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Abstract

Mental representations have continuous as well as discrete, combinatorial
properties. For example, while predominantly discrete, phonological
representations also vary continuously; this is reflected by gradient effects in
instrumental studies of speech production. Can an integrated theoretical
framework address both aspects of structure? The framework we introduce here,
Gradient Symbol Processing, characterizes the emergence of grammatical
macrostructure from the Parallel Distributed Processing microstructure
(McClelland & Rumelhart, 1986) of language processing. The mental
representations that emerge, Distributed Symbol Systems, have both
combinatorial and gradient structure. They are processed through Subsymbolic
Optimization-Quantization, in which an optimization process favoring
representations that satisfy well-formedness constraints operates in parallel with
a distributed quantization process favoring discrete symbolic structures. We
apply a particular instantiation of this framework, A-Diffusion Theory, to
phonological production. Simulations of the resulting model suggest that
Gradient Symbol Processing offers a way to unify accounts of grammatical
competence with both discrete and continuous patterns in language
performance.

The work discussed here was developed as one path for carrying out a research program
that was already sketched by 1986

(1) A PDP approach to cognitive macrostructure
“The basic perspective of this book is that many of the constructs of macrolevel
descriptions ... can be viewed as emerging out of interactions of the microstructure of
distributed models. ... although we imagine that rule-based models of language
acquisition ... may all be more or less valid approximate macrostructural descriptions,

1 Important precedents include Hofstadter (1979, 1985). Other approaches to combining continuous
activation spreading and symbolic structure, but without distributed representations (in the sense
used here), include the ACT systems (Anderson & Lebiere, 1998), the LISA model (Hummel &
Holyoak, 2003) and a range of hybrid architectures (Wermter & Sun, 2000).
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we believe that the actual algorithms involved cannot be represented precisely in any
of those macrotheories.

... as we develop clearer understandings of the microlevel models, we may wish to
formulate rather different macrolevel models ... PDP mechanisms provide a powerful
alternative set of macrolevel primitives ... [e.g.,] “Relax into a state that represents an
optimal global interpretation of the current input.” (Rumelhart & McClelland 1986b:
125-126)

The final sentence of this quotation states the first aspect of the microstructure that is critical
for the work presented here. The other crucial microstructural feature is the PDP principle
that representations are distributed patterns of activation. Our aim is to make
mathematically precise the emergence of symbolic cognitive macrostructure from such
microstructure. The sense of ‘emergence’ relevant here is that the new (‘emergent’)
properties of the macrostructure are formally entailed by the basic properties of the
microstructure; we do not refer to emergence through learning, and indeed the
contributions of learning to emergence play no role in the work reported in this article.

The psychological reality of symbolic rules and representations is of course an issue that
divides the field. Hypotheses range from the eliminativist extreme, which denies any degree
of cognitive reality to symbolic descriptions, to the implementationalist extreme, which
takes symbolic descriptions to be virtually exact accounts of internal cognitive function. The
working hypothesis guiding the research program reported here is intermediate: (2).

(2) GSPH: the Gradient Symbol Processing Hypothesis (for grammar)

a. Symbolic grammatical theory provides good approximations to the
macrostructure of internal cognitive representations and functions.
Psycholinguistic theory can profit by directly exploiting the detailed insights
provided by grammatical theory.

b. Symbolic macro-descriptions are in need of microlevel representations and
algorithms, and of the macrolevel improvements that derive from this
microstructure.

This is not the place to make a general theoretical and empirical case for the value of the
GSPH (but see Goldrick, Baker, Murphy & Baese-Berk, 2011; Smolensky & Legendre, 2006).
Our goal here is only to present a few of the results following from the GSPH, results that
we believe offer new insights into the interaction between the symbolic and the gradient in
cognition. Our descriptions of phenomena and mechanisms should all be understood as
being prefaced by “according to the GSPH” — we of course recognize that our descriptions
do not generally express consensus views.

Within the particular domain we focus upon here, phonological production, proposals
span the spectrum from traditional implementationalist frameworks to quite eliminativist
approaches (e.g., Gafos & Benus, 2006; Port & Leary, 2005). Multiple intermediate positions
are also represented. The Articulatory Phonology framework (Browman & Goldstein, 1992;
Davidson, 2006) deploys a number of continuous variables evolving in continuous time,
along with discrete components (e.g., sets of gestures, landmarks for intergestural timing).
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There are also hybrid approaches which allow both discrete morphological and
phonological symbolic representations to directly interact with continuous phonetic
representations (e.g., phonetic exemplars; see Pierrehumbert, 2006, for a review). Our
proposal maintains a clear separation between phonological and phonetic representations
(allowing only the former to interact with morphological representations), and is unique in
incorporating gradience within symbolic phonological representations, as well as within
non-symbolic phonetic representations.

We emphasize that we regard the GSPH truly as a working hypothesis. We would
welcome future results showing how some of the structure that we must now simply
assume to be in place can arise from learning, or results that show how to characterize, with
some formal precision, a macrostructure that possesses the functional capabilities of our
architecture but which deviates more significantly from symbolic theory. Work such as
Plaut, McClelland, Seidenberg, & Patterson (1996) is quite promising on both accounts, and
formal connections to the approach presented here would be extremely valuable.

Our topic, the emergence of macrostructure, has been a main theme in the work of Jay
McClelland. We view our approach as fundamentally consistent with his, but
complementary. McClelland’s approach assigns preeminent importance to gradience, with
approximately discrete symbolic structure emerging in particular cognitive contexts. As
discussed below, our view is that symbolic combinatorial structure provides a highly
productive framework for developing theories of cognition. Our approach is therefore to
start with systems utilizing discrete symbolic constituents and incorporate gradience as
required by the data. We anticipate that the two approaches will eventually meet
somewhere in a middle ground where the discrete and the continuous interact in a rich a
constructive fashion.

1. Introduction to Gradient Symbol Processing and phonological production

Our Gradient Symbol Processing Hypothesis (2) asserts that, to a good approximation,
mental representations have a crucial property: they are systematic, structured
combinations of discrete constituents (Fodor & Pylyshyn, 1988; Pylyshyn, 1984). Our work
on the emergence of macro- from microstructure aims to address the question: How do the
continuous and the discrete combinatorial aspects of mental representation interact? This question
looms large in many domains of higher cognition. Two illustrative issues in language are
given in (3).

(3) Discrete/continuous interaction: Examples in language (elaborated in Section 4.3)

a. In phonological encoding (mapping lexical /roz+z/ ‘ROSE+PL’ to phonological
“roses”), continuous activation-spreading computes outputs that are, to a good
approximation, structured combinations of discrete speech sounds (or segments)—
but speech error data reveal that these outputs are also gradient in subtle ways.
Can these two aspects be accounted for within a single integrated architecture?

b. In many arenas of linguistic performance, continuous variables such as frequency
and similarity interact strongly with discrete grammatical structure. Can we derive
such interaction from the cognitive microstructure of grammar?
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A broad survey of cases of (3b) can be found in Bybee & McClelland (2005), which stresses
the importance of the continuous variables, but discusses their influences within and upon
the structural elements of grammars. McClelland & Vander Wyk (2006) provide a detailed
study of cases of (3b) in the phonological grammar of English. Another type of strong
interaction is gradience in the degree of grammatical productivity discussed in McClelland
& Bybee (2007).

For concreteness, most of our discussion will focus on the representations within, and
interaction between, two components proposed in the architectures of spoken language
processing assumed by many researchers: lexical processing and phonological encoding (Dell,
1986; Garrett, 1975; Goldrick & Rapp, 2007; Levelt, Roelofs, & Meyer, 1999; Stemberger,
1985).

In these architectures, the state of the lexical component is assumed to be well
approximated by a combinatorial representation composed of the stored sound structures of
a set of morphemes chosen by a speaker to communicate a meaning —e.g., /roz/+/z/ for ROSE
+ PLURAL (slash-delimiters mark lexical representations; in generative phonological theory,
these are termed “underlying representations’). The state of the phonological component is
well approximated by a combinatorial representation composed of a multi-set of
phonological segments related in a particular order and grouped into constituents such as
syllables [o], stress feet (Ft) and prosodic words [PrWd]—e.g., [prwd (rt [610][5292])] ‘rOSes’
(square brackets denote phonological representations; in generative phonological theory,
these are termed ‘surface representations’: Smolensky, Legendre, & Tesar, (2006:473-480)
gives a mini-tutorial). This combinatorial representation serves as input to subsequent
phonetic processes that compute the articulator trajectories corresponding to these symbolic
phonological representations.

Both the lexical and phonological representations are discrete—to a good
approximation. We shall see, however, that subtle gradient (i.e., non-discrete) effects are at
work. For example, gradient differences in phonological representations give rise to small
but systematic differences in the continuous representations of phonetics (e.g., slightly
different voice onset times for consonants: Section 4.3).

In considering the relation between components of the cognitive system, we focus on
relatively small time scales. For example, in the context of lexical and phonological
processing, we consider a buffer of sufficiently modest size that it is a reasonable
approximation to assume that the morphemes it contains are processed in parallel when
computing the phonological representation. One parallel step of input-to-output mapping
constitutes a single relaxation (or settling) of a component—as in (1). In production, the
parallel activation of phonological elements from multiple morphemes is revealed by
speech errors that anticipate phonological elements from other (nearby) morphemes (Dell,
1986). Similarly, in spoken word perception, listeners persist in representing ambiguous
speech sounds over many segments; they do not commit to a single parse of the input until
sufficient information is received (McMurray, Tanenhaus, & Aslin, 2009). (The integration of
these parallel computations with longer-term serial processing is an important issue for
future work.)
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Pursuing the overall approach sketched in (1), we treat the discrete, symbolic,
combinatorial characterizations of the inputs and outputs of a cognitive process such as
phonological encoding as higher-level approximate descriptions of patterns of activity in a
connectionist network: the macrostructure of the system is symbolic, the microstructure is
PDP (see Figure 1). In the Gradient Symbol Processing framework that we present here,
processing consists in continuous movement in a continuous state space of distributed
activation patterns, a discrete subset of which constitutes the realizations of symbol
structures. To produce an appropriately discrete output by the end of a relaxation, this
continuous dynamics must end up (approximately) at one of these special points.

Although the representational space for phonological encoding is continuous, it is
phonological, not phonetic. Continuous articulatory and acoustic dimensions are encoded in
other representational spaces. We will return to this important point.

Figure 1. One parallel step of processing— one relaxation—in phonological encoding
(German Rad “wheel’). Input and output representations are Distributed Symbol
Structures characterized at both macro- and microlevels. Evaluation (solid arrows) and
quantization (dashed arrow) dynamics perform Gradient Symbol Processing.

Ignoring for a moment the connections drawn with a dashed arrow, Figure 1 indicates
that there are feed-forward connections from the group of connectionist units hosting the
lexical representation to that hosting the phonological representation. These, together with a
set of recurrent connections among the phonological units, constitute the phonological
grammar G, in the following precise sense. If the pattern of activation over the lexical units
is the discrete point in state space that is described symbolically as, say, /rad/—the German
lexical form for Rad ‘wheel’—then the solid connections will drive the phonological units
towards the pattern of activity which is the discrete state described (simplifying) as [rat], the
phonological form that the grammar G specifies as the grammatical pronunciation of Rad.
(In isolation, this morpheme is pronounced with a final [t]; in other contexts, the
corresponding segment is pronounced as [d]. This is German final voicing neutralization.)

The dashed arrow in Figure 1 indicates another set of recurrent connections among the
phonological units: they drive the phonological units to the discrete set of states that have a
combinatorial symbolic description. This is the technical core of the new contributions of the
work reported here. (The remaining techniques were presented as the general Integrated
Connectionist/Symbolic cognitive architecture in Smolensky & Legendre, 2006; pointers are
given throughout the article.) The proposed theory of the dynamics these connections create
is presented in Section 3. The need for such a dynamics is argued in Section 2, which
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formulates the general computational framework of Gradient Symbol Processing. This
architecture employs two functionally distinct but highly interdependent processes:
evaluation of a continuum of alternative outputs, and quantization of this continuum so as to
approximate a single discrete combinatorial structure as output (ideally, the best-
evaluated —i.e., optimal —one). Empirical tests of the theory via specific simple models are
discussed in Section 4.

In greater detail, the structure of the argument and the paper is summarized in (4),
which can be consulted as the argument is developed.

(4) Synopsis of the argument
a. Introducing the general approach: Gradient Symbol Processing (Section 1)
b. Deriving the framework: Subsymbolic Optimization/Quantization (Section 2)
i. Psycholinguistic theory requires a discrete combinatorial macrolevel. (2.1)
ii. Psycholinguistic theory requires continuous similarity structure. (2.2-2.3)
iii. Hypothesis: Similarity is computed from vectorial encodings ... (2.4)
iv. ... that are distributed activation patterns at the microlevel. (2.5-2.5.2)
v. Psycholinguistic theory requires partial activation of constituents: blends. (2.6)
vi. Components of the mental architecture must produce (approximately) discrete
output to resolve the ambiguity in blends of combinatorial structures. (2.7)
c. Instantiating the framework: A-Diffusion Theory (Section 3)
i. A quantization process creates attractors at pure symbolic output states. (3.1)
ii. Grammars optimize well-formedness: macro-Harmony. (3.2)
iii. Networks optimize well-formedness: micro-Harmony. (3.3)
iv. Networks compute grammatical representations. (3.4)
v. Optimization and quantization dynamics must operate in parallel to solve the
Problem of Mutually Dependent Choices. (3.5)
d. Instantiating the theory: Modeling phonological production (Section 4)
Simulations suggest that A-Diffusion Theory can:
i. solve the Problem of Mutually Dependent Choices; (4.1)
ii. provide insight into discrete and continuous phenomena in competence; (4.2)
iii. provide insight into discrete and continuous phenomena in performance:
speech errors. (4.3)

2. Discreteness and continuity of mental representations

Our first task is to computationally integrate two facets of mental representations in higher
cognitive domains such as phonological production: discrete combinatorial structure and
continuous similarity structure.

2.1. Combinatorial structure

The GSPH (2) asserts that mental representations are systematic, structured combinations of
constituent representations. According to many phonological theories, for example, the
mental representation of the syllable (o) that is the pronunciation of Rad ‘wheel” in German
can be described (simplifying) as in (5b), which we’ll abbreviate as in (5a). Each constituent
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can be analyzed as a structural role instantiated by a filler (5¢) (Minsky, 1975; Rumelhart,
1975). The constituents of a given representation are connected via the fundamental
combinatory operation of symbolic computation, concatenation (Partee, ter Meulen, & Wall
1990:432). Crucially for us, by adopting a filler/role decomposition, the representation can be
viewed as an unordered set of filler/role bindings (5d) (Newell, 1980:142; Smolensky, 1990).

(5) Combinatorial structure (simplified) of a syllable ¢ in four equivalent notations

a. [orat]
b. o

T

onset nucleus coda

T a t
c. Constituents: roles and fillers
role filler
o-onset T

o-nucleus a
o-coda t
d. Filler/role bindings: {a/c-nucleus, t/c-coda, r/c-onset}

2.2. Similarity structure

Similarity of representations is a central psychological concept, used to explain many
cognitive phenomena; a few examples are given in (6).

(6) Similarity-based psychological explanation: examples (with recent reviews)
a. Errors: the more similar an error response E is to the correct form, the more likely
E (Goldrick, 2008).
b. Categorization: the more similar an item X is to the members/prototype of a
category C, the more likely X is to be categorized as C (Kruschke, 2008).
c. Priming: the more similar a target T is to a prime P, the greater the facilitation of
processing T when it is preceded by P (Gomez, Ratcliff, & Perea, 2008).

For the purposes of psychological explanation, it has proved fruitful to treat
representational similarity as a continuous variable (unlike purely symbolic notions of
similarity). This permits direct prediction of a number of continuous measures important
for psychology; such is the case for each of the three citations in (6), as summarized in (7).

(7) Continuous similarity scale —
a. probability of error E
b. probability of classification as C
c. reaction time differences (primed vs. unprimed)
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2.3. Similarity of combinatorial representations

To apply a continuous similarity notion to combinatorially structured representations S and
S’, we combine (i) the similarity of the fillers in S to those in S’ with (ii) the similarity of the
roles they fill. In the theory we adopt below, (8) will hold (see (13)).

(8) If S={fj/rjliand S"= {f i/r't} are filler/role decompositions of structures S and S’, then
sim(S, S') = X; Xy sim( f;, f k) sim(rj, 7'%)

The contribution of filler similarity to psychological explanation of the type (6a) is
illustrated in (9) (Shattuck-Hufnagel & Klatt, 1979:52).

(9) From

sim([k], [g]) > sim([k], [s]),

predict that the relative error probabilities of misproducing /kol/ ‘coal” as [gol] ‘goal” or
as [sol] “soul” obey?

p(/kol/ — [gol]) > p(/kol/ — [sol]).

The contribution of role similarity to psychological explanation of type (6a) is illustrated
in (10) (Vousden, Brown, & Harley, 2000).

(10) From
sim(o,-onset, o1-onset) > sim(o,-onset, 61-coda),

predict that the relative error probabilities of producing target /kol rid/ ‘coal reed” as [rol
kid] “role keyed” or as [kor lid] “core lead” obey

p(/kol rid/—[rol kid]) > p(/kol rid/—[kor lid]).

Here, the tendency of such speech errors to preserve syllable position is derived from the
general principle that if two roles correspond to the same structural position (e.g., onset)
within two tokens of a given type (e.g., 61 and 6y), then these roles are more similar than
when they correspond to different positions, all else equal. Thus an erroneous output in
which [r] appears in the onset of the incorrect syllable (“role”) is more similar to the target
(“coal reed”) than is the erroneous output in which [r] appears in the coda of the incorrect
syllable (“core”). (See Section 4.3 below.)

2.4. Continuity + combinatorial structure

Gradient Symbol Processing unifies continuity of representations (and hence continuity of
similarity) with combinatorial structure by pursuing a fundamental hypothesis of PDP: that
at the microstructural level, mental representations are distributed patterns of activation
over n simple numerical processing units—that is, vectors in R" (Jordan, 1986; Rumelhart,
Hinton, & McClelland, 1986; Smolensky, 2006a:150-159).

In a vector space such as R", the combinatory operation is linear combination, i.e.,
weighted summation or superposition. In such a superpositional combinatorial representation?

2 Here and throughout we use underlining to draw attention to the elements critical in comparisons.
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(van Gelder, 1991), a constituent is a vector—e.g., (1, 2, 3)—and a composite structure is a
vector—e.g., (31, 22, 13) —that is the sum of multiple constituent vectors—e.g., (31, 22, 13) =
(1, 2, 3) + (30, 20, 10). It is in this precise sense that the output activation pattern in Figure 1
has constituent macrostructure than can be formally characterized as the structure [srat].

In fact, our representational space is a Hilbert space, a vector space with a dot product (or
inner product) that can be used to define similarity in the standard way (11).

(11)  sim(x, y) =x -y =Zexryx = lIxllllyllcos x (x,y)

(Here lIxIl is the Euclidean length of x—i.e., [Z (xx)?]*—and x(x,y) is the angle formed in R"
by x and y.) That distributed representations inherently encode similarity has long been
emphasized as a central explanatory feature of PDP (Hinton, McClelland, & Rumelhart,
1986).

2.5. Filler/role binding with the tensor product

In the theory we pursue here, the activation pattern realizing a single constituent—a single
filler/role binding —is defined as in (12) (Smolensky, 1990).

(12)  [vector realizing filler/role binding] = [vector realizing filler] ® [vector realizing role]

The tensor product ® is a generalization of the matrix outer product; the elements of the
vector x ® y consist of all numbers arising by taking an element of x and multiplying it by
an element of y; eg., (1, 2, 3) ® (20,10)=(20,10;40,20;60,30). Given a distributed
representation of fillers and a distributed representation of roles, this yields a distributed
representation of constituents in which there are systematic relations between, for example,
a given filler in one role and the same filler in a different role (Smolensky, 2006a:175 ff.).

Crucially, these tensor product representations (TPRs) provide a macrostructural level of
Distributed Symbol Systems (Smolensky (2006a) gives a tutorial): this level abstracts away
from the particular numbers giving the microstructure of the activation patterns. The
calculus of TPRs enables representations with recursive structure, e.g., binary trees, and
enables precise computation, in a single massively parallel step of a simple linear associator
network, of any mapping in an important class of recursive functions (Smolensky,
2006b:324). TPRs provide a general means of realizing symbolic macrostructure in PDP
microstructure.

Distributed Symbol Systems enable general explanatory principles of continuous
similarity (6) in the context of combinatorial representations: Section 2.5.1 gives an example.

TPRs formalize ideas of ‘conjunctive coding’ in early PDP models (e.g., McClelland &
Kawamoto, 1986), themselves preceded by ‘distributed memory models” (Murdock, 1982;
Pike, 1984). Tensor products serve as the basis for a number of connectionist architectures

3 Superpositional representation (over constituents) is formally related to, but conceptually distinct
from, superpositional memory (over exemplars) (Rumelhart & Norman, 1983/1988). Note that many
PDP networks introduce nonlinearities in activation functions that restrict vectors to a subset of R".
See Smolensky & Tesar (2006) for discussion of superpositional combinatorial representations in such
networks.
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making use of ‘vector symbolic’ representations (Levy & Gayler, 2008). These sacrifice
precision and analyzability by compressing full TPRs into smaller vector spaces; they
typically rely on random vectors with specified properties, and, even assuming errorless
computation, require “clean-up” processes unnecessary for bona fide TPRs (see Section
2.5.2). Nonlinearities are sometimes used to compress the range of activations. Two early
proposals were the Holographic Reduced Representations of Plate (1991, 2000, 2003) and the
Recursive Autoassociative Memory of Pollack (1990). Subsequent developments use a
variety of compression schemes (for reviews: Gayler, 2003; Kanerva, 2009; Smolensky &
Tesar, 2006).

2.5.1. Example: Similarity and word-recognition priming

Here we show how Distributed Symbol Systems enable similarity to explain priming effects
in visual word recognition (6c). Relative to dissimilar controls, orthographically similar
nonword primes (e.g., honse as a prime for HORSE) induce faster lexical decision times (Davis
& Lupker, 2006; Forster & Davis, 1984). Recent studies have demonstrated transposition
priming; facilitation is observed when a nonword prime equals the target with two letters
transposed (e.g. hosre for HORSE; Perea & Lupker, 2003). This has been explained by
assuming that mental representations of orthographic form are structured such that strings
containing the same letter in distinct serial positions (e.g., st vs. rs in hosre vs. horse) have
non-zero similarity (Gomez et al., 2008).

TPRs allow us to utilize these explanations within a continuous combinatorial
representational space. We can compute, for example, that if the roles r;, r, are the first and
second positions in a letter string, then (13) holds (illustrating (8)).

(13) sim(AB, XY) =sim(A®r; + B®r;, X®r; + Y®1;) = (A®r; + BArp) - (X®r; + Y®r))
= [(A®ry)- (X®ry) + (BOIy) - (Y®T,)] + [(A®r)) - (Y®ry) + (BOI,) - (X®r1)]
= [(A-X)(r1-11) + (B-Y)(r2-12)] + [(A-Y)(11-12) + (B- X)(r2-11)]
= [sim(A,X) - sim(ry, r1) + sim(B,Y)-sim(rp, 17)]
+ [sim(A,Y) - sim(ry, rp) + sim(B,X) - sim(rp, 11)]

So if, say, sim(A, B) =0, sim(A, A)=1=sim(B, B), then sim(AB, BA) =2 sim(ry, 1y). Thus the
similarity of the string AB and its transposition BA will be non-zero if and only if the
encoding of position 1 and position 2 “overlap” —have non-zero similarity (i.e.,, are not
orthogonal). This then is the crucial requirement for an encoding scheme for letter strings to
predict transposition priming via (6c) (Fischer-Baum & Smolensky, 2011; see also
Hannagan, Dupoux, & Christophe, 2011).

2.5.2. Aside: The size of tensor product representations

Because of the prevalence of misconceptions on the subject, we digress to consider the size
of a TPR: it is the product of the sizes of the fillers and roles that are bound together. For
buffer sizes for which human parallel processing is plausible (Section 1), the size of TPRs is
generally not excessive.
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Given a 300-dimensional semantic space (allowing, with binary features, 23%° > 10
concepts), chunks of conceptual structure encoded as binary trees of depth up to 5 (with up
to 32 terminal nodes) require 300(25*1—1) = 18,900 TPR units.* Strings of up to 20 words from
a lexicon of 10,000 words can be encoded in a TPR of size 200,000 units using an extravagant
coding, linearly independent vectors for all fillers and roles (enabling completely
unconstrained mappings to another level of representation in a single layer of weights).
These structure sizes seem generous relative to human parallel processing capacity.

The size of TPRs is often greatly exaggerated in the literature. For example, the case
claimed by Marcus (2001:106) to require 24,300,000 = (10 - 3)° units actually requires 3,640
= 10(3°*1-1)/2: depth-5 trees with role vectors of size 3, and filler vectors of size 10. The
error here is to mistake the correct form encoding, e.g., the string ABC, which is A®r; + B®r,
+ CQ®r;3, for the incorrect expression (A®r;) ® (B®r,) ® (C®r3).

That TPRs are not problematically large for cognitive modeling is attested by the fact
that the “compressed” representations of models in the literature (see text prior to Section
2.5.1) tend, in fact, to be significantly larger than corresponding TPRs using even linearly
independent filler and role vectors. Plate (2000) uses 2,048 units where 180 units suffice for a
TPR (12 fillers x 15 roles). Gayler & Levy (2009) use 10,000 units in lieu of a 8* = 4,096-unit
TPR (8-D fillers in 4-fold products). The three models discussed in Hannagan, Dupoux, &
Christophe (2010) each use 1000 units instead of TPRs requiring 256 or 64 units: these
models approximately encode strings of length up to 8 with an alphabet of 8 symbols; with
TPRs, the same 1000 units can precisely encode strings over 30 symbols up to length 33.

There may well be computational or empirical reasons that noisy, compressed
representations (with their concomitant clean-up processes) enable better cognitive models
than do TPRs (requiring no clean-up processes). But to our knowledge such arguments have
yet to be provided; size (let alone efficiency) seems unlikely to provide those arguments.

2.6. Generating representations: Continuous activation and blends

In addition to continuous similarity, another continuous facet of mental representations has
played an important explanatory role in many cognitive domains, including psycho-
linguistics—even in frameworks other than PDP. During computation, a mental
representation contains ‘partial activation” of alternative structures, activation levels
forming a continuum. The degree of activation of structure X at time t, ax(t), is essentially
the amount of evidence accrued by time ¢ that X is appropriate for the representation of the
current target of comprehension or production. While very basic, this point, interpreted as
in (14), is crucial.

(14) a. The activation of X, ax, is an evaluation of X. The most appropriate structures—
those receiving the best evaluations—are optimal in the current context. Processes
computing activation values are optimization processes.

* Depth-d binary-branching trees require role vectors with size totaling Z 02k 291 _1; the 2 here is
the minimal size of role vectors for binary branching (Smolensky 2006(: 304ff). If m- instead of 2-
dimensional primitive role vectors are used, the total size is Z oMk = (m1 = 1)/(m - 1).
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b. During the intermediate stages of computing activation values via continuous
spreading-activation (evidence-gathering) algorithms, a mental representation
typically contains multiple partially activated structures —a blend.

As a concrete example of (14b), consider the McClelland & Rumelhart (1981; Rumelhart
& McClelland, 1982) model of visual letter perception and word recognition. Initially,
activation flows from the units denoting features (line segments) in the stimulus to the units
denoting letters; in a given position, the unit for the correct letter receives the most
activation, but all letters sharing some of the features of the stimulus also receive some
activation. Initially, there is a blend in which multiple letters are partially active; the more
similar a letter is to the stimulus, the stronger its representation in the blend.

In a vector space, formalizing blends is straightforward. If v, is the vector encoding a
letter o, then, say, 0.8vg + 0.6vg is simply a blend of the letters E and F in which the
strengths of the letters E, F in the blend are 0.8, 0.6. A pure representation, as opposed to a
blend, is exemplified by 1.0 vg+ 0.0 vg = vg.

Early in the processing of an input, then, mental representations are typically blends.
The key question now is, when a component relaxes into a final output state, are representations
blends or pure? It turns out that the combinatorial structure of representations plays an
important role in determining the answer.

2.7. Ambiguity of blends of superpositional combinatorial representations: quantization

Consider a mental state a, a balanced blend of two syllables, [slit] ‘slit" and [Jred] “shred’.
Assume for simplicity a representation in which the fillers are phonological segments and
the roles are first-segment, second-segment, etc.> (the same result holds for the more
psycholinguistically accurate structure (5)). Then we have the result in (15).

(15) 0.5Vsiy + 0.5 V[jreq) = 0.5(s®r11 + I®1; + I®13 + t®14) + 0.5 (J@rl + r®r, + e®r3 + d®ry)
=0.5[(s+))®r; + (r+1)®r, + (+1)®r3 + (d+1)®ry]
=0.5 (J@rl +1®r, + I®r3 + t®1y) + 0.5 (s®1] + r®I1, + EQ13 + dR1y)
=05 Vi T 0.5 V[sred]

This blend of [slit] and [Jred] is identical to a balanced blend of [Jlit] (‘shlit’) and [sred]
(‘sred’): this state is ambiguous.® This is not true of a symbolic state representing an equal
degree of belief that the word is “slit” or “shred”: the concatenatory combination operation
of symbolic representation does not lead to the ambiguity we have seen arising from
superpositional combination. This ambiguity also does not arise with completely local
connectionist representations, in which the entire string [slit] is represented by a single unit,

5 Using contextual roles (Smolensky, 1990; essentially, n-grams) rather than positional roles alters but
does not eliminate blend ambiguity. If strings, e.g., ABC, are represented through bigrams, e.g., {BC,
ABJ, then vap + vxy is an unambiguous mixture, but an even blend of ABC and XBY equals an even
blend of XBC and ABY (see also Prince & Pinker, 1988).

¢ Crucially, (under the standard requirement that role vectors be linearly independent) the
superpositions involved in a pure state do not yield ambiguity; e.g., [slit] is not ambiguous with [stil],
because Vg = s®r + 1®r; + I®13 + t®14 # s®r1 + 1®14 + IOI3 + t®1) = V[541) (Smolensky, 1990).
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completely dissimilar from the representation of [Jlit].7 The problem is specific to
superpositional combinatorial representations.

Suppose that the representation in (15) is an intermediate state in the phonological
component of speech perception; in this blended state, the phonological component has not
yet committed to a single interpretation of the input. In many symbolic systems, this
component could output a list with associated degrees of confidence ([slit], 0.5; [Jred], 0.5),
and let downstream processes use their knowledge to choose among them. But in our PDP
system this is not an option. We assume that it is exactly the phonological component which
has the knowledge that “shlit” and “sred” are not possible English words; [11] and [sr] are not
possible English syllable onsets. For the phonological system to output the blend (15) is for
that system to fail to apply its knowledge; downstream components may not have the
knowledge needed to reject the possible interpretations ‘shlit’" and ‘sred’, so phonology
cannot pass this decision on to them. It must choose among the alternatives that it knows to
be possible words, committing to either the output slit’ or the output ‘shred.”

As shown below (Section 3.4), in speech production, blends in phonological
representations result from compromises between conflicting phonological constraints, not
from phonetic factors: these blends must be resolved in the phonological component, not in
another component such as phonetics.

This point applies also for blends in which multiple outputs are significantly active but
one dominates. For example, if during speech production the phonological component of an
English speaker outputs a syllable with 0.6[t] + 0.4[d] in coda position, the corresponding
phonetic representations will not provide the categorical structure necessary to select
between the two active segments. This is because in English, the primary phonetic cue to the
[t]-[d] contrast in coda is preceding-vowel duration (Peterson & Lehiste, 1960). Within the
relevant range, there are no significant phonetic restrictions on vowel duration. This phonetic
dimension therefore fails to supply the structure necessary to force the production of a pure
[t] or [d] (although other dimensions may differ; see below). The phonetic component
cannot resolve all ambiguities arising from blends; the phonological component must
strongly commit to a single output. This leads to the principle in (16).

(16) In order for a component of the cognitive system to apply its unique knowledge
concerning superpositional combinatorial representations, it must eventually resolve
blends and relax into a pure state.

Importantly, it remains possible (and often necessary) for a component to choose its pure
output based on continuous input from other components that are operating in parallel.
Although most blends constitute failure to apply a components” knowledge, in Gradient
Symbol Processing a state of a component that is very close to a pure state will have nearly
identical effects on other components as would that pure state itself. So in (16) we intend ‘a
pure state’ to mean “a state very close to a pure state’; we return to such states in Section 4.3.

7 Similarly, if entire strings are represented by linearly independent distributed representations, no
ambiguity arises. Superpositional combinatorial string representations are not linearly independent.



Smolensky, Goldrick & Mathis 14 Gradient Symbol Systems

The process of settling on a single, (approximately) pure, symbolically-interpretable
state from a continuum of alternatives will be called quantization.’

This notion of quantization should be distinguished from proposals like Quantal Theory
(Stevens, 1972) and related approaches in phonetics (e.g., Dispersion Theory: Liljencrants &
Lindblom, 1972; for recent reviews: Recasens & Espinosa, 2009; Stevens & Keyser, 2010).
These phonetic theories essentially aim to explain why languages exploit only a small subset
of the continuum of articulatory/acoustic states; they apply specifically to the inherently
continuous representations of phonetics. But in Gradient Symbol Processing, the continuum
of alternatives is defined by blends of symbolic states—in any symbolic domain, phonology
happening to be one. Furthermore, these phonetic theories address the structure of phonetic
knowledge. In contrast, quantization in Gradient Symbol Processing concerns the successful
application of knowledge within any component mental process, given the constraints
imposed by superpositional combinatorial representations (16).

2.8. The Optimization-Quantization Principle

Combining the conclusions of Sections 2.6 and 2.7 gives (17).

(17) In combinatorial domains, a mental process consists of
a. evaluating a continuum of alternative possible output representations, and
b. quantizing to produce a pure symbolic output—ideally, the best-evaluated or
optimal one.

Quantization is challenging given distributed representations (see Hinton, McClelland,
& Rumelhart, 1986, for detailed discussion of distributed representations). In activation-
based models, selecting a single item within a set often means selecting a single unit, readily
done through mutual inhibition among competing output units. As in the McClelland and
Rumelhart (1981) model considered above, a single abstract neuron encoding a symbolic
output can perform the job of attaining activation 1 for itself and activation 0 for its
competitors (approximately). With distributed representations, quantization is much more
difficult.

3. Processing: Subsymbolic Optimization-Quantization

In this section we develop a theory of the technical apparatus instantiating Gradient Symbol
Processing. This system must perform the optimization and quantization processes needed
to output a pure, ideally correct, combinatorial representation. The goal is a theory of
processing that allows grammatical knowledge to be effectively exploited, within an
activation-based computational architecture of the sort that has become the workhorse of
psycholinguistic research. We begin with quantization.

8 We thank Ian Coffman for suggesting this apt term.
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3.1. Quantization: Projecting to the grid

The quantization process can be viewed as projecting the representational state to the grid
formed by pure representations. Figure 2 illustrates this using a 2-dimensional surface,
focusing on the opposition between two possible fillers (d/t) for two roles in a syllable
(onset/coda).” Each dot corresponds to a pure syllable such as [det] ‘debt’. Between and
around the four dots are states that are blends; one such blend is shown in the figure, but
there is a continuum of blends filling out an entire 2-d plane. Since the representations are
distributed, each point of the grid corresponds to a distributed pattern, a vector of n activation
values.

0.8[tet] + 0.2[det]

Figure 2. The four dots constitute a slice of the grid of pure states for CVC syllables.

We propose a spreading activation algorithm —a continuous quantization dynamics we
call :Dg—that creates an attractor at all and only the points of the grid, based on the
competitive Lotka-Volterra equations (Baird & Eeckmann, 1993:Sec. 2.6). g is a distributed
non-linear winner-take-all dynamics, achieving a competitive effect like that of lateral
inhibition but having attractors that are distributed activation patterns. It is implemented by
recurrent, second-order connections among the phonological-representation units; these are
the connections indicated by the dashed arrow in Figure 1. The dynamics is isotropic: all
attractors are equally strong—it is the optimization dynamics discussed below, not the
quantization dynamics, that pushes the system toward the optimal attractor basin. This
analytical factorization contrasts with work such as Plaut et al. (1996) in which learned
connections generate a rich mixture of combinatorial attractor basins and exceptional basins,
reflecting the quasi-regular structure of the English spelling-to-pronunciation mapping.
More recently, Dilkina, McClelland, and Plaut (2008) extend this type of architecture to
language production, where learned connections implement a mixture of attractor basins
over phonological output units. The top-down approach we develop here provides a more
completely formally characterized system for constructing combinatorial attractors.

The quantization dynamics can be derived as follows. We wish to construct a network
that has an attractor at every possible tensor product representation in the cognitive domain
being modeled. To construct this, we begin with a localist encoding of each of the filler/role
bindings that make up the TPRs. This localist network consists of an 7¢ X n, matrix of units,
where n¢ and n, are the number of filler and roles in the domain. If the activation of the unit

9 In terms of the filler vectors {f4, f;} and role vectors {Fonset, Tcoda), the center of these four points is ¢ =
Vao(£4+£0) ®(TonsettToda), ONE axis in the grid is vy = Y2(f3—£)®ronser, the other is v = Va(f4—£;)®rcoqa; the
four grid points are then c+v,+v, (ded), ctv,—v, (det), c—vt+v, (ted), c—v,—v, (tet). Thus the surface is
the plane through ¢ spanned by v( and v.. This plane is a slice through a higher-dimensional state
space through which the system moves when settling to a grid point.
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in the fth row and rth column Cj equals 1, then constituent f/r is part of the symbol structure
currently represented by the network. A set of bindings, a pure grid state, is represented by
an activation pattern in which each column (role) contains exactly one unit (filler) with
activation 1, all others having activation 0. (To represent structures containing unfilled roles,
we incorporate a ‘null’ filler, and we assume pure states have at most one filler per role.)

To create attractors, weights are added to this localist network to give each column of
units competitive Lotka-Volterra dynamics (Baird & Eeckmann, 199319).

(19) Competitive Lotka-Volterra dynamics over constituents within each role r
dc, /dt = Zarﬁ fr

where a,¢ is the strength!! of the competition between Cg and Cy,.

These dynamics turn each column of units (role) into a localist winner-take-all pool. Within
each column there are therefore exactly n¢ attractor states, each of which has one unit with
C =1 and all the others Cg; = 0. Note that the connection weights 4,5 multiply the product
of two activations—these are sigma-pi units (Rumelhart, Hinton & McClelland, 1986) —and
that these connections are confined to units in the same column r. Critically, because the
connections do not cross column boundaries, the Lotka-Volterra dynamics in the columns
operate independently —yielding a combinatorial set of attractors corresponding to all
possible symbol structures in the domain.

Next we make these attractors distributed TPR states. Let C be the n¢ X n, matrix of
activations in the localist network. The corresponding distributed TPR of that structure, S,
can be obtained as in (20).

(20) Distributed TPR from localist network
S=FCRT

where F is an n¢ X ng matrix whose columns are the possible filler vectors in the

domain, and R is an 1, X 1, matrix whose columns are the possible role vectors.!?
This transformation from localist to distributed representations can be viewed as a linear
substitution of variables (Smolensky, 2006c): the elements of S, the variables Sy, are each
defined by a linear combination of the variables C. Alternatively, the local representation
can be viewed as a description of the distributed network in a ‘conceptual’ coordinate
system (Smolensky, 1986b). The Sug are activations of units in a distributed network whose
dynamics are derived from the localist network above; differentiating (20) gives (21).

10 For simplicity we assume that the inherent growth rate of each constituent’s activation (Baird &
Eeckmann’s (1993: 13) us term) is 1.

" In our simulations, for all 7, a,e = 1 if f* = f, otherwise a,4 = 2. These values satisfy the conditions for
stability of this dynamical system (Baird & Eeckmann, 1993). Then a,5 = 2—8, with &5 =[1if f=f"else 0].
For use in note 13, we define Adf = 8, a; then (19) becomes dCy/dt = Cf, Chr Zrr AgrCry.

12The TPR unit in row (filler index) o, column (role index) B has actlvatlon

Sop = [Z4 Crfr®1,]op = Z.Cr[frlaltrp = Zfr Cr [Flag[R1pr = Zs [Flog Ca[RT],p = [FCR™] gp.
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(21) Dynamics of units in the distributed network using variables in the localist network
- T
S, /dt = %Fuf ( dc, sa |RT,

In order to re-express these dynamics solely in terms of the S,g variables, C; must be
written as a function of Sug. This is possible (22) if the filler and role matrices F and R are
invertible. This follows from an additional, independent assumption of lossless tensor
product representations: filler and role vectors are linearly independent (Smolensky, 2006c).

(22)  Localist variables expressed as combinations of distributed variables

_ -1 —17T : -1 -11T
Cﬁ—%[F o SR, ie, C=F-1S[R]

This can be substituted into equation (19); substituting the result into (21) yields the
dynamics of the distributed network solely in terms of Sug. Crucially, the second-order
dynamics that hold for the localist network remain second-order in the distributed network
after this substitution. In transforming from C to S, the variables Cg are multiplied by the
appropriate subset of elements of F and R but not by other variables Cy/; dSqg/dt therefore
remains second-order.

We can now define a new weight matrix for the distributed network that exactly
implements the attractor dynamics of the localist network —except that the attractors in the
distributed network are now the distributed TPRs. To derive the equation for these weights,
it is necessary to re-express the above equations in vectorized form, so that the C and S
matrices become vectors ¢ and s; these are related by the n¢n, X ngn, matrix M, the Kronecker
product of R and F: see (23a). Carrying this through (using the parameters for our
simulations: see note 11) gives the dynamics of the distributed network: (23b).

(23)  State vector and dynamics of the distributed network!?
a. s=Mc, c=Ms; ie, s, =X,My,cy c,=X Mus,

b ds /dt=s =X W 85, W= 2 2 MuuMui,Mu,t,,srr,( Z—Sﬁ,)
wu” u=(fr) w=(f7r')
In the three-dimensional weight matrix W, the element W, is the weight of the product of
sy and s in the input to the sigma-pi unit s,

Note that this architecture is inherently scalable. These dynamics can be implemented
for any tensor product representational scheme. Furthermore, the complexity of the
quantization dynamics does not increase with representational size. Given the modular
structure of the Lotka-Volterra dynamics, the complexity of the quantization dynamics is
determined by the competition within each role—not the number of roles. Thus (nf)"r

13 Let the index pair (o,8) =y, and let u = (f,r) and u' = (f'r'); then My, = Fof Ry, and M, = F},R 5.
With ¢, = ¢(gr) = Cp and s, = 5(q,p) = Sep, (22) becomes ¢, = E“M‘},“s“; i.e, c=Ms and inversely s = Mc:
Sy = Xy My, c,. Differentiating: ds, /dt = X, M, dc,/dt = £, My, (c,—c, Xy Ay cy), using note 11, with A,
= 8 (2 - 8). This becomes, from (23a), dsy/dt = sy — Ty My (M syl Ay My sp]) = sy —
2w Wy sy sy where the weight matrix is given by Wy =y Myy M~y Ml Ay
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attractors are generated by combining np attractors for each of ng roles.

3.2. Optimization I: Grammars as numerical evaluation functions

Putting aside quantization for the moment, we turn to evaluation/optimization. In
phonological production, the evaluator of alternative outputs is the phonological grammar G.
The key to incorporating grammar into a continuous PDP network is to realize G as a
numerical Harmony function Hg; this is called a Harmonic Grammar (Legendre, Miyata, &
Smolensky, 1990, 2006; Pater, 2009). The arguments to the function Hg are (i) a lexical form,
such as /rad/ (German ‘wheel’), and (ii) a candidate pronunciation, e.g., [rat]. The numerical
value Hg(/rad/, [rat]) is the grammar’s evaluation of how good [rat] is as a pronunciation of
/rad/. This is computed by grammatical well-formedness constraints such as those in (24).1

(24) Harmonic Grammar tableau for German ‘wheel’

weights: 3 2 H,
/rad/ — MARKvoi FAITHyoi

a. [rad] * -3

b. =" [rat] * -2

In (24) we consider two alternative pronunciations—candidates—a and b; candidate b is
correct for the German grammar. The stars mark constraint violations. The constraint
MARK,,; is violated by final voiced stop consonants like the [d] in (244)'® but satisfied by the
final voiceless [t] of (24b). The constraint FAITH,,; requires that the pronounced form be
faithful to the segments’ voicing features in the lexical form: this is violated by [rat] because
it is not faithful to the voicing in the lexical form’s final /d/; but [rad] satisfies FAITHy;.

For this lexical form /rad/, the two constraints here conflict in the technical sense that no
candidate pronunciation satisfies them both; the competition goes to the candidate violating
the weakest constraint. For a Harmonic Grammar has a weight wc for each constraint C; each
violation of C lowers the Harmony of a candidate by wc. In (24), the weights given in the
first row yield the Harmony values in the final column. The highest-Harmony option, the
optimal output, is b, [rat]: this is the correct pronunciation for German.

In the English grammar, however, the constraint weights are reversed, and final lexical
/d/ is pronounced faithfully, as [d]: FAITHy; is now stronger than MARK,;. This bit of cross-
linguistic variation between English and German consists of two different strategies
(determined by relative weights) for resolving the conflict between two constraints.

This grammatical framework is closely related to Optimality Theory (Prince & Smolensky,
1991, 1993/2004), in which constraint strength is grammatically encoded as a rank within a
hierarchy (see Legendre, Sorace, & Smolensky, 2006 for comparisons). A substantial body of
work within these frameworks—the vast majority within Optimality Theory —has shown

14 Qur discussion adopts the standard assumption that German stops like /d,t/ differ in the feature
[voice]; use of the feature [spread glottis] instead (Jessen & Ringen, 2002) would change nothing here.
15 In traditional linguistic terminology, a dispreferred element like [d] is called marked (Jakobson,
1962; Trubetzkoy, 1939/1969); here, this means it violates the well-formedness constraint MARKy;.
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that viewing grammars (phonological, syntactic, semantic, etc.) as Harmony optimizers
provides insight for linguistic theory (see the electronic archive http://roa.rutgers.edu/).

3.3. Optimization II: Networks as optimizers

The upshot of the previous subsection is that the output of the phonological encoding
process (a pronunciation) should be the representation that maximizes Harmony, given its
input (a lexical representation). How can such optimal states be computed?

Among the earliest major results about the global properties of PDP networks is that
summarized in (25) (Cohen & Grossberg, 1983; Golden, 1986, 1988; Hinton & Sejnowski,
1983, 1986; Hopfield, 1982,1984; Smolensky, 1983, 1986a; for a tutorial, see Smolensky 2006b).

(25) For many types of neural network A, local rules for spreading activation have an
emergent property:
a. the Harmony Hy of the network as a whole increases over time, where
b. Hp/(a) is the well-formedness of the activation pattern a spanning the network.1®

Such networks, then, compute optimal representations: Harmony maxima. Whereas
deterministic spreading activation algorithms lead to local Harmony maxima—states with
higher Harmony than any neighboring state —computing global Harmony maxima requires
stochastic spreading activation algorithms, which exploit randomness. And it is the global
Harmony maxima we need for grammatical outputs (see Legendre et al., 2006, for
discussion). For our stochastic Harmony-maximizing network, we choose a simple diffusion
process (Movellan, 1998; Movellan & McClelland, 1993): a probabilistic search algorithm that
increases Harmony by gradient ascent on average, but with random deviations
superimposed; the variance of these deviations is proportional to T (the ‘temperature’), a
parameter which decreases to 0 during computation. This process, which we call 2y,, is
defined in (26), which also states the relevant emergent property of this process.

(26) Let the random process 2Dy, be defined by the stochastic differential equation'”

a, :(vaﬁvav ~a, )dt+\/EdBB :(aHN/aaB)dHJEdBB

16 Hpr(a) is the extent to which a satisfies the micro-constraints encoded in the connections and units;
Wy = =5 encodes the constraint “units B and y should not be active simultaneously (strength = 5)”.
Algebraically, Hy/(a) = H%(a) + Hl\/(a), where H)(a) = Zg, agWpya, depends on the weights and
Hly(a) = —Eﬁjaﬁ f~1(a)da depends on the activation function f of the units in N. We use linear units,
with activation function f(a) = 4, yielding H!r(a) = —%2[|a||2. We assume the presence of a ‘bias unit’
with constant activation value ag = 1; this just simplifies notation: Wg is the bias on unit . We also
assume that the (arbitrary) scale of W has been chosen such that Hys(a) is bounded above.

17 The difference equation used in the computer simulations (following the notation in (26)) is

Aag(t+At)= (Zywﬁya(t)y — aB(t))At +V2TAtN(0,1)

where each N0, 1) is a pseudo-random draw from a standard normal distribution; the variance of
random disturbances is thus 2TAt.
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(where a = (aj, ..., a,) is the activation pattern of the network, W = {Wg,} is the
connection-weight matrix, H is the Harmony of the network state, and B is a Wiener
process, a mathematical model of Brownian motion). Then 2y, converges to a
probability distribution in which the probability of an activation pattern a is
H,.(a)/T
pla)oce

As T — 0, the probability that the network is in a globally-maximum-Harmony state
approaches 1. (Geman & Geman, 1984)

Note that the stochastic aspect of this dynamics, the ‘thermal noise’, is responsible for
producing correct responses—for finding global Harmony optima. Because, when given
limited processing time, these methods are not guaranteed to succeed, this dynamics will
sometimes produce errors: but not because noise or damage —unmotivated for the correct
functioning of the system —has been injected for the sole purpose of generating errors.

3.4. Optimization I1I: Networks as grammars

Section 3.2 showed how to formalize a grammar G as a numerical function, Hg—a measure
of grammatical Harmony (well-formedness), the discrete global optima of which are the
grammatical representations. Section 3.3 showed how stochastic neural networks can
compute globally optimal representations, with respect to the network Harmony function
Hpy. These results concerning maximization of macrostructural Hg™al and of
microstructural H /™ol well-formedness can be unified because of yet another result:

(27) Given a second-order Harmonic Grammar Hg, we can design a neural network Ng
such that for any representation s on the grid of pure states:

HNg[micr(J] (S) = Hg [macro] (as),

where s is the symbolic macrolevel description of s and ag is the activation vector
realizing s, the numerical values of which constitute the connectionist microlevel
description of s (Smolensky, 2006¢:330 ff.) In such a network Ng, the dynamics 2Dy,
(26) is called bg: it seeks optima of Hg.

A Harmonic Grammar is ‘second order” if each individual constraint considers no more
than two constituents at a time (as is the case for FAITH,,; and MARK,,; in (24)). (As shown
by Hale and Smolensky (2006), although simple, such grammars are sufficiently expressive
to specify formal languages at all complexity levels of the Chomsky Hierarchy.) In the
theory we propose here, the second-order constraint Csp[/] that assesses a Harmony reward
of h (negative if a penalty) for each co-occurrence of constituents A and B is encoded as the
weight matrix Vsh[vavg' + vgvall; a first-order constraint Ca[m] assessing Harmony m for
each occurrence of A is encoded as the bias vector mva."® The weight matrix Wg

18 {v,} is the basis dual to {ax}, the activation vectors realizing the constituents {X}. That is, vx - ay =
vxTay =8xy =[1 if X =Y, else 0]; the {vy} are the rows of the inverse of the matrix with columns {a,}.
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implementing the second-order Harmonic Grammar Hg is simply the sum (superposition)
of all connection weights and biases contributed by all the constraints of Hg.

It is crucial that in general, the state in R" with highest evaluation—with maximal
Harmony —proves to be not a pure structure but a blend of well-formed constituents. To
illustrate this important point, consider a dimension of activation space, a, encoding the
[+voice] feature of the final consonant in (24) ([d] vs. [t]). FAITHy,; (strength ¢) favors higher
values of a (i.e., [+voice], matching the lexical form /rad/) while MARK,,; (strength u) favors
lower values of a (i.e., [-voice]). It is not surprising that the optimal compromise turns out to
be a value that is primarily low, but pulled up somewhat relative to the situation where the
force from FAITH,; is downward (/rat/)."

In general, then, the optimum is a blend of constituents favored by various constraints.
Therefore, in addition to the Harmony-maximizing optimization dynamics g pushing the
representation towards grammatical well-formedness, the discretizing, quantization
dynamics Dq discussed in Section 3.1 is truly needed in order to push the representation
towards the grid —to produce a pure response.

To complete the micro-/macro- integration, we now annotate Figure 1, giving Figure 3.

Lexical

FAITH
Evaluation: A
e Phonological
Optimization MARK@*E%—T)‘) Quantization
Dg 7 Dg

Figure 3. The functional interpretation of the combined dynamics.

The solid arrows encode the grammar G: the connections between the lexical and
phonological components encode the FAITHFULNESS constraints (requiring a match, like
FAITHy; in (24)), while the connections within the phonological component encode the
MARKEDNESS constraints (requiring good sound structure, like MARK,,; in (24)). Together
these solid-arrow connections generate the optimization dynamics g which favors
representations that are well formed under G. The dashed-arrow connections generate the
quantization dynamics Dqg of Section 3.1, which favors grid states —pure symbolic structures.

3.5. The Problem of Mutually-Dependent Choices

How must the optimization dynamics 25g and quantization dynamics :Dg be combined? To
address this important issue, it proves easier to shift our working example to one in

19 Szpecifically, following note 16, the Harmony function is defined as H(a) = H(a) + H'(a) = ¢a —pa —
Yo (@, u> 0). The scale of {@, u} is arbitrary (provided H is bounded above), so we can choose them
to satisfy @+ =1, in which case we can rewrite the Harmony as H(a) = -%2¢[a — 1]> - Yau[a - (-1)]> + ¥
which can be interpreted as follows. A penalty of strength ¢ is paid for the deviation of a from the
state that best satisfies FAITHy,; in isolation (+1), and a penalty of strength u for deviation of a from
the state satisfying MARKy,; (-1). The value of 2 maximizing H(a) is easily seen to be aopt = ¢-l =
¢-(1) + u-(-1), a weighted average of the states satisfying FAITHy,; and MARKy; (e.g., for (¢, p) = (0.1,
0.9), we have aopt = 0.1 - 0.9 = -0.8). We thank Colin Wilson for suggesting this general analysis.
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syntax—the simplest, stripped-down case adequate to illustrate the key problem. We also
shift to a formal language theory perspective, seeking to design an input-free network that
will generate grammatical strings of a language, making arbitrary choices on each run.

The rewrite-rule grammar G in (28a) generates a formal language £ containing only two
sentences, the trees in (28b). This grammar involves only MARKEDNESS constraints and the
lower component of Figure 3; there is no input and hence no need for FAITHFULNESS or even
an upper component. (The lower component is now computing a syntactic rather a
phonological structure, but formally the model is the same.)

(28) The ‘“Two-Trees’ domain

a. A nanogrammar G b. Its nanolanguage £
Start symbols: {S, S2} S S2
S — Al Is . =[sAl1Is] N = [s2IsAl]
S2 - Is Al Al Is “Alis.” Is Al “Is A1?”

As discussed above, the optimum for Harmonic Grammars is typically a blend state;
here, it is proportional to ([s A1 Is] + [s2 Is Al])— an equal blend of the two grammatical
trees. To avoid this blend state and yield one of the two optimal pure states, the
optimization and quantization dynamics must be coordinated. As the quantization
dynamics is forcing a choice of a single filler for each role, the optimization dynamics must
ensure that the choices made in different roles are mutually compatible according to the
grammar. If the network starts to favor, say, Is for the left-child role, then it must also be
driven to favor S2 for the root node role, as well as Al for the right-child role. The choices
among fillers for each of the three roles, forced by the quantization dynamics, are mutually
dependent; the dependencies are determined by the grammar, that is, are encoded in the
optimization dynamics. Thus the optimization dynamics Jg and the quantization dynamics
Do must operate simultaneously. But in order for the final state to be a grid state, the
quantization dynamics must be dominant by the end of the relaxation process: the
optimization dynamics is opposing the quantization dynamics’ push to the grid. To meet
these requirements, we have adopted the simplest solution we could devise: the A-method.

(29) The A-method for combining optimization and quantization
The total dynamics 2 is a weighted superposition of the optimization and
quantization dynamics, with the weight shifting gradually from optimization to
quantization. As computation time ¢ proceeds, the weighting parameter A; goes from 1
to 0, and the total dynamics shifts gradually from pure optimization to pure
quantization. At time ¢,

:Z)t=7htiz)g+ (1 —kt):Z)Q

(That is to say, the rate/direction of change of the activation vector over time is a A4
weighted sum of the rates/directions of change specified by the two dynamics.)

We can visualize the A-method as in Figure 4. As A — 0, the Harmony surface in effect
grows steeper and steeper peaks at the grid points, as blend states are penalized more and
more. (“In effect” because Dgq is not actually the gradient of any Harmony function; these
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figures are schematic, as are the A values.) The network state is like an ant climbing uphill as
the surface beneath constantly shifts; the goal is to end up at the highest peak.

It is worth pointing out that the only discrete representation ever evaluated —the only one ever
constructed —is the output itself. The process does not evaluate and compare multiple
candidate symbolic outputs—notwithstanding naive interpretation of symbolic tableaux
like (24).
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Figure 4. The effective Harmony surface as A — 0 during computation (schematic). The
correct output is the grid point corresponding to the highest peak. The solid lines on the
floor intersect at the grid states; the dashed lines, at the blend that optimizes Harmony.

3.6. Computation in Gradient Symbol Processing: Summary

The particular instantiation of Subsymbolic Optimization-Quantization we have proposed
here is A-Diffusion Theory, summarized in (30).

(30) A-Diffusion Theory (an instance of Subsymbolic Optimization-Quantization)
a. Optimization: by diffusion dynamics (26) with dynamic randomness
b. Quantization: by competitive Lotka-Volterra dynamics (23)
c. Combination: by dynamically-weighted superposition, the A-method (29)
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In many connectionist models (including many PDP models), when a single response is
required, there is (explicitly or implicitly) a layer of localist units, one per response, with
each unit inhibiting all the others, generating a winner-take-all dynamics in which one unit
typically ends up with all the activation: this is the response selection dynamics of these
models, the counterpart to our quantization. To apply such an approach to the general
problem under consideration here, where selection is not among a fixed set of atomic
responses, but rather among an open-ended set of combinatorial structures, a single unit
would need to be dedicated to each possible combinatorial output (similar to what Pinker &
Prince (1988) dub the “whole-string binding network” of Rumelhart & McClelland (1986a)).
The approach we are proposing avoids this, using combinatorially-structured distributed
representations as the attractors of the selection dynamics: our approach generates (np)"r
attractors by combining np attractors constructed for each of nr roles. This top-down
approach complements previous work with learned combinatorial attractors (e.g., Dilkina et
al., 2008; Plaut et al., 1996) by providing a formally specified, scalable architecture for
selection in these types of representational domains.

The issue of quantization has received considerable attention in architectures using
compressed tensor product representations (Section 2.5). To eliminate the noise introduced
by compression, ‘clean-up’ processes use the noisy retrieved vectors to select the best-
matching filler representation. As in our framework, Levy & Gayler (2009) and Gayler &
Levy (2009) utilize two interleaved dynamical processes: parallel evaluation of possible
distributed output representations in a hill-climbing procedure, and a distributed version of
winner-take-all. In Levy and Gayler’s theory, the relative contribution of these two
processes is constant; in our A-method, the relative weighting of quantization increases as
computation proceeds. A second difference is that we utilize stochastic optimization—a
necessary feature for finding global Harmony maxima (Section 3.3) and a critical component
of our explanation of empirical phenomena in language processing (Section 4.3).

4. Empirical tests

Having motivated and laid out our framework, Gradient Symbol Processing, and a specific
instantiation, A-Diffusion Theory, we now ask whether the theory can address empirical
issues in linguistic competence and performance, via specific models constructed within the
theory. Our ultimate goal is to develop analytic results proving that the theory (or one of its
models) has certain key properties, but at this point we can only report model-simulation
results concerning these properties. Open-source simulation code and full documentation
can  be downloaded  from  the online supplemental =~ materials at
http://faculty.wcas.northwestern.edu/matt-goldrick/gsp.

4.1. Is the Problem of Mutually-Dependent Choices solved?

To test whether A-Diffusion Theory can allow us to handle the critical problem identified in
Section 3.5, we modeled the Two-Trees nanogrammar of (28). The network is designed
following the general method underlying (27) for constructing a Harmonic Grammar Hg for
a rewrite-rule grammar G (Hale and Smolensky, 2006). A rewrite rule S — X Y (with S a
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legal start symbol), contributes to Hg 3 “positive’ constraints, each adding their weight (w)
when satisfied: ‘S has left-child X (2)" and ‘S has right-child ¥ (2)’, ‘tree-root position has S’
(1); the rule also contributes 3 negative constraints, each adding their weight (—w) when
violated: ‘no X (-1)’, 'no Y (-1)’, and ‘no S (-3)". Thus, if an X or Y appears, it incurs negative
Harmony, which can be offset only if it is a legal child of S; if an S appears, its negative
Harmony can be offset by having two legal children and by being at the root of the tree. The
net result of all the constraints contributed by all the rules of G is that every tree generated
by G has Harmony 0, while all other trees have negative Harmony. (A requirement is that G
first be put into ‘Harmonic Normal Form’, in which every branching symbol can be
expanded in only one way; this is why two branching start symbols are necessary in (28a).)

Each constraint in Hg contributes weights to the network Ay realizing Hg in accord with
the text following (27): ‘no S (-3)" contributes —3vs to the total network bias; ‘S has left-child
X (2) contributes ¥2-2 - [Vgy, V/ry, T + Vo Vsr, 1] to the total weight matrix. Here r, is the role
of occupying position x in the tree, and Ox is the left child of x; in general, there is a
contribution for all tree positions x, but in the nanolanguage (28b), only x = tree-root applies.

A set of distributed, orthogonal, normalized role vectors in R® were pseudorandomly
generated to implement the three positions in the simple trees (root, left child, right child); a
set of vectors in R* were similarly generated to implement the possible fillers for each of
these positions (S, S2, Al, Is). Grid states consisted of all possible role/filler bindings (e.g.,
not just [s ALl Is] and [s; Is Al] but also [s Is Is], [a1 ALl S], etc.) Following Section 3.5, for
the Problem of Mutually-Dependent Choices, we do not consider an input: both
grammatical outcomes are equally well formed; the input to the network was therefore set
to 0. Temperature and A were initially set to relatively high values and slowly decayed
exponentially. The network was considered to have settled on a solution when the rate of
change of activations fell below a certain threshold.

The results of 100 runs of a simulation of the Two-Trees Model suggest that A-Diffusion
Theory solves, with a high degree of accuracy, the particular Problem of Mutually-
Dependent Choices posed in Section 3.5 (two runs are shown in Figure 5). In every run, the
network converged to one of the equally well-formed grammatical trees (54% [s A1 Is] and
46% [s2 Is Al]). By superimposing optimization and selection, our framework enables
grammatical computation over combinatorial representations in a continuous space.

4.2. Can discrete and continuous competence phenomena be explained?

Many interesting languages can be specified with a Harmonic Grammar, so A-Diffusion
Theory can be applied to computing grammatical expressions in these languages: in our
simulations, when the computational parameters T and A are lowered sufficiently slowly,
with high probability the system settles on an optimal —grammatical —representation. The
microgrammar (24) for German final voicing neutralization, for example, has been
implemented, achieving 100% accuracy in simulations. Gradient Symbol Processing allows
us to go further, and account for the empirically documented incompleteness of German final
voicing neutralization. As in the empirical data, these simulations show that the final t's
output for /rad/ — [rat] ‘wheel” and for /rat/ — [rat] ‘advice’ differ slightly: the former is
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slightly closer than the latter to /d/, showing a gradient trace of the underlying lexical form.
Space limitations prohibit further discussion, but we point out that the current approach
theoretically unifies the gradient incompleteness of d ~ t neutralization in the German
competence theory (i.e., in grammatical outputs) and the gradient difference in performance
when d is pronounced as t in errors: see the next section.
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Figure 5. Two runs of a simulation of the Two-Trees Model generating two different trees
grammatical in the language (28b). At each time step (horizontal axis), the graph shows
(on the vertical axis) the grid state (pure tree) nearest to the current state (i.e., the
currently visited 2D g-attractor basin). Red (early) indicates larger and blue (late) smaller
distance to the grid. Grid points are arranged vertically by their Harmony; for visibility,
in each run, points with the same Harmony are separated arbitrarily.

4.3. Can discrete and continuous performance phenomena be explained?

In the Gradient Symbol Processing framework, the competence and performance of the
cognitive system are deeply connected, allowing a unified account of discrete and
continuous patterns in experimental data. In this section, we focus on one specific aspect of
grammatical knowledge, FAITHFULNESS constraints; in conjunction with our computational
principles, these allow us to formalize similarity-based psychological explanations (Section
2.2) of both discrete and continuous performance phenomena in speech production. As
reviewed above (Section 2.3) similar sounds are more likely to interact in speech errors than
dissimilar sounds; furthermore, sounds are more likely to interact when they occur in
similar syllable positions. In Gradient Symbol Processing, this macrostructural sensitivity to
representational similarity emerges from the microstructure of computation.

When A-Diffusion is forced to produce outputs quickly (as participants must do in a
tongue-twister task; Wilshire, 1999), we expect errors to result. As summarized in (31)
below, we hypothesize that the distribution of these errors will reflect the stochastic
structure of Harmony optimization (26).
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(31) Harmonic Error Hypothesis: The probability of a correct or incorrect response x, p(x),
is an exponentially increasing function of Hg(x):

p(x) o< exp(Hg(x)/T), for some T
Equivalently:  log p(x) o< Hg(x) — k, for some k

Similarity-based explanations of speech error patterns are a specific instantiation of this
hypothesis. FAITHFULNESS constraints are violated by phonological representations that fail
to preserve the structure of the input along some particular dimension. All else being equal,
output structures that better match the structure of the input will therefore have higher
Harmony than those that do not. The probability of an error will therefore be a function of
its similarity to the target (defined precisely by the structure of FAITHFULNESS constraints).

To test the Harmonic Error Hypothesis, we instantiated A-Diffusion Theory in the
Tongue-Twister Model of a tongue-twister task. This model produced sequences of two CVC
syllables (e.g., “sag can”). Roles distinguishing syllable number (first, second: ry, ;) and
syllable position (onset, coda: ronset, Coda) Were realized by pseudo-random vectors in R?
constrained to satisfy sim(te,, rs,) = 0.25, sim(ronset, ICoda) = 0.1. The similarity structure of the
role vectors encodes the greater similarity of segments in the same prosodic position across
syllables vs. different positions within the same syllable (this parallels the structure of
vectors in Vousden et al.’s (2000) model). These role vectors were combined into recursive
distributed role vectors (e.g., Tonset/s; = onset ® Is;; Smolensky, 2006a:182 ff.) yielding vectors
in R*. Distributed filler vectors in R* represented four possible consonants. These consisted
of a pair of highly similar consonants (e.g., /k/ and /g/; dot product of filler vectors: 0.5) and
a pair of less similar consonants (e.g., /s/ and /n/; dot product of vectors: 0.25); across pairs,
similarity was low (dot product: 0.1). A set of filler vectors meeting these conditions were
generated pseudo-randomly, once for this model. FAITHFULNESS constraints (e.g., ‘onset of
input syllable 1 = onset of output syllable 1) penalized output representations that were not
identical to the input. No MARKEDNESS constraints were present in the modeled grammar.

Production of two different tongue twisters was modeled. The first target syllable in
each sequence was the same (e.g., “sag”). The second target syllable was constructed such
that similar consonants occurred in the same syllable positions (e.g., “sag knack”) or
opposite positions (e.g., “sag can”). When A was allowed to slowly decay from a high
starting value (1.0), the system produced both target sequences correctly in each of 100 runs.
To simulate the increased speed of the tongue twister task, the initial value of A was
decreased (to 0.015). This causes the network’s response time to substantially decrease; at
this faster rate, it produced many errors. As shown in Figure 6, the results were consistent
with the qualitative patterns observed in experimental speech-error data. Errors on the first
syllable (identical across sequences) are more likely to involve more similar segments, and
are more likely to involve segments in the same syllable position.



Smolensky, Goldrick & Mathis 28 Gradient Symbol Systems

M Same position O Different position

20%

15%

10%

5% L |
0% - T 1

Highly similar Less similar

Error Rate

Relation of Interacting Consonants

Figure 6. First-syllable error rates in 1,000 runs of a simulation of the Tongue-Twister
Model productions of two tongue-twister sequences. Error bars indicate standard error.

The Harmonic Error Hypothesis (31) goes beyond qualitative patterns to make
quantitative predictions about the relative probability of errors. The results in Figure 7
suggest that these predictions are fairly accurate; the Harmony of an output form is a good
predictor of its output probability. This suggests that in A-Diffusion Theory, the properties
of performance errors are closely connected to the computational principle of stochastic
Harmony optimization—the key to achieving competence within Gradient Symbol
Processing. In future work, we plan to explore the degree to which these quantitative
predictions account for the empirical distributions of speech errors arising in phonological
encoding.

In addition to accounting for discrete phenomena such as likelihood of error outcomes,
the concept of similarity has played a role in understanding the continuous properties of
speech errors. Recent work has shown that the phonetic properties of speech errors reflect
properties of the intended target (see Pouplier & Goldstein, 2010, for a recent review of
findings from articulatory and acoustic studies). For example, in an error like ‘big’ — “pig”,
the [p] tends to have a shorter voice onset time (VOT) compared to correctly produced
instances of ‘pig’ (Goldrick & Blumstein, 2006). Speech error outcomes thus tend to be
slightly similar to the intended target within continuous phonetic space.

Our framework allows us to use the same principles that govern discrete error outcomes
to account for these continuous error phenomena. For example, if the target grid point is [b],
but too-rapid processing causes the network to converge to the region of the grid point for
[p], FAITHFULNESS constraints will pull the network’s output towards the grid point
corresponding to the target [b]. A primary feature of similarity encoded through distributed
representations is that similar inputs are mapped to similar outputs (Hinton, McClelland, &
Rumelhart, 1986:81 ff.); we therefore assume that, through the phonetic interpretation
process (not modeled), such a deviation in the phonological representation will manifest itself
phonetically as a deviation towards the phonetic properties of the faithful output
(specifically, a shorter VOT).
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Figure 7. Harmony of grid point (horizontal axis) vs. log probability that grid
point was selected as the network output (vertical axis) in 1,000 simulated
productions of two tongue-twister sequences (left panel: “sag knack”; right
panel: “sag can”). Solid line indicates linear regression fit; compare (31).

To test this hypothesis, we focused on the most frequent errors in the simulation above
(involving similar consonants in the same syllable position; e.g., “sag knack” — “sack
knack”). Following experimental studies of speech errors, we compared these [k] error
outcomes to correctly produced [k]s in the same sequence (e.g., correctly produced coda /k/
in “knack”). The threshold for network settling was such that A did not decay to 0 (at
settling time, A = .01). As shown in Figure 8, the [k] filler is significantly less active in errors,
reflecting the influence of FAITHFULNESS constraints on the continuous aspects of
phonological encoding. As discussed above, this variation in the continuous output of the
phonological component will alter the input to phonetic processing, producing the observed
effects in the articulatory and acoustic properties of errors.
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Figure 8. Mean activation of the [K] filler (the dot product of the distributed
representation for [k] and the representation of the corresponding constituent of the
output) in errors and correct productions. Error bars indicate standard error.
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Note that although this discussion has focused on the relationships between similarity
and errors induced by FAITHFULNESS, our error hypothesis (31) also makes quantitative
predictions about the relationship between error probability and other aspects of the
grammar (i.e.,, MARKEDNESS; see Goldrick & Daland, 2009, for a recent review of relevant
speech error data). We plan to examine these predictions more closely in future work.

5. Summary and conclusion

The Gradient Symbol Processing framework developed here aims to account for the
emergence (i.e., the formal entailment) of the macrostructural descriptions of grammatical
theory from the microstructural algorithms that underlie language processing. Pursuing this
PDP research program has, we believe, led to new insights into a central issue in cognition:
the relationship between the continuous and the discrete aspects of mental representation
and processing. By specifying how discrete structural knowledge emerges from a
continuous representational and processing substrate, Gradient Symbol Processing supports
a theoretical unification of discrete and continuous empirical phenomena. The same
grammatical principles that specify discrete phonological competence also account for both
discrete and continuous patterns in speech errors.
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