, Peter Trudgill and Natalie 
Schilling-Estes (eds.) The Handbook of Language Variation and Change. Oxford: Blackwell, 
117-141. 

Bell, Alan, Jason Brenier, Michelle Gregory, Cynthia Girand and Daniel Jurafsky. 2009. 
Predictability effects on durations of content and function words in conversational English. 
Journal of Memory and Language 60, 92-111. 

Benua, Laura. 2000. Phonological Relations between Words. New York: Garland. 
Boersma, Paul. 1997. How we learn variation, optionality, and probability. University of 

Amsterdam Institute of Phonetic Sciences Proceedings 21, 43-58. 
Boersma, Paul. 2008. Emergent ranking of faithfulness explains markedness and licensing by 

cue. Ms. University of Amsterdam. 
Boersma, Paul and Bruce Hayes. 2001. Empirical tests of the Gradual Learning Algorithm. 

Linguistic Inquiry 32, 45-86. 
Boersma, Paul and Joe Pater. 2008. Convergence Properties of a Gradual Learning Algorithm for 

Harmonic Grammar. Ms. University of Amsterdam, and University of Massachusetts, 
Amherst. 

Boersma, Paul and David Weenink. 2009. Praat: Doing Phonetics by Computer (Version 5.1.20. 
[Computer Program.] Retreived October 31, 2009, from http://www.praat.org. 

Browman, Catherine P. and Louis Goldstein. 1990. Tiers in articulatory phonology, with some 
implications for casual speech. In Kingston, John and Mary E. Beckman (eds.) Papers in 
Laboratory Phonology I: Between the Grammar and Physics of Speech. Cambdrige: 
Cambridge University Press, 341-376. 

Burnham, Kenneth P. and David R. Anderson. 2004. Multimodel inference: understanding AIC 
and BIC in model selection. Sociological Methods and Research 33, 261-304. 

Bybee, Joan L. 1985. Morphology: A Study of the Relation Between Meaning and Form. 
Amsterdam: Benjamins. 

Bybee, Joan L. 2000. The phonology of the lexicon: evidence from lexical diffusion. In Barlow, 
Michael and Suzanne Kemmer (eds.) Usage-Based Models of Language. Stanford: CSLI, 65-
85. 

Bybee, Joan L. 2001. Phonology and Language Use. Cambridge: Cambridge University Press. 



38 

Bybee, Joan L. 2002. Word frequency and context of use in lexical diffusion of phonetically 
conditioned sound change. Language Variation and Change 14, 261-290. 

Bybee, Joan L. 2006. From usage to grammar: the mind's response to repetition. Language 82, 
711-733. 

Bybee, Joan L. 2007. Frequency of Use and the Organization of Language. Oxford: Oxford 
University Press. 

Byrd, Dani. 1992. A note on English sentence-final stops. In Keating, Pat and Dani Byrd (eds.) 
UCLA Working Papers in Phonetics. Volume 81. Los Angeles: Department of Linguistics, 
UCLA, 37-38. 

Carpenter, Angela 2006. Acquisition of a Natural Versus an Unnatural Stress System. Ph.D. 
Dissertation, University of Massachusetts. 

Carpenter, Angela. 2010. A naturalness bias in learning stress. Phonology 27, 345 -392. 
Coetzee, Andries W. 2004. What It Means to be a Loser: Non-Optimal Candidates in Optimality 

Theory. Ph.D. Dissertation, University of Massachusetts. 
Coetzee, Andries W. 2005. The Obligatory Contour Principle in the perception of English. In 

Frota, Sónia, Marina Vigário and Maria João Frietas (eds.) Prosodies. Berlin: Mouton de 
Gruyter, 223-245. 

Coetzee, Andries W. 2006. Variation as accessing "non-optimal" candidates. Phonology 23, 337-
385. 

Coetzee, Andries W. 2008. Grammaticality and ungrammaticality in phonology. Language 84, 
218-257. 

Coetzee, Andries W. 2009a. An integrated grammatical/non-grammatical model of phonological 
variation. In Kang, Young-Se, Jong-Yurl Yoon, Hyunkyung Yo, Sze-Wing Tang, Yong-Soon 
Kang, Youngjun Jang, Chul Kim, Kyoung-Ae Kim and Hye-Kyung Kang (eds.) Current 
Issues in Linguistic Interfaces. Volume 2. Seoul: Hankookmunhwasa, 267-294. 

Coetzee, Andries W. 2009b. Learning lexical indexation. Phonology 26, 109-145. 
Coetzee, Andries W. 2009c. Phonological variation and lexical frequency. In Schardl, Anisa, 

Martin Walkow and Muhammad Abdurrahman (eds.) NELS 38, Volume 1. Amherst: GLSA, 
189-202. 

Coetzee, Andries W. to appear. Variation: where laboratory and theoretical phonology meet. In 
Cohn, Abigail C., Cécile Fougeron, and Marie K. Huffman (eds.) Oxford Handbook of 
Laboratory Phonology. Oxford: Oxford University Press. 

Coetzee, Andries W. and Joe Pater. 2008. Weighted constraints and gradient restrictions on place 
co-occurrence in Muna and Arabic. Natural Language and Linguistic Theory 26, 289-337. 

Coetzee, Andries W. and Joe Pater. to appear. The place of variation in phonological theory. In 
Goldsmith, John, Jason Riggle and Alan Yu (eds.) Handbook of Phonological Theory. 2nd 
Edition. Cambridge: Blackwell. 

Coetzee, Andries W. and Rigardt Pretorius. 2010. Phonetically grounded phonology and sound 
change: the case of Tswana labial plosives. Journal of Phonetics 38, 404-421. 

Côté, Marie-Hélène. 2004. Syntagmatic distinctness in consonant deletion. Phonology 21, 1-41. 
Crawford, Clifford James. 2009. Adaptation and Transmission in Japanese Loanword 

Phonology. Ph.D. dissertation, Cornell University. 
Diehl, Randy L. and Margaret A. Walsh. 1989. An auditory basis for the stimulus-length effect 

in the perception of stops and glides. Journal of the Acoustical Society of America 85, 2154-
2164. 



39 

Eek, Arvo and Einar Meister. 1995. The perception of stop consonants: locus equations and 
spectral integration. ICPhS XIII: Proceedings of the XIIIth International Congress of 
Phonetic Sciences, Stockholm, Sweden. Volume 1, 18-21. 

Fasold, R. 1972. Tense Marking in Black English. Arlington: Center for Applied Linguistics. 
File-Muriel, Richard J. 2010. Lexical frequency as a scalar variable in explaining variation. The 

Canadian Journal of Linguistics 55, 1-25. 
Fowler, Carol A. 1994. Invariants, specifiers, cues: an investigation of locus equations as 

information for place of articulation. Perception and Psychophysics 55, 597-610. 
Frank, Austin F. and T. Florian Jaeger. 2008. Speaking rationally: Uniform Information Density 

as an optimal strategy for language production. The 30th Annual Meeting of the Cognitive 
Science Society (CogSci08), 939-944. 

Fruchter, David and Harvey M. Sussman. 1997. The perceptual relevance of locus equations. 
Journal of the Acoustical Society of America 102, 2997-2308. 

Gahl, Susanne. 2008. Time and thyme are not homophones: the effect of lemma frequency on 
word durations in spontaneous speech. Language 84, 474-496. 

Gahl, Susanne and Alan Yu. (eds.) 2006. Linguistic Review 23(3). Special Issue on Exemplar-
Based Models in Linguistics. Berlin: De Gruyter Mouton. 

Goeman, Ton. 1999. T-deletie in Nederlandse Dialecten. Kwantitatiewe Analyse van Structurele, 
Ruimtelijke en Temporele Variate. Ph.D. Dissertation, Vrije Universiteit, Amsterdam. The 
Hague: Holland Academic Graphics. 

Goeman, Ton and Pieter van Reenen. 1985. Word-Final t-Deletion in Dutch Dialects. The Roles 
of Conceptual Prominence, Articulatory Complexity, Paradigmatic Properties, Token 
Frequency and Geographical Distribution. Amsterdam: Vakgroep Algemene 
Taalwetenschap Vrije Universiteit. 

Goldinger, Stephen D., Paul A. Luce, David B. Pisoni and Joanne K. Marcario. 1992. Form-
based priming in spoken word recognition: the roles of competition and bias. Journal of 
Experimental Psychology: Learning, Memory and Cognition 18, 1211-1238. 

Goldsmith, John. 1993. Harmonic phonology. In Goldsmith, John (ed.) The Last Phonological 
Rule: Reflections on Constraints and Derivations. Chicago: Chicago University Press, 21-60. 

Goldsmith, John. (ed.) 1995. The Handbook of Phonological Theory. Oxford: Blackwell. 
Gupta, Arjun K. and Saralees Nadarajah. (eds.) 2004. Handbook of the Beta Distribution and Its 

Applications. New York: Marcel Dekker. 
Guy, Gregory R. 1991. Explanation in variable phonology: an exponential model of 

morphological constraints. Language Variation and Change 3, 1-22. 
Guy, Gregory R. 2011. Variability. In Marc van Oostendorp, Colin J. Ewen, Elizabeth Hume and 

Keren Rice (eds.)  The Blackwell Companion to Phonology. Volume 4, 2190-2213. 
Guy, Gregory R. and Charles Boberg. 1997. Inherent variability and the obligatory contour 

principle. Language Variation and Change 9, 149-164. 
Hammond, Michael. 1994. An OT Account of Variability in Walmatjari Stress. Ms. University 

of Arizona. 
Hayes, Bruce and Zsuzsa Cziráky Londe. 2006. Stochastic phonological knowledge:  the case of 

Hungarian vowel harmony. Phonology 23, 59-104. 
Hooper, Joan B. 1976. Word frequency in lexical diffusion and the source of morphological 

change. In Christie, William M. (ed.) Current Progress in Historical Linguistics. 
Amsterdam: North-Holland Publishing Co., 95-105. 



40 

Hyman, Larry. 2001. On the limits of phonetic determinism in phonology: *NC revisited. In 
Hume, Elizabeth and Keith Johnson (eds.) The Role of Speech Perception Phenomena in 
Phonology. New York: Academic Press, 141-185. 

Itô, Junko. 1988. Syllable Theory in Prosodic Phonology. New York: Garland. 
Itô, Junko and Armin Mester. 2001. Covert generalizations in Optimality Theory: the role of 

stratal faithfulness constraints. Proceedings of the 2001 International Conference on 
Phonology and Morphology. Seoul: The Phonology-Morphology Circle of Korea, 3-33. 

Jaeger, T. Florian. 2010. Redundancy and reduction: speakers manage syntactic information 
density. Cognitive Psychology 61, 23-62. 

Jesney, Karen. 2007. The locus of variation in weighted constraint grammars. Poster presented at 
the Workshop on Variation, Gradience and Frequency in Phonology.  Stanford University, 
July 2007. [Downloaded on December 27, 2007 from 
http://people.umass.edu/kjesney/papers.html]. 

Jurafsky, Daniel, Alan Bell, Michelle Gregory and William D. Raymond. 2001. Probabilistic 
relations between words: evidence from reduction in lexical production. In Bybee, Joan L. 
and Paul Hopper (eds.) Frequency and the Emergence of Linguistic Structure. Amsterdam: 
Benjamins, 229-254. 

Kaisse, Ellen M. and Patricia A. Shaw. 1985. On the theory of Lexical Phonology. Phonology 
Yearbook 2, 1-30. 

Kaneko, Emiko and Gregory K. Iverson. 2009. Phonetic and other factors in Japanese on-line 
adaptation of English final consonants. In Inagaki, Shunji and Makiko Hirakawa (eds.) 
Studies in Language Sciences 8: Papers from the eighth annual conference of the Japanese 
Society for Language Science. Tokyo: Kuroshio Publications. 

Kang, Hye-Kyung. 1994. Variation in past-marking and the question of the system in 
Trinidadian English. In Beals, Katherine (ed.) CLS 30: Papers from the 30th Regional 
Meeting of the Chicago Linguistic Society.  Volume 2: The Parasession on Variation in 
Linguistic Theory. Chicago: Chicago Linguistic Society. 

Katayama, Motoko 1998. Optimality Theory and Japanese Loanword Phonology. Ph.D., 
University of California, Santa Cruz. 

Kawahara, Shigeto. 2005. Voicing and geminacy in Japanese: An acoustic and perceptual study. 
In Flack, Katherine and Shigeto Kawahara (eds.) Univeristy of Massachusetts Occasional 
Papers in Linguistics 31. Amherst: GLSA, 87-120. 

Kawahara, Shigeto. 2006. A faithfulness ranking projected from a perceptibility scale: the case 
of [+voice] in Japanese. Language 82, 536-574. 

Kawahara, Shigeto. 2008. Phonetic naturalness and unnaturalness in Japanese loanword 
phonology. Journal of East Asian Linguistics 18, 317–330. 

Kawahara, Shigeto. 2011. Aspects of Japanese Loanword Devoicing. Journal of East Asian 
Linguistics 20, 169-194. 

Kawahara, Shigeto. to appear. Japanese loanword devoicing revisited: a wellformedness rating 
study. Natural Language and Linguistic Theory. 

Kempen, Gerard and Karin Harbusch. 2008. Comparing linguistic judgments and corpus 
frequencies as windows on grammatical competence: a study of argument linearization in 
German clauses. In Steube, Anita (ed.) The Discourse Potential of Underspecified Structures. 
Berlin: Walter de Gruyter, 179–192. 

Kewley-Port, Diane. 1983. Time-varying features as correlates of place of articulation in stop 
consonants. Journal of the Acoustical Society of America 73, 322-335. 



41 

Kewley-Port, Diane, David Pisoni and Michael Studdert-Kennedy. 1983. Perception of static and 
dynamic acoustic cues to place of articulation in initial stop consonants. Journal of the 
Acoustical Society of America 73, 1779-1793. 

Kiparsky, Paul. 1985. Some consequences of Lexical Phonology. Phonology Yearbook 2, 85-
138. 

Kiparsky, Paul. 1993. An OT perspective on phonological variation. Handout from Rutgers 
Optimality Workshop 1993, also presented at NWAV 1994, Stanford University. Available 
at http://www.stanford.edu/~kiparsky/Papers/nwave94.pdf. 

Labov, William. 1966. The Social Stratification of English in New York City. Washington, DC: 
Center for Applied Linguistics. 

Labov, William. 1969. Contraction, deletion, and inherent variability of the English copula. 
Language 45, 715-762. 

Labov, William. 1989. The child as linguistic historian. Language Variation and Change 1, 85-
97. 

Labov, William. 2004. Quantitative analysis of linguistic variation. In Ammon, Ulrich, Norbert 
Dittmar, Klaus J. Mattheier and Peter Trudgill (eds.) Sociolinguistics: An International 
Handbook of the Science of Language and Society. Volume 1. 2nd edition. Berlin: Mouton de 
Gruyter, 6-21. 

Lacoste, Véronique 2008. Learning the Sounds of Standard Jamaican English: Variationist, 
Phonological and Pedagogical Perspectives on 7-Year-Old Children’s Classroom Speech. 
Ph.D. Dissertation, University of Essex. 

Lahiri, Aditi, Letitia Gewirth and Sheila E. Blumstein. 1984. A reconsideration of acoustic 
invariance for place of articulation in diffuse stop consonants: evidence from a cross-
language study. Journal of the Acoustical Society of America 76, 391-404. 

Legendre, Géraldine, Yoshiro Miyata and Paul Smolensky. 1990. Can connectionism contribute 
to syntax? Harmonic Grammar, with an application. In Ziolkowski, Michael, Manuela Noske 
and Karen Deaton (eds.) Proceedings of the 26th Regional Meeting of the Chicago Linguistic 
Society. Chicago: Chicago Linguistic Society, 237-252. 

Lin, Susan, Patrice S. Beddor and Andries W. Coetzee. to appear. Gestural reduction and sound 
change: an ultrasound study. ICPhS XVII. 

Lindblom, Bjorn. 1990. Explaining phonetic variation: a sketch of the H and H theory. In 
Hardcastle, William J. and Alain Marchal (eds.) Speech Production and Speech Modeling. 
Dordrecht: Kluwer Academic Publishers, 403-439. 

Luce, Paul A. and David B. Pisoni. 1986. Recognizing spoken words: the neighborhood 
activation model. Ear and Hearing 19, 1-35. 

Martínez-Celdrán, Eugenio and Xavier Villalba. 1995. Locus equations as a metric for place of 
articulation in automatic speech recognition. ICPhS XIII: Proceedings of the XIIIth 
International Congress of Phonetic Sciences, Stockholm, Sweden. Volume 1, 30-33. 

Malécot, André. 1958. The role of releases in the identification of released final stops: a series of 
tape-cutting experiments. Language 34, 274-284. 

McCarthy, John J. 2003. Sympathy, cumulativity, and the Duke-of-York gambit. In Féry, 
Caroline and Ruben van de Vijver (eds.) The Syllable in Optimality Theory. Cambridge: 
Cambridge University Press, 23-76. 

McCarthy, John J. and Alan Prince. 1995. Faithfulness and reduplicative identity. In Beckman, 
Jill, Suzanne Urbanczyk and Laura Walsh Dickey (eds.) University of Massachusetts 



42 

Occasional Papers in Linguistics 18: Papers in Optimality Theory. Amherst: GLSA, 249-
384. 

McNamara, Timothy P. 2005. Semantic Priming: Perspectives from Memory and Word 
Recognition. New York: Psychology Press, Taylor and Francis. 

Merchant, Nazarré and Bruce Tesar. 2005. Learning underlying forms by searching restricted 
lexical subspaces. CLS 41: Proceedings from the 41st Annual Meeting of the Chicago 
Linguistic Society. Chicago: CLS, 33-48. 

Mitterer, Holger and Mirjam Ernestus. 2006. Listeners recover /t/'s that speakers reduce: 
evidence from /t/-lenition in Dutch. Journal of Phonetics 34, 73-103. 

Moreton, Elliott. 2008. Learning bias as a factor in phonological typology. Phonology 25, 83-
127. 

Moreton, Elliott. 2010. Underphonologization and modularity bias. In Parker, Stephen (ed.) 
Phonological Argumentation: Essays on Evidence and Motivation. London: Equinox, 79-
101. 

Nearey, Terrance M. and Sherrie E. Shammas. 1987. Formant transitions as partly distinctive 
invariant properties in the identification of voiced stops. Canadian Acoustics 15, 17-24. 

Nevins, Andrew. 2007. Review of Scheer 2004. Lingua 118, 425-434. 
Nishimura, Kohei. 2003. Lyman's Law in Loanwords. M.A. thesis, Nagoya University. 
Nishimura, Kohei. 2006. Lyman's Law in loanwords. Phonological Studies [Onin Kenkyuu] 9, 

83-90. 
Pater, Joe. 2009. Weighted constraints in generative linguistics. Cognitive Science 33, 999-1035. 
Pater, Joe and Anne-Michelle Tessier. 2006. L1 phonotactic knowledge and the L2 acquisition of 

alternations. In Slabakova, Roumyana, Silvina A. Montrul and Philippe Prévost (eds.) 
Inquiries in Linguistic Development: Studies in Honor of Lydia White. Amsterdam: 
Benjamins, 115-131. 

Patrick, Peter L. 1992. Creoles at the intersection of variable processes: t, d deletion and past-
marking in the Jamaican mesolect. Language Variation and Change 3, 171-189. 

Patterson, David and Cynthia M. Connine. 2001. Variant frequency in flap production: A corpus 
analysis of variant frequency in American English flap production. Phonetica 58, 254-275. 

Phillips, Betty S. 1984. Word frequency and the actuation of sound change. Language 60, 320-
342. 

Phillips, Betty S. 2001. Lexical diffusion, lexical frequency, and lexical analysis. In Bybee, Joan 
L. and Paul Hopper (eds.) Frequency and Emergence of Linguistic Structure. Amsterdam: 
John Benjamins, 123-136. 

Phillips, Betty S. 2006. Word Frequency and Lexical Diffusion. New York: Palgrave Macmillan. 
Pierrehumbert, Janet. 2001. Exemplar dynamics: word frequency, lenition and contrast. In 

Bybee, Joan L. and Paul Hopper (eds.) Frequency Effects and the Emergence of Lexical 
Structure. Amsterdam: Benjamins, 137-157. 

Pitt, Mark A., Laura Dilley, Keith Johnson, S. Kieling, William D. Raymond, Elizabeth Hume 
and E. Fosler-Lussier. 2007. Buckeye Corpus of Conversational Speech. 2nd Release. 
[www.buckeyecorpus.osu.edu]. Columbus: Department of Psychology, Ohio State 
University. 

Postal, Paul. 1966. Review of "Elements of General Linguistics" by André Martinet. 
Foundations of Language 2, 151-186. 

Postal, Paul. 1968. Apects of Phonological Theory. New York: Harper and Row. 



43 

Prince, Alan and Paul Smolensky. 1993. Optimality Theory: Constraint Interaction in Generative 
Grammar. Ms. New Brunswick, Rutgers University. [Revised version appeared as Prince and 
Smolensky 2004.]. 

Prince, Alan and Paul Smolensky. 2004. Optimality Theory: Constraint Interaction in 
Generative Grammar. Oxford: Blackwell. [Revised version of Prince and Smolensky 1993.]. 

Pullum, Geoffrey K. 2003. Learnability. In Frawley, William J. (ed.) The International 
Encyclopedia of Linguistics. Oxford: Oxford University Press, 431-434. 

Raymond, William D., Robin Dautricourt and Elizabeth Hume. 2006. Word-medial /t,d/ deletion 
in spontaneous speech: modeling the effects of extra-linguistic, lexical, and phonological 
factors. Language Variation and Change 18, 55-97. 

Reynolds, Bill 1994. Variation and Phonological Theory. Ph.D. Dissertation, University of 
Pennsylvania. 

Santa Ana, Otto 1991. Phonetic Simplification Processes in the English of the Barrio: A Cross-
Generational Sociolinguistic Study of the Chicanos of Los Angeles. Ph.D.  dissertation, 
University of Pennsylvania. 

Scarborough, Rebecca 2004. Coarticulation and the Structure of the Lexicon. Ph.D. Dissertation, 
UCLA. 

Scarborough, Rebecca. 2010. Lexical and contextual predictability: confluent effects on the 
production of vowels. In Fougeron, Cécile, Barbara Kühnert, Mariapaola D’Imperio and 
Nathalie Vallée (eds.) Papers in Laboratory Phonology X: Variation, Phonetic Detail and 
Phonological Modeling. Berlin: Mouton de Gruyter, 557-586. 

Scheer, Tobias. 2004. A Lateral Theory of Phonology: What is CVCV and Why Should it Be. 
Berlin: Mouton de Gruyter. 

Schouten, Marten E.H. 1982. T-deletie in de stad Utrecht: schoolkinderen en grootouders. Forum 
der Letteren 23, 282-291. 

Schouten, Marten E.H. 1984. T-deletie in het zuiden van die provincie Utrecht. Taal en Tongval 
36, 162-173. 

Smolensky, Paul and Géraldine Legendre. (eds.) 2006. The Harmonic Mind: From Neural 
Computation to Optimality-Theoretic Grammar. Volume 1: Cognitive Architecture. Volume 
2: Linguistic and Philosophical Implications. Cambrdige, MA: MIT Press. 

Steriade, Donca. 1999. Phonetics in phonology: The case of laryngeal neutralization. In Gordon, 
Matthew K. (ed.) UCLA Working Papers in Linguistics 2. (Papers in Phonology 3). Los 
Angeles: Department of Linguistics, UCLA, 25–146. 

Steriade, Donca. 2001. Directional asymmetries in place assimilation. In Hume, Elizabeth and 
Keith Johnson (eds.) The Role of Speech Perception in Phonology. San Diego: Academic 
Press, 219-250. 

Stevens, Kenneth N. and Sheila E. Blumstein. 1978. Invariant cues for place of articulation in 
stop consonants. Journal of the Acoustical Society of America 64, 1358-1368. 

Stevens, Kenneth N. and Samuel J. Keyser. 1989. Primary features and their enhancement in 
consonants. Language 65, 81-106. 

Sussman, Harvey M., Helen A. McCaffrey and Sandar A. Matthews. 1991. An investigation of 
locus equations as a source of relational invariance for stop place categorization. Journal of 
the Acoustical Society of America 90, 936-946. 

Tanaka, Shin-Ichi. 2009. The eurhythmics of segmental melody. Journal of the Phonetic Society 
of Japan 13, 44-52. 



44 

Tesar, Bruce. 2006. Learning from paradigmatic information. In Davis, Christopher, Amy-Rose 
Deal and Youri Zabbal (eds.) NELS 36: Proceedings of the Thirty-Sixth Annual Meeting of 
the North East Linguistic Society. Volume 2. Amherst: GLSA, 619-638. 

Tesar, Bruce and Paul Smolensky. 1996. Learnability in Optimality Theory (long version). 
Technical report JHU-CogSci-96-4, Department of Cognitive Science, The Johns Hopkins 
University, Baltimore, Md. 

Tesar, Bruce and Paul Smolensky. 1998. Learnability in Optimality Theory. Linguistic Inquiry 
29, 229-268. 

van Oostendorp, Marc. 1997. Style levels in conflict resolution. In Hinskens, Frans, Roeland van 
Hout and Leo Wetzels (eds.) Variation, Change and Phonological Theory. Amsterdam: John 
Benjamins, 207-229. 

Versace, Rémy and Brigitte Nevers. 2003. Word frequency effect on repetition priming as a 
function of prime duration and delay between the prime and the target. British Journal of 
Psychology 94, 389-408. 

Vitevitch, Michael S. and Paul A. Luce. 1998. When words compete: levels of processing in 
spoken word recognition. Psychological Science 9, 325-329. 

Vitevitch, Michael S. and Paul A. Luce. 1999. Probabilistic phonotactics and neighborhood 
activation in spoken word recognition. Journal of Memory and Language 40, 734-408. 

Walsh, Margaret A. and Randy L. Diehl. 1991. Formant transition duration and amplitude rise 
time as cues to the stop/glide distinction. The Quaterly Journal of Experimental Psychology 
43A, 603-620. 

Zsiga, Elisabeth. 2000. Phonetic alignment constraints: consonant overlap and palatalization in 
English and Russian. Journal of Phonetics 28, 69-102. 


