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Abstract

Many computational problems are NP -hard and hence probably do not have fast, i.e.,

polynomial time, algorithms. Such problems may yet have non-polynomial time algorithms,

and the non-polynomial time complexities of these algorithms will be functions of particular

aspects of that problem, i.e., the algorithm's running time is upper bounded by f(k)jxjc,
where f is an arbitrary function, jxj is the size of the input x to the algorithm, k is an

aspect of the problem, and c is a constant independent of jxj and k. Given such algorithms,
it may still be possible to obtain optimal solutions for large instances of NP -hard problems
for which the appropriate aspects are of small size or value. Questions about the existence

of such algorithms are most naturally addressed within the theory of parameterized
computational complexity developed by Downey and Fellows.

This thesis considers the merits of a systematic parameterized complexity analysis in
which results are derived relative to all subsets of a speci�ed set of aspects of a given

NP -hard problem. This set of results de�nes an \intractability map" that shows relative to
which sets of aspects algorithms whose non-polynomial time complexities are purely func-

tions of those aspects do and do not exist for that problem. Such maps are useful not only for
delimiting the set of possible algorithms for an NP -hard problem but also for highlighting
those aspects that are responsible for this NP -hardness.

These points will be illustrated by systematic parameterized complexity analyses of

problems associated with �ve theories of phonological processing in natural languages {
namely, Simpli�ed Segmental Grammars, �nite-state transducer based rule systems, the
KIMMO system, Declarative Phonology, and Optimality Theory. The aspects studied

in these analyses broadly characterize the representations and mechanisms used by these

theories. These analyses suggest that the computational complexity of phonological process-

ing depends not on such details as whether a theory uses rules or constraints or has one, two,

or many levels of representation but rather on the structure of the representation-relations
encoded in individual mechanisms and the internal structure of the representations.

ii



Contents

Abstract ii

Contents iii

List of Tables v

List of Figures vii

Acknowledgements ix

1 Introduction 1

2 Background 7

2.1 Parameterized Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Computational Complexity Theory . . . . . . . . . . . . . . . . . . . 9

2.1.2 Parameterized Computational Complexity Theory . . . . . . . . . . . 16

2.1.3 Systematic Parameterized Complexity Analysis . . . . . . . . . . . . 25

2.2 Phonology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1 What is Phonology? . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.2 Phonological Representations . . . . . . . . . . . . . . . . . . . . . . 36

2.2.3 Phonological Mechanisms as Finite-State Automata . . . . . . . . . . 45

3 Computational Analyses of Phonological Theories 61

4 A Systematic Parameterized Complexity Analysis of Phonological Pro-

cessing under Rule- and Constraint-Based Formalisms 71

4.1 Simpli�ed Segmental Grammars . . . . . . . . . . . . . . . . . . . . . . . . . 74

iii



4.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1.3 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 A Most Useful Special Case:

The Bounded DFA Intersection Problem . . . . . . . . . . . . . . . . . . . . 100

4.3 FST-Based Rule Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3.3 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.4 The KIMMO System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.4.3 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.5 Declarative Phonology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.5.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.5.3 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.6 Optimality Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.6.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.6.3 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

4.7 Some Final Thoughts on the Computational Complexity of Phonological Pro-
cessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5 Conclusions 182

References 185

A Problem Index 195

B The Parameterized Complexity of Simpli�ed Segmental Grammars with

Segment Deletion Rules 197

iv



List of Tables

2.1 A Systematic Parameterized Complexity Analysis of the Longest common

subsequence Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Characteristics of Representations of Phonological Theories Examined in this

Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Characteristics of Iterated Finite-State Automaton Operations . . . . . . . . 55

2.4 Characteristics of Mechanisms of Phonological Theories Examined in this Thesis 58

4.1 The Parameterized Complexity of the SSG-Encode Problem . . . . . . . . 96

4.2 The Parameterized Complexity of the SSG-Encode Problem (Cont'd) . . . 97

4.3 The Parameterized Complexity of the SSG-Decode Problem . . . . . . . . 98

4.4 The Parameterized Complexity of the SSG-Decode Problem (Cont'd) . . . 99

4.5 The Parameterized Complexity of the Bounded DFA intersection Problem105

4.6 The Parameterized Complexity of the FST-Encode Problem . . . . . . . . 116

4.7 The Parameterized Complexity of the FST-Decode Problem . . . . . . . . 116

4.8 The Parameterized Complexity of the KIM-Encode Problem . . . . . . . . 128

4.9 The Parameterized Complexity of the KIM-Decode Problem . . . . . . . . 128

4.10 The Parameterized Complexity of the DP-Encode Problem . . . . . . . . . 152

4.11 The Parameterized Complexity of the DP-Decode Problem . . . . . . . . . 152

4.12 The Parameterized Complexity of the OT-Encode Problem . . . . . . . . . 175

4.13 The Parameterized Complexity of the OT-Decode Problem . . . . . . . . . 175

4.14 Sources of Polynomial-Time Intractability in the Encoding Decision Problems

Associated With Phonological Theories Examined in This Thesis . . . . . . . 177

4.15 Sources of Polynomial-Time Intractability in the Decoding Decision Problems

Associated With Phonological Theories Examined in This Thesis . . . . . . . 177

v



4.16 The Computational Complexity of Search Problems Associated With Phono-

logical Theories Examined in This Thesis . . . . . . . . . . . . . . . . . . . . 180

B.1 Sample Values of Various Parameters De�ned in Lemma B.1 . . . . . . . . . 198

vi



List of Figures

2.1 Algorithm Resource-Usage Complexity Functions . . . . . . . . . . . . . . . 12

2.2 The Relationship Between Hardness and Completeness Results in Computa-

tional Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Systematic Parameterized Complexity Analysis and Polynomial Time Intractabil-

ity Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Phonological Representations . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Phonological Representations (Cont'd) . . . . . . . . . . . . . . . . . . . . . 38

2.6 Form Decomposition of Phonological Representations . . . . . . . . . . . . . 42

2.7 A Simpli�ed Autosegmental Representation . . . . . . . . . . . . . . . . . . 44

2.8 A Simpli�ed Autosegmental Representation (Cont'd) . . . . . . . . . . . . . 45

2.9 A Finite-State Acceptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.10 A Finite-State Transducer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.11 Operation of a Contextual Deterministic Finite-State Automaton . . . . . . 59

4.1 Reductions in Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Segmental Rewriting Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 A Subsequence Deterministic Finite-State Acceptor . . . . . . . . . . . . . . 101

4.4 The Decoding Tree Construction from Lemma 4.2.3 . . . . . . . . . . . . . . 102

4.5 The Decoding Tree Construction from Lemma 4.2.3 (Cont'd) . . . . . . . . . 103

4.6 The KIMMO System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.7 Full Form Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.8 Full Form Graphs (Cont'd) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.9 A Systolic Deterministic Finite-State Acceptor . . . . . . . . . . . . . . . . . 142

4.10 Evaluation of Candidate Full Forms in Optimality Theory . . . . . . . . . . 154

vii



4.11 Evaluation of Candidate Full Forms in Optimality Theory (Cont'd) . . . . . 155

4.12 Phonological Theories as Compositions of Representation-Relations . . . . . 179

B.1 A Lexical String Produced by the Reduction in Lemma B.1 . . . . . . . . . . 203

viii



Acknowledgments

This dissertation is the product of several years work carried out at the University of

Victoria and McMaster University. In that time, I have come to owe a great deal to a great

many. Lack of space precludes mentioning them all. The e�orts of those not named below

must be acknowledged by the fact that I am, at long last, writing these acknowledgments.

First o�, I would like to thank various departmental sta� members at the University

of Victoria and McMaster University, namely, Marg Belec, Isabel Campos, Nancy Chan,

Helen Graham, Sharon Moulson, Marla Sering, and Natasha Swain, for their courteous and

ever-helpful escorting through the red tape that is an unavoidable part of both graduate

studies and academia. I would also like to thank the various systems personnel I've dealt

with, namely Chris Bryce, Alan Idler, Will Kastelic, Matt Kelly, and Derek Lipiec, for

answering an almost never-ending stream of odd questions about obscure programs and

LaTeX typesetting and, through their e�orts, keeping my �les and my sanity intact.

I have had the good fortune to attend many meetings over the course of my Ph.D.,
which has very much enriched my work { thanks for this goes to my Ph.D. advisor, Mike

Fellows, and my postdoc supervisor, Tao Jiang. I would also like to acknowledge Eric Ristad
for providing an NSF grant for me to attend the DIMACS Workshop on Human Language
at Princeton in March of 1992, which awakened my interest in my dissertation topic, and

Mark Kas for providing a very generous student grant for me to attend the Summer School in
Behavioral and Cognitive Neurosciences at BCN Groningen in July of 1996, which introduced

me to the wide world of �nite-state natural language processing.

I have had the good fortune to meet and interact with many colleagues while
researching and writing my dissertation. I would like to thank the members of the The-
ory Group at University of Victoria, namely John Ellis, Val King, Wendy Myrvold, and

Frank Ruskey, for their many calming talks and advice about academic life. I would also like
to thank John Coleman, Jason Eisner, Mark Ellison, Susan Fitzgerald, Ayse Karaman, Lauri
Karttunen, Martin Kay, Andr�as Kornai, Eric Laporte, Mehryar Mohri, Thomas Ngo, Alexis

Manaster Ramer, Eric Ristad, Giorgio Satta, Bruce Tesar, Alain Theriault, John Tsotsos,
Gertjan van Noord, and Markus Walther for sharing unpublished manuscripts, reprints, and

delightful conversations over the years, both in person and by e-mail. Last but by no means

least in this list are various members of the parameterized complexity research community,

namely Liming Cai, Kevin Cattell, Marco Cesati, Mike Dinneen, Rod Downey, Patricia

Evans, Mike Fellows, and Mike Hallett. Many of the ideas in my dissertation came from

conversations with these people { in particular, Mike Hallett, through his early concern with
using parameterized complexity to analyze real-world data sets, is the man behind system-

atic parameterized complexity analysis. To all of them, for both intellectual and emotional

support, I owe a great thanks.

I would like to thank the members of my Ph.D. committee, namely Ewa

Czaykowska-Higgins, Val King, Frank Ruskey, and Bruce Watson, for seeing me through

the process of writing and and defending my dissertation. I would especially like to thank

Ewa Czaykowska-Higgins, for constant encouragement, detailed and prompt commentaries

ix



on various drafts of my dissertation, and probing questions about the relationship between

complexity-theoretic results and linguistic research. She has made me re-think many things

and, in that process, has had a great impact on both my thought and my dissertation.

If I am ever called upon to supervise graduate students, I hope that I can do so with some

part of the grace, energy, and intelligence she has shown in her dealings with me.

I would like to thank my friends past and present for helping me through the bad times

and making the good times better. A short list would include Marg Belec, Kathy Beveridge,

Gord Brown, Bette Bultena, Kevin Cattell, Claudio Costi, Bill Day, Gianluca Della Vedova,

Mike Dinneen, Patricia Evans, Susan Fitzgerald, Emmanuel Francois, Alan Goulding, Mike

Hallett, Mike Hu, Lou Ibarra, Matt Kelly, Scott Lausch, Dianne Miller, John Nakamura,

Joe Sawada, Brian Shea, Bill Threlfall, Chris Trendall, Je� Webb, and Xian Zhang; there

are many others. Thank you all.

I would like to thank my Ph.D. advisor, Mike Fellows, for taking me on as his student

and helping me to appreciate more fully the beauty at the heart of computational complexity

theory. I have admired his intelligence, his curiosity, his energy, his commitment to rigor,
and his openness and generosity with ideas since the day we met, and will hold these qualities

as ideals in my own academic life in years to come. I admire the same things in my postdoc
supervisor, Tao Jiang; in addition, I must thank him for his patience in allowing me to
complete the research and writeup of my dissertation at McMaster University.

I would like to thank the members of my family { my parents, my brother and sister and

their spouses, and my nieces { for being who they are, and making the life that surrounds
my work worthwhile.

Finally, I would like to thank Vit Bubenik and Aleksandra Steinbergs. Many years ago,
Dr. Bubenik taught me my �rst courses in linguistic analysis and encouraged me to continue

in linguistics; Dr. Steinbergs subsequently taught me phonology, in two of the best courses I
have ever had the pleasure to take, and was my supervisor for an uncompleted undergraduate
honours dissertation on word stress in Russian. I owe them both for introducing me to

phonology and for showing me its often unappreciated beauty. I hope that this dissertation
is partial payment on that debt.

x



To Bill Day and Bill Threlfall

for getting me here.

xi



All this is fact. Fact explains nothing.

On the contrary, it is fact that requires explanation.

Marilynne Robinson, Housekeeping

xii



Chapter 1

Introduction

It is not unreasonable to assume that if one is given a computational problem, one wants the
algorithm that will solve that problem using the least amount of computer time.
The discipline of algorithm design responds to this need by creating eÆcient algorithms

for problems, where eÆciency is usually judged in terms of (asymptotic worst-case)

time complexity i.e., a function that upper-bounds the worst-case time requirements of an

algorithm over all input sizes. As one is typically interested in larger and larger problem
sizes (a trend some have characterized as \living in asymptopia"), one would like algorithms
whose worst-case time complexities grows slowly as a function of input size. Ideally, this

function should be a (low-order) polynomial. A problem that has such an algorithm is
said to be polynomial time tractable and one that does not is said to be polynomial

time intractable.

There are a number of computational problems that have de�ed almost �fty years

of e�ort to create polynomial time algorithms for them, and are thus widely suspected
(but not proven to be) polynomial time intractable. In part to prevent wasting e�ort in

trying to solve other such problems eÆciently, various theories of computational complexity
have been developed from the mid-1960's onwards [GJ79, Pap94]. Essentially, each such
theory proposes a class C of problems that is either known or strongly conjectured to prop-

erly include the class P of polynomial time tractable problems. By establishing that a given
problem is exactly as (C-complete) or at least as (C-hard) computationally diÆcult as the

most computationally diÆcult problems in C, one can show that this problem does not have

a polynomial time algorithm unless the conjecture P 6= C is false. The strength of such con-
jectures is typically based on the C-hardness of at least one of the suspected polynomial time

intractable problems alluded to above. The most famous and widely-used of these theories
is that for NP -completeness [GJ79].

When one must solve large instances of a problem, a proof of NP -hardness for that
problem is often taken as a license to indulge in any and all manners of heuristic algo-

rithms that give approximate solutions in polynomial time, e.g., randomized algorithms,

bounded-cost approximation schemes, simulated annealing. However, this reaction may
be premature. A proof of NP -hardness only establishes that a problem does not have a
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polynomial time algorithm unless P = NP . An NP -hard problem may still have

non-polynomial time algorithms; moreover, some of these algorithms may have time com-

plexity functions such that the non-polynomial terms of these functions are purely functions

of particular aspects of that problem, i.e., the time complexity of the algorithm is f(k)jjxjc
where f is an arbitrary function, jxj is the size of a given instance x of the problem, k is some
aspect of that problem, and c is a constant independent of jxj and k. Given such algorithms,

it may still be possible to obtain optimal solutions for large instances of NP -hard prob-

lems encountered in practice for which the appropriate aspects are of bounded size or value

(as such bounded aspects may reduce the non-polynomial terms in the time complexity func-

tion of such an algorithm to polynomials or constants and thus make the algorithm run in

polynomial time).

This raises the following questions:

� How does one determine if a problem of interest has such algorithms?

� Relative to which aspects of that problem do such algorithms exist?

These questions are by and large unanswerable within classical theories of computational
complexity like NP -completeness because these theories can show only whether a problem

does or (probably) does not have a polynomial time algorithm. However, such issues can
be addressed within the theory of parameterized computational complexity [DF95a, DF95b,
DF99]. That is, given a problem that is suspected to be polynomial time intractable and a

set of aspects of that problem, one can prove within this theory whether there does or does
not (modulo various conjectures) exist an algorithm for that problem whose non-polynomial
time complexity is purely a function of those aspects.

Individual parameterized results have proven useful in answering algorithmic questions

about problems drawn from areas as diverse as VLSI design, computational biology, and
scheduling (see [DF99] and references). For example, one such result establishes that there is
probably no algorithm for the 3-D robot motion planning problem whose

non-polynomial time complexity is purely a function of the number of joints in the given robot
[CW95]. In this thesis, I will discuss the merits of a systematic parameterized complexity

analysis in which parameterized results are derived relative to all subsets of a speci�ed set
of aspects of a given NP -hard problem. Modulo various conjectures, this set of results
de�nes a polynomial time intractability map that shows relative to which sets of

aspects non-polynomial algorithms do and do not exist for that problem. Such maps

are useful not only for delimiting the set of possible algorithms for a particular NP -hard

problem but also for highlighting those aspects of that problem that are responsible for this
NP -hardness, i.e., those aspects of that problem that are sources of

polynomial-time intractability.

The process of creating and using intractability maps will be illustrated by systematic

parameterized complexity analyses of problems associated with �ve theories of phonological

processing. Phonology is the area of linguistics concerned with the relationship between

spoken (surface) and mental (lexical) forms in natural languages [Ken94]. Each theory of

phonological processing proposes types of representations for lexical and surface forms and

2



mechanisms that implement the mappings between these forms. Two problems associated

with each such theory are the encoding and decoding problems, which are concerned with

the operations within that theory of creating surface forms from lexical forms and recovering

lexical forms from surface forms, respectively. The following �ve theories of phonological

processing will be examined in this thesis:

1. Simpli�ed Segmental Grammars [Ris93b].

2. Finite-state transducer (FST) based rule systems [KK94].

3. The KIMMO system [Kar83, Kos83].

4. Declarative Phonology [Sco92, SCB96].

5. Optimality Theory [MP93, PS93].

These theories together constitute a historical and methodological continuum of the

various types of theories that have been used over the last 30 years to describe phonological
phenomena. The encoding and decoding problems for each theory will be analyzed

relative to a set of aspects that broadly characterizes both the representations and mech-
anisms proposed by that theory. In addition to providing some of the �rst NP -hardness
results for problems associated with several of these theories, these analyses also comprise

the �rst formal framework in which various published speculations about the sources of
polynomial-time intractability in these theories can be investigated.

Grand rhetoric aside, a note is in order concerning the choice of the �ve theories listed
above for analysis in this thesis. Optimality Theory, Declarative Phonology, and

FST-based rule systems are obvious candidates for analysis, as Optimality Theory and
Declarative Phonology are the most popular descriptive frameworks at the present time and
the �nite-state methods underlying FST-based rule systems are the preferred

manner of software implementation of such frameworks. The cases for Simpli�ed Segmental
Grammars and the KIMMO system are slightly weaker, as both are older formalisms that

are no longer in favor. However, they are still well worth analyzing, both because they
are two of the very few linguistic theories that have had their computational complexities
analyzed and debated in the literature and, perhaps more importantly, because their com-

putational mechanisms are much more closely related to those in currently-favored theories

than many researchers seem to realize, cf. [Kar98], and analyses of these older theories make

for interesting comparisons with results derived for the more current theories.

The contributions made in this thesis (in order of appearance) are as follows:

� Systematic parameterized complexity analysis is de�ned in Section 2.1.3. This section

also contains a discussion of what aspects of a problem can be usefully considered to

be responsible for the polynomial-time intractability of a computational problem, and

gives the �rst formal de�nition of a source of polynomial-time intractability.

3



� A new type of �nite-state automaton called a contextual �nite-state automaton is

de�ned in Section 2.2.3 to assist complexity-theoretic analyses of the role of bounded

constraint context-size in phonological processing.

� Chapter 4 gives the �rst systematic parameterized complexity analyses for

Simpli�ed Segmental Grammars, FST-based rule systems, the KIMMO system,

Declarative Phonology, and Optimality Theory. As such, it extends and provides

the �rst complete proofs of various results that were given (often without proof) in

previously published parameterized analyses of Simpli�ed Segmental Grammars

[DFK+94] and Declarative Phonology and Optimality Theory [War96a, War96b].

These analyses are particularly notable in that they are the �rst to address the role of

constraint context-size in the computational complexity of phonological processing.

The results derived in the analyses described above are used to refute several

conjectures made in the literature concerning the sources of polynomial-time

intractability in Simpli�ed Segmental Grammars, FST-based rule systems, and the

KIMMO system. As the parametric reductions used in these analyses are also
polynomial-time many-one reductions, the following results are also obtained:

{ Section 4.1.3 gives the �rst NP -hardness proof for the Finite-state

transducer composition problem and proofs in Section 4.3.2 extend this

result to the restricted case of �-free FST composition. These results in turn give
the �rst NP -hardness proofs for the encoding and decoding problems associated
with FST-based rule systems.

{ Section 4.5.2 gives the �rst NP -hardness proofs for the encoding and decoding
problems associated with Declarative Phonology.

{ Section 4.6.2 gives the �rst NP -hardness proofs for the encoding and decoding

problems associated with a formulation of Optimality Theory that is simpler
than that proposed in [Eis97a]. These proofs in turn are used to give the �rst
NP -hardness proof for the problem of learning constraint-rankings in Optimality

Theory when surface forms instead of full forms are given as examples [Tes96,
Tes97a, Tes97b].

The results in Sections 4.3.2 and 4.4.2 can also be interpreted as the �rst parameterized
analyses of the �-free FST composition and intersection operations within the frame-

work of Kay and Kaplan's �nite-state calculus ([KK94]; see also [KCGS96, XFST]).

As is discussed in more detail in Section 4.7, the results described above suggest that the
computational complexity of phonological processing depends not on such details of theory

formulation as whether a theory uses rules or constraints or has one, two, or many

levels of representation but rather on the structure of the representation-relations encoded
in individual mechanisms and the internal structure of the representations used within

that theory.

Ultimately, the main contributions of this thesis are the results derived in the systematic

parameterized complexity analyses described above and the (hopefully, linguistically

4



relevant) conclusions drawn from these results. The techniques used are by no means new

{ polynomial-time intractability maps have previously been constructed for various prob-

lems [BDFW95, BDF+95, Ces96, CW95, Eva98, Hal96, War96a] and many complexity-

theoretic (albeit unparameterized) analyses of linguistic theories have been done over the

last 25 years (see [BBR87, Ris93a] and references). What is di�erent here is the size of the

derived polynomial-time intractability maps and the use of such maps to compare and con-

trast several closely-related real-world computational problems, cf. the extensive parameter-

ized analysis of Turing machine computation given in [Ces96]. The intractability maps given

in this thesis are admittedly incomplete in that all possible results have not been derived

relative to the sets of aspects considered here, there are other aspects of the problems that

are not considered here at all, and no attempt has been made to derive the best possible

non-polynomial algorithms where such algorithms have been shown to exist. However, this

is consistent with the intent of this thesis, which is to show how systematic parameterized

complexity analyses should be done and interpreted.

The intended audience of this thesis can be split into three groups:

1. Computational complexity theorists (ideally those who are disillusioned by the increas-

ing abstractness of the �eld and would like to know where it contacts reality).

2. Algorithm designers (ideally those who wonder if those in the �rst group have done or
ever will do anything that is relevant to them).

3. Computational linguists (ideally those who wonder if any computer scientists
(particularly those in the �rst two groups) have done or ever will do anything that

is relevant to them).

My hope is that systematic parameterized complexity analysis will form at least two kinds of

bridges between these groups: a \little bridge" between computational complexity
theorists and algorithm designers (by showing how cutting-edge complexity-theoretic tech-

niques can both be initiated by and applied to practical problems in algorithm design) and
a \big bridge" between computer scientists and computational linguists (by showing how
techniques from computer science can be used both to derive better computer implemen-

tations for problems from linguistics and to suggest potentially useful restrictions on the
computational power of the linguistic theories associated with these problems).

This thesis is organized as follows. Chapter 2, Background, consists of two sections

which give overviews of parameterized complexity analysis and phonology. The introduction

to this chapter also gives general notation that will be used throughout this

thesis. Chapter 3,Computational Analyses of Phonological Theories, ties together the

material presented in Chapter 2 by describing how computational analyses of phonological
theories are done in practice and showing how certain aws in such analyses that are

introduced by using classical theories of computational complexity such as NP -completeness

can be remedied by applying the conceptual framework and techniques of parameterized

complexity analysis. Chapter 4, A Systematic Parameterized Complexity Analysis

of Phonological Processing in Rule- and Constraint-Based Formalisms, devotes a
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section to the systematic parameterized complexity analysis of each of the �ve phonological

theories mentioned above. Each section is broken into subsections which give an overview of

a particular theory, the analysis of that theory, and a discussion of the implications of the

results derived within that analysis and suggestions for future research. The organization

of these discussions is somewhat involved and is described in more detail in the introduc-

tion to this chapter. This chapter concludes with a brief discussion of the implications of all

results derived in this thesis for phonological processing in general. Chapter 5,

Conclusions, summarizes the main contributions of this thesis and gives directions for

future research common to all theories examined in Chapter 4. The thesis �nishes up with

two appendixes, the �rst giving the pages where the computational problems used in this

thesis are �rst de�ned, and the latter giving the �rst published proofs of results for Simpli�ed

Segmental Grammars that were given without proof in [DFK+94].
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Chapter 2

Background

This chapter is divided into two main sections, each of which gives an introductory overview
of a topic addressed within this thesis. The �rst section is on parameterized complexity anal-
ysis, and consists of reviews of computational complexity theory and parameterized compu-

tational complexity theory and a discussion of how parameterized complexity analyses can be
applied in a systematic manner to determine the sources of polynomial time intractability in

computational problems. The second section is on phonology, and gives a brief introduction
to the phenomena studied within phonology as well as the various types of representations
and mechanisms by which these phenomena are described within phonological theories.

The following notation will be used throughout this thesis. The main objects of

interest will be sets of objects, strings of symbols over some alphabet, and graphs.
Some operators will have slightly di�erent meanings depending on whether the operand
is a set or a string.

� Sets of Objects: A set is a collection of objects. With respect to a set S, let jSj
denote the number of elements in S, i.e., the size of S, and � denote the empty set,
i.e., the set with no elements. Given a set A, let fx1; x2; : : :g denote the elements of A
and x 2 A denote that x is an element of A. Given two sets A and B, let A[B be the

union of A and B, i.e., the set consisting of the elements in A and/or B, A�B be the
Cartesian product of A and B, i.e., the set consisting of all ordered pairs (x; y) such

that x 2 A and y 2 B, and A�B be the di�erence of A and B, i.e., the set consisting
of all elements in A that are not also in B.

� Strings of Symbols: A string is a sequence of symbols drawn from some alphabet.

With respect to a string x over an alphabet �, let jxj denote the number of symbols
in x, i.e., the length of x, and � denote the empty string, i.e., the string of length 0.

Given a string x, let x1x2 � � �xjxj, xi 2 � for 1 � i � jxj, denote the concatenation of
symbols from � that is x, and xy = x1x2 : : : xjxjy1y2 : : : yjyj, xi 2 � for 1 � i � jxj and
yi 2 � for 1 � i � jyj, be the string formed by concatenating the symbols in string y

onto the right end of string x. Given a string x = x1x2 : : : xn and an integer k � n,

the k-length pre�x of x is the string x1; x2 : : : xk and the k-length suÆx of x is the
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string xn�(k�1)xn�(k�2) : : : xn. Let �n, ��n, ��, and �+ denote the sets of all strings

over � that have length n, length less than or equal to n, length greater than or equal

to zero, and length strictly greater than zero, respectively. A (formal) language over

an alphabet � is a subset of ��. Occasionally, it will be useful to encode a set of strings

into a single string without specifying the details; let hi : k� �� 7! �� be an invertible

function that encodes a set of k given strings over � onto a single string over �.

� Graphs: A graph G = (V;E) is a set of vertices V and a set of edges E that

link pairs of vertices, i.e., E � V � V . If an edge between vertices u and v has a

direction from u to v, the edge is called a directed edge or arc and is written hu; vi;
otherwise, if the edge has no direction attached, it is called an undirected edge and is

written (u; v). If all edges in a graph G are directed, it is called a directed graph and

may alternatively be written as G = (V;A). If all edges in G are undirected, G is an

undirected graph. Unless otherwise noted, all graphs in this thesis are undirected.

If two vertices u and v in G are joined by an edge (if G is undirected) or there is an
arc from u to v (if G is directed), then u is adjacent to v in G; otherwise, u and v are

not adjacent in G.

Let the set of integers be denoted by N .

A �nal note is perhaps in order for readers who are not linguists. One of the most

inuential works in modern phonology is Chomsky and Halle's The Sound Pattern of English

[CH68]. Following common practice in the linguistics literature, the acronym SPE will
be used throughout this thesis to denote either the phonological theory or phonological

rule-systems of the type described in [CH68].
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2.1 Parameterized Complexity Analysis

2.1.1 Computational Complexity Theory

The two basic concepts of interest in computational complexity theory are problems and

algorithms. Essentially, a problem is a question and an algorithm is a �nite sequence of

instructions for some computer which answers that question. Computational complexity

theory establishes upper and lower bounds on how eÆciently problems can be solved by algo-

rithms, where \eÆciency" is judged in terms of the amounts of computational

resources, e.g., time or space, required by an algorithm to solve its associated problem.

As noted by Rounds [Rou91, page 10], \The presuppositions of an already established

theory, such as complexity theory, are perhaps the properties of the theory most easily

ignored in making an application". Yet, it is precisely these presuppositions that we need to

be aware of to fully appreciate both the advantages of parameterized complexity analysis and

how such analyses can improve on previous computational analyses of phonological theories.
With this in mind, the basics of computational complexity theory are reviewed in this

section. The material given below is drawn largely from Sections 1.2, 2.1, and 5.1 of [GJ79].
Readers wishing more detailed treatments are referred to [GJ79, HU79, Pap94].

Let us �rst look at computational problems. A computational problem is a

question to be answered, typically containing several variables whose values are
unspeci�ed. An instance of a problem is created by specifying particular values for its
variables. A problem is described by specifying both its instances and the nature of solu-

tions for those instances. Problems typically have two levels of description { an abstract
description in terms of the general structure and type of instances and solutions, and a con-
crete description in terms of the formal objects, e.g., languages and string relations, onto

which instances and solutions are mapped for manipulation by computer models and sub-
sequent analysis. There are many types of problems. Two of the most common types are

described below.

De�nition 2.1.1 [GJ79, Section 2.1] A decision problem � is a set D� of instances and

a set Y� � D� of yes-instances. A decision problem is described informally by specifying:

1. A generic instance in terms of its variables.

2. A yes-no question stated in terms of the generic instance.

A decision problem � is formally described by a language L[�; e] � �+ for some alphabet

�, where e : Y� 7! �+ is an instance encoding function and L = fx j 9I 2 Y� such that

e(I) = xg.

De�nition 2.1.2 [GJ79, Section 5.1] A search problem � is a set D� of instances and

a set S� of solutions such that for each I 2 D�, there is an associated set S�[I] � S� of

solutions for I. A search problem is described informally by specifying:
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1. A generic instance in terms of its variables.

2. The properties that must be satis�ed by any set of solutions associated with an instance

created from the generic instance.

A search problem � is formally described by a string relation R[�; e] � �+ � �+ for some

alphabet �, where e = (eD; eS), eD : D� 7! �+ and eS : S� 7! �+, is a pair of instance

and solution encoding functions and R[�; e] = f(x; y) j 9I 2 Y� 9S 2 S�[I] such that

eD(I) = x and eS(S) = yg.

The instance and solution encoding functions should be \reasonable" in the sense that they

are concise and decodable { that is, they create encodings that are not arti�cially larger than

the information in the given instance warrants and that can be decoded easily to extract any

of the variables speci�ed in the generic instance [GJ79, p. 21].

Example 2.1.3 Consider the problem of �nding vertex covers associated with a given graph,

i.e., a subset of the vertices of a a given graph such that each edge in the graph has at least
one endpoint in the subset. Two possible informal descriptions of decision and search versions

of this problem are given below:

Vertex cover (Decision) [GJ79, Problem GT1]
Instance: A graph G = (V;E), a positive integer k.
Question: Is there a vertex cover of G of size at most k, i.e., a set of vertices V 0 � V ,

jV 0j � k, such that for every edge (x; y) 2 E, either x or y is in V 0?

Vertex cover (Search)
Instance: A graph G = (V;E), a positive integer k.
Solution: Any vertex cover of G of size � k.

In formal descriptions of theses problems, the input graphs could be speci�ed as jV j � jV j
edge-adjacency matrices and instances could be encoded as strings of the form hjV j; G; ki
with length log2 jV j + jV j2 + log2 k bits. In the case of the search problem, if a numbering
from 1 to jV j on the vertices is assumed, each solution is a subset of f1; : : : ; jV jg and can be

represented by a string of jV j bits.

Informal descriptions are useful to the extent that they are faithful to our mental intuitions

about what problems are and how they behave, and formal descriptions are useful to the

extent that they both mirror informal descriptions and are amenable to mathematical anal-
ysis. In short, formal descriptions make reasoning about problems rigorous and informal

descriptions ensure that such reasoning remains relevant; hence, each has a role to play in

computational complexity theory.

Given the above, an algorithm A for a problem � is a �nite sequence of instruc-
tions for some computer which solves �, i.e., for any given instance of �, A computes

the appropriate solution. What constitutes an appropriate solution depends on the type

of the problem. For example, the solution to a decision problem is \Yes" if the given
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instance is in Y� and \No" otherwise, and the solution to a search problem is \No" if the

solution-set associated with the given instance is empty and an arbitrary element of this

solution-set otherwise. Note that as we are now discussing problems and algorithms in

relation to formal computer models, the instances and solutions manipulated by

algorithms are the string-encodings of the abstract instances and solutions discussed above.

Readers interested in the details of how problems and algorithms are mapped onto formal

computer models are referred to Chapters 2 and 5 of [GJ79].

We can now talk about algorithm eÆciency. Typical computational resources of interest

are time and space, which correspond to the number of instructions executed or the amount

of memory used by the algorithm when it is implemented on some standard type of computer,

e.g., a deterministic Turing machine (for detailed descriptions of the various kinds of Turing

machines, see [GJ79, HU79, LP81]). For some resource R and problem �, let RA : D� 7! N
be be the function that gives the amount of resource R that is used by algorithm A to

solve a given instance of �. The resource-usage behavior of an algorithm over all possible

instances of its associated problem is typically stated in terms of a function of instance size

that summarizes this behavior in some useful manner. The creation of such functions has
three steps:

1. De�ne an instance-length function such that each instance of the problem of interest
can be assigned a positive integer size. Let the size of instance I be denoted by jIj.

2. De�ne a \raw" resource-usage function that summarizes the resource-usage behavior of
A for each possible instance size. Let Rn

A = fRA(I) j I is an instance of the problem
solved by A and jIj = ng be the R-requirements of algorithm A for all instances of

size n. For each instance-size n, choose either one element of or some function of Rn
A

to represent Rn
A. Several popular ways of doing this are:

� The highest value in Rn
A (worst-case).

� The lowest value in Rn
A (best-case).

� The average value of Rn
A relative to some probability distribution on instances of

size n (average-case).

Let SA : N 7! N be the function that gives this chosen value for n > 0.

3. \Smooth" the raw resource-usage function SA(n) via a function CA : N 7! N that

asymptotically bounds SA(n) in some fashion. Several standard types of asymptotic
bounding functions g on a function f are:

� Asymptotic upper bound: f 2 O(g) if there exists a constant c and n0 � 0

such that for all n > n0, f(n) < c � g(n).
� Asymptotic lower bound: f 2 
(g) if there exists a constant c and n0 > 0

such that for all n > n0, f(n) > c � g(n).
� Asymptotic tight bound: f 2 �(g) if f 2 O(g) and f 2 
(g).
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Figure 2.1: Algorithm Resource-Usage Complexity Functions. Let A be the given algorithm

for a problem � with instance-set D�. In the �gure above, each of the small circles denote
the resource-usage value RA(I) of A for a particular instance I 2 D�, the large circles denote
the largest resource-usage value in Rn

A for each instance size n, the dotted line denotes the

\raw" worst-case resource-usage function SA(n), and the solid line denotes the asymptotic
upper bound worst-case resource-usage function CA(n) which \smoothes" SA(n). See main
text for further explanation of terms.

The function CA(n) is called a R-complexity function for algorithm A. The process

of creating such functions is illustrated in Figure 2.1. The complexity functions most
commonly used in the literature (and hence in this thesis) choose resource R to be time

relative to a deterministic Turing machine and summarize RA(I) in terms of asymptotic

upper bounds on the worst case; hence, they are known as asymptotic worst-case time
complexity functions. Given that an algorithm's asymptotic worst-case time complexity

function is f(n), the algorithm is said to be a f(n) time algorithm, and its associated
problem is said to be solvable in f(n) time. An algorithm is eÆcient if its complex-

ity function satis�es some criterion, e.g., the complexity function is a polynomial of the

instance size. A problem is tractable if it has an eÆcient algorithm; otherwise, the
problem is said to be intractable. As there are many possible criteria which can be used

to de�ne eÆciency, there are many possible types of tractability and intractability.

Computational complexity theory is concerned with establishing not only what
problems can be solved eÆciently but also what problems cannot be solved eÆciently.

The former is done by giving an eÆcient algorithm for the problem, and the latter by

de�ning the following four components:
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1. A universe U of problems.

2. A class T � U of tractable problems.

3. A reducibility / between pairs of problems in U . A reduction from a problem � to a

problem �0 (written � � �0) is essentially an algorithm that can use any algorithm for

�0 to solve �. A reducibility is a set of reductions that satis�es certain properties.

The reducibilities of interest here must satisfy the following two properties:

(a) Transitivity: For all problems �, �0, �00 2 U , if � / �0 and �0 / �00 then

� / �00.

(b) Preservation of Tractability: For all problems �, �0 2 U , if � / �0 and

�0 2 T then � 2 T .

4. One or more classes of problems C � U such that T � C.

Given a class of problems K � U , a problem � is K-hard if for all problems �0 2 K,
�0 / �; if � is also in K, then � is K-complete. Informally, the reducibility / estab-

lishes the computational diÆculty of problems relative to each other { that is, if � / �0

then �0 is at least as computationally diÆcult as �. Hence, K-complete problems are the
most computationally diÆcult problems in K, and K-hard problems are at least as com-
putationally diÆcult as the most computationally diÆcult problems in K. These notions
are signi�cant because if a given problem � is C-hard relative to / for any class C and

reducibility / as de�ned above then � is not in T and hence does not have an eÆcient
algorithm (see Figure 2.2).

In practice, it is often very diÆcult to prove that a problem is hard for classes C as
de�ned above. In these cases, it is convenient to use slightly weaker classes C 0 such that it

is strongly conjectured (but not proven) that T � C 0. One can still derive hardness and
completeness results relative to such classes; however, the validity of the conclusion that a
C 0-hard problem does not have an eÆcient algorithm now depends on the strength of the

conjecture that T 6= C 0. Though such conjecture-dependent results are weaker than actual
intractability results, such results can function as proofs of intractability for all practical

purposes if the strength of the conjectures can be tied to practical experience in developing
(or rather, failing to develop) eÆcient algorithms for C 0-hard problems.

Such has been the case for polynomial-time intractability. Polynomial time algorithms
are useful in practice because the values of polynomial functions grow much more slowly

than the values of non-polynomial functions as instance size goes to in�nity, and hence

algorithms that run in polynomial time can solve much larger instances in a given period
of time than those that run in non-polynomial time (for a graphic illustration of this, see

[GJ79, Figure 1.2]). A number of classes of decision problems that properly include the class
of decision problems that are solvable in polynomial time were developed in the 1960's, e.g.,

EXPTIME. However, very few problems of interest have been shown to be hard for these

classes. This motivated the development of what is arguably the most famous theory of
computational complexity to date, namely, the theory of NP -completeness (see [GJ79] and

references). Relative to the scheme above, the components of this theory are:
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Figure 2.2: The Relationship Between Hardness and Completeness Results in

Computational Complexity Theory. See main text for explanation of symbols.

U : The universe of decision problems.

T : The class P of decision problems that can be solved in polynomial time by an algorithm

running on a deterministic Turing machine.

/: The polynomial time many-one reducibility �m, i.e., given two decision problems � and

�0, � �m �0 if there exists an algorithm that, given an instance x of �, constructs an

instance x0 of �0 in time polynomial in jxj such that x 2 Y� if and only if x0 2 Y�0.

C: The classNP of decision problems that can be solved in polynomial time by an algorithm

running on a nondeterministic Turing machine. Such an algorithm essentially has

access to some polynomial number of bits, and is said to solve its associated problem if
the execution of that algorithm relative to at least one of the possible choices of values

for these bits solves the problem in a polynomial number of steps.

14



As any deterministic polynomial time algorithm can be rephrased as a nondeterministic

polynomial time algorithm that ignores the values of the nondeterministic bits, P � NP .

If a decision problem can be shown to be NP -hard then it is not in P (and hence does not

have a polynomial time algorithm) modulo the strength of the conjecture that P 6= NP .

Many theorems (which themselves are stated relative to other conjectures) support this

conjecture (see [Sip92] and references); however, the best evidence to date that P 6= NP is

that in almost 50 years of algorithm research, no one has yet produced a polynomial time

algorithm for a decision problem that is NP -hard. Hence, it is a widely accepted working

hypothesis that P 6= NP .

When interpreting NP -hardness results, it is very important to remember that an

NP -hardness result for a problem � only implies that � is polynomial-time intractable if

P 6= NP . However, given the widespread con�dence in this working hypothesis, an

NP -hardness result can, for all practical purposes, be considered equivalent to a proof of

polynomial-time intractability, and will be treated as such in the remainder of this thesis.

The focus above on decision problems may seem irrelevant as it is search problems that
are typically of interest. However, the theory of NP -completeness (as are many theories of

computational complexity) is phrased in terms of decision problems for two reasons:

1. The formal model underlying decision problems, i.e., formal languages, is much easier

to manipulate and analyze than the formal model underlying search problems, i.e.,
string relations.

2. As eÆcient algorithms for search problems can be used to solve appropriately-de�ned
decision problems eÆciently, intractability results for such decision problems imply
(and can be used to prove) the intractability of their associated search problems.

For instance, if it can be shown that any polynomial time algorithm for a search
problem of interest can be used to solve an appropriately de�ned decision problem in
polynomial time and that this decision problem is NP -hard (and hence not solvable

in polynomial time unless P = NP ), then the search problem cannot be solved in
polynomial time unless P = NP .

Example 2.1.4 Such a relationship holds for the vertex cover problems de�ned in
Example 2.1.3. Any algorithm for the search version of Vertex cover also solves the deci-

sion version of Vertex cover, and as the decision version is NP -complete
(see [GJ79, Problem GT1] and references), the search version of Vertex cover does not

have a polynomial time algorithm unless P = NP .

Ideally, a complexity-theoretic analysis of a problem is not just a one-sided quest for

either algorithms or hardness results. Rather, it is an ongoing dialogue in which both types

of results are used to fully characterize the problem by showing which restrictions make that

problem tractable and which don't [GJ79, Section 4.1].
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2.1.2 Parameterized Computational Complexity Theory

The theory of NP -completeness described in the previous section was developed to show

which problems probably do not have polynomial time algorithms. Since the inception of

this theory in 1971 with Cook's proof that Boolean CNF formula satisfiability is

NP -complete [Coo71], thousands of other problems have been shown to be

NP -hard and NP -complete. Though it is nice to know that such problems do not have

polynomial time algorithms unless P = NP , the inconvenient fact remains that these

problems (especially those with real-world applications) must still be solved.

How does solve NP -hard problems in practice? To date, the two most popular

approaches within computer science have been:

(1) Invoke some type of non-polynomial time \brute force" optimal-solution technique, e.g.,

dynamic programming, branch-and-bound search, mathematical programming.

(2) Invoke some type of polynomial time approximate-solution algorithm,
e.g., bounded-cost approximation schemes, randomized algorithms, simulated

annealing, heuristics.

When the instances to be solved are large, approach (1) may not be feasible, thus forcing the

invocation of approach (2). Indeed, fast approximation algorithms seem the most popular
method for dealing with NP -hard problems at this time. However, there is another approach

(which is arguably an informed version of (1)):

(3) Invoke a non-polynomial time algorithm that is e�ectively polynomial time because its

non-polynomial time complexity is purely a function of some set of aspects of the
problem that are of bounded size or value in instances of that problem encountered in

practice.

Serious discussion of this alternative requires the following de�nitions.

De�nition 2.1.5 Given a decision or search problem �, an aspect a of � is a function

a : D� 7! �+ for some alphabet �.

De�nition 2.1.6 Given a decision or search problem �, aspects a and a0 of �, and a non-

polynomial time algorithm P for �, the non-polynomial time complexity of P is purely

a function of a if the time complexity function of P can be written as f(a)ja0jc, where
f : �+ 7! N is an arbitrary function and c is a constant independent of a and a0.

An aspect of a problem is essentially some characteristic that can be derived from instances

of that problem. Convenient aspects of a problem are the variables in a generic instance
of that problem or various numerical characteristics of those variables. For example, some
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aspects of the vertex cover problems de�ned in Example 2.1.3 are the given graph (G), the

number of vertices in that graph (jV j), the given bound on the size of the vertex cover (k),

or the maximum degree of any vertex in G. Each problem has many aspects, and some

problems have aspects of bounded size or value that are potentially useful in the sense of

(3) above.

Example 2.1.7 Consider the following decision problem from robotics:

3-D Robot motion planning

Instance: A robot composed of linked polyhedra, an environment composed of some set

of polyhedral obstacles, and initial and �nal positions pI and pF of the robot within the

environment.

Question: Is there a sequence of motions of the robot, i.e., a sequence of translations and

rotations of the linked polyhedra making up the robot, that move it from pI to pF without

intersecting any of the obstacles?

This problem is known to be PSPACE-hard [Rei87] and hence does not have a polynomial
time algorithm unless P = PSPACE. Though certain aspects such as the number of or

description-complexity of the environmental obstacles tend to be very large, other aspects
do not, e.g., the number of joints in the robot is less than 7 for commercially-available robot
arms and less than 20 for robot \hands" (see [CW95] and references). An algorithm for this

problem whose non-polynomial time complexity is purely a function of the number of joints
of the given robot might be useful in practice.

There seem to be many other real-world problems that have such bounded aspects [BDF+95,
DFS98], and anecdotal evidence suggests that non-polynomial time algorithms that exploit

these aspects play an important role in solving NP -hard problems that occur in commercial
and industrial applications [DFS98].

The attractiveness of non-polynomial time algorithms that exploit aspects of bounded
size or value immediately suggests two questions:

(1) How does one determine if a problem of interest has such \reasonable" non-polynomial

time algorithms?

(2) Relative to which aspects of that problem do such algorithms exist?

In order to answer these questions, one must be able to answer the following question:

(3) Given a problem and a set of aspects of that problem, does there exist an

algorithm for that problem whose non-polynomial time complexity is purely a function

of those aspects?

This question can be partially addressed within classical theories of computational

complexity like that for NP -completeness. One can try using conventional algorithm-design
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strategies to �nd such an algorithm. Alternatively, one can show that such an algorithm

does not exist by establishing the polynomial-time intractability of the version of that

problem in which the values of those aspects are �xed (in the case of numerical aspects,

to small constants).

Example 2.1.8 Consider the 3-D robot motion planning problem de�ned in Example 2.1.7.

If one could establish the PSPACE-hardness of the version of this problem in which

the number of joints in the given robot is �xed at some constant c, then the 3-D robot

motion planning problem would not have an algorithm whose non-polynomial time

complexity is purely a function of the number of joints in the robot unless P = PSPACE

(as the polynomial-time algorithm created by �xing the number of joints to c in any such

non-polynomial time algorithm could be used in conjunction with the PSPACE-hardness

reduction for the 3-D robot motion planning problem to solve any problem in PSPACE in

polynomial time).

Such proofs are part of the strategy advocated in Garey and Johnson's discussion on how
to use algorithms and NP -hardness results to map a problem's \frontier of tractability"
[GJ79, Sections 4.1 and 4.3]. However, it is not obvious that one can, for every possible

aspect of a problem, always either give the required type of non-polynomial time algorithm
relative to that aspect or establish the polynomial-time intractability of that problem rela-

tive to some �xed value of that aspect. A large part of the diÆculty here stems from one
of the idealizations underlying classical theories of computational complexity { namely, that
instances are indivisible and are characterized in analyses by a single instance size value.

As long as it is impossible to extract aspects of an instance and consider their e�ects in iso-
lation on the time complexity of an algorithm for a problem, attempts to analyze the e�ects of
individual aspects within computational complexity theory will necessarily be indirect

and incomplete.

The theory of parameterized computational complexity [DF95a, DF95b, DF99] is the �rst
theory of computational complexity to provide explicit and elegant mechanisms for analyzing

the e�ects of individual aspects on problem complexity. This theory is founded on two
basic insights:

1. Problem instances can be split into two distinct parts.

2. The e�ects of individual aspects on problem complexity can be isolated by rede�ning

problem tractability such that the time complexity function of an algorithm for a

problem need only be eÆcient relative to the aspects contained in one of these parts.

The details by which these insights are eshed out into a theory of computational complexity

are sketched below. Consider �rst the conception of a problem within this theory and how

individual aspects of problem instances are isolated.

De�nition 2.1.9 Given a decision problem �, a parameter p of � is a function

p : D� 7! �+ for some alphabet �.
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A parameter is a function which extracts a particular aspect or set of aspects of a problem

from instances of that problem; it can also be considered as that set of aspects. As such,

a parameter is both a mechanism for isolating aspects of a problem and the \container" in

which these aspects are packaged for subsequent manipulation. As de�ned here, a parameter

is formally indistinguishable from an aspect; however, it informally has an internal structure

that is not present in an aspect.

De�nition 2.1.10 A parameterized problem � is a set D� of instances, a set Y� of

yes-instances, and a parameter p. A parameterized problem is described informally

by specifying:

1. A generic instance in terms of its variables.

2. The aspects of an instance that comprise the parameter.

3. A yes-no question stated in terms of the generic instance.

A parameterized problem � is formally described by a string relation

R[�; e] � �+ � �+ for some alphabet �, where e : D� 7! �+ is an instance encoding

function and R[�; e] = f(x; y) j 9I 2 Y� such that eD(I) = x and p(I) = yg. By analogy

with decision problems, R[�; e] will be the parameterized language associated by e with �.

Given an instance (x; y) of a parameterized problem, x is called the main part and y is
called the parameter.

Example 2.1.11 Two possible parameterized vertex cover problems are:

Vertex cover I

Instance: A graph G = (V;E), a positive integer k.

Parameter: G
Question: Is there a vertex cover of G of size at most k?

Vertex cover II

Instance: A graph G = (V;E), a positive integer k.

Parameter: k
Question: Is there a vertex cover of G of size at most k?

In a formal description, the input graphs could be speci�ed as jV j � jV j edge-adjacency
matrices and instances could be encoded as string-pairs of the form (hjV j; G; ki; hGi) and
(hjV j; G; ki; hki), respectively.

Parameterized problems will often be equated with their parameterized languages and an

instance (x; y) of a parameterized problem � will be said to be either in or not in that
problem's parameterized language, e.g., (x; y) 2 �. Note that parameterized problems

answer yes-no questions, and are thus a type of decision problem. In the remainder of this
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thesis, unless otherwise speci�ed, the term \decision problem" will denote an

unparameterized decision problem.

Given this explicitly divisible conception of a problem instance, we can now de�ne a more

useful version of polynomial time tractability under which a problem's non-polynomial time

complexity is purely a function of aspects selected by the parameter.

De�nition 2.1.12 A parameterized problem � is �xed-parameter tractable if there

exists algorithm A to determine if instance (x; y) is in � in time f(y) � jxj�, where

f : �+ 7! N is an arbitrary function and � is a constant independent of x and y.

The algorithm A is called an FPT algorithm for �.

De�nition 2.1.13 A parameterized problem � belongs to the class FPT if � is

�xed-parameter tractable.

There are a variety of techniques for deriving FPT algorithms for parameterized problems

(see [DF95c, DF99] and references). One can establish that a parameterized problem is
�xed-parameter intractable (modulo certain conjectures) via the following additional

de�nitions. The requisite reducibility between parameterized problems is given below.

De�nition 2.1.14 A parametric (many-one) reduction from a parameterized problem

� to a parameterized problem �0 is an algorithm M that transforms an instance (x; y) of �
into an instance (x0; y0) of �0 such that:

1. M runs in time f(y)jxj� time for an arbitrary function f and a constant � independent

of both x and y.

2. y0 = g(y) for some arbitrary function g.

3. (x; y) 2 � if and only if (x0; y0) 2 �0.

If such a parametric reduction exists between � and �0 then � parametrically

(many-one) reduces to �.

Lemma 2.1.15 (Transitivity) Given parameterized problems �, �0, and �00, if �

parametrically reduces to �0 and �0 parametrically reduces to �00 then � parametrically

reduces to �00.

Lemma 2.1.16 (Preservation of (Fixed-Parameter) Tractability) Given parameter-

ized problems � and �0, if � parametrically reduces to �0 and �0 is �xed-parameter tractable

then � is �xed-parameter tractable.
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The following de�nitions give the parameterized analogs of the class NP in the theory of

NP -completeness. These classes are, for the most part, based on a series of successively

more powerful solution-checking circuits in which solutions are encoded as input vectors to

these circuits and parameters are encoded in the weights (see below) of these input vectors.

De�nition 2.1.17 An (unbounded fan-in) Boolean circuit �n with input

x = x1x2 � � �xn of length n is a directed acyclic graph. The nodes of fan-in 0 are called

input nodes and are labeled from the set f0; 1; x1; x1; x2; x2; : : : ; xn; xng. The nodes of

fan-in greater than 0 are called gates and are labeled either AND or OR. A special node is

designated the output node. The size is the number of gates and the depth is the maximum

distance from an input node to the output node.

De�nition 2.1.18 The weight of a binary string is the number of 1's in that string.

De�nition 2.1.19 [BS90] An unbounded fan-in Boolean circuit � is a �h
t -circuit if � has

depth at most t + 1 with an AND gate at the output and gates of fan-in at most h at the

input level.

De�nition 2.1.20 A parameterized problem � belongs to the class W[t], t � 1, if � para-

metrically reduces to the parameterized problem WCS(t; h) = fh�; ki j The �h
t -circuit �

accepts an input of weight kg for some constant h.

De�nition 2.1.21 A parameterized problem � belongs to the classW[P] if � parametrically

reduces to the parameterized problemWCS= fh�; ki j The Boolean circuit � accepts an input

of weight kg.

De�nition 2.1.22 A parameterized problem � belongs to the class XP if there exists an

algorithm A to determine if instance (x; y) is in � in time f(y) � jxjg(y), where f : �+ 7! N
and g : �+ 7! N are arbitrary functions.

More parameterized classes are de�ned in [DF99], e.g., W [SAT ]. All such classes and FPT

comprise what is known as the W hierarchy. By the de�nitions given above, the classes of

the W hierarchy are related as follows:

FPT � W [1] � W [2] � � � � � W [P ] � � � � � XP

Relative to the scheme given in the previous section, the four components necessary for

establishing the �xed-parameter intractability (modulo certain conjectures) of a parameter-

ized problem are thus:

U : The universe of parameterized problems.

T : The class FPT of �xed-parameter tractable problem.
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/: The parameterized reducibility between parameterized problems.

C: Any of the classes in the W hierarchy above FPT .

If a parameterized problem can be shown to be C-hard for any class C in the W hierarchy

above FPT , then that problem is not in FPT (and hence does not have a FPT algo-

rithm) modulo the strength of the conjecture that FPT 6= C. At present, XP is the only

class known to properly contain FPT , and it is conjectured that all other inclusions in the

W hierarchy are proper, i.e., FPT � W [1] � W [2] � : : :W [P ] � XP . There are vari-

ous theorems (which themselves are stated relative to other conjectures) which support this

conjecture [CCDF94, DF93, DF95a]; however, the best evidence to date that the inclusions

in the W hierarchy are proper is that no-one has yet produced an FPT algorithm for a

parameterized problem that is hard for any class in the W hierarchy above FPT . Hence,

though the evidence supporting the separateness of the levels of the W hierarchy is not

nearly as extensive as that supporting the conjecture that P 6= NP , the conjecture that all

inclusions in the W hierarchy are proper seems an acceptable (if not yet widely accepted)
working hypothesis.

When interpreting parameterized hardness results, it is very important to remember
that a C-hardness result for a parameterized problem � for some class C above FPT in the

W hierarchy only implies that � is �xed-parameter intractable if FPT 6= C. However, given
the con�dence in the working hypothesis that all inclusions in the W hierarchy are proper,

such a C-hardness result can, for all practical purposes, be considered equivalent to a proof
of �xed-parameter intractability, and will be treated as such in the remainder of this thesis.

Parameterized results are intrinsically interesting in that they populate the
various levels of the W hierarchy with parameterized problems; however, such results also

have implications for decision problems. It follows from the de�nition of a parameterized
problem that each such problem � based on sets D� and Y� and parameter p has an
associated decision problem based on sets D� and Y�; moreover, as each decision problem

has many possible aspects and parameters that encode various subsets of these aspects, each
decision problem has an associated family of parameterized problems. This should perhaps

be reected in the way problems are denoted; hence, given a decision problem � with a
parameter p, let hpi-� denote the parameterized problem associated with � that is based on

parameter p.

Example 2.1.23 Given parameters G and k for the vertex cover problems de�ned in

Example 2.1.3 in the previous section, one might speak of the decision problem Vertex

cover and its associated parameterized problems hGi-Vertex cover and hki-Vertex
cover (which correspond to the parameterized problems Vertex cover I and Vertex

cover II de�ned in Example 2.1.11).

One consequence of the close relationship between decision and parameterized problems is

that in certain cases, properties of and algorithms for one type of problem also apply to the

other. For instance, it is obvious that any algorithm for a decision problem will also solve
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its associated parameterized problems, and vice versa. It is also easy to prove that under

certain conditions, a reduction that holds between a pair of decision problems will also hold

between a pair of their associated parameterized problems, and vice versa.

Lemma 2.1.24 Given decision problems � and �0 with parameters p and p0, respectively,

if hpi-� parametrically reduces to hp0i-�0 such that for an instance (x; y) of hpi-�
the reduction runs in time polynomial in x and y, then � �m �0.

Lemma 2.1.25 Given decision problems � and �0 with parameters p and p0, respectively,

if � �m �0 such that p0 = g(p) for an arbitrary function g, then hpi-� parametrically reduces

to hp0i-�0.

Example 2.1.26 Consider the following decision problems that are very closely related to

the Vertex cover decision problem:

Clique [GJ79, Problem GT19]

Instance: A graph G = (V;E), a positive integer k.
Question: Is there a clique in G of size at least k, i.e., a set of vertices V 0 � V , jV 0j � k,

such that for every pair of vertices x; y 2 V 0, (x; y) 2 E?

Independent set [GJ79, Problem GT20]
Instance: A graph G = (V;E), a positive integer k.
Question: Is there an independent set in G of size at least k, i.e., a set of vertices V 0 � V ,

jV 0j � k, such that for every pair of vertices x; y 2 V 0, (x; y) 62 E?

For any graph G = (V;E) and subset V 0 � V of the vertices of G, the following statements
are equivalent [GJ79, Lemma 3.1]:

1. V 0 is a vertex cover for G.

2. V � V 0 is an independent set for G.

3. V � V 0 is a clique for the complement Gc of G, where Gc = (V;Ec) with

Ec = f(u; v) j u; v 2 V and (u; v) 62 Eg.

This suggests natural polynomial time many-one reductions between each pair of problems

in the set fClique, Independent set, Vertex coverg, e.g.,

� Independent set �m Clique by the polynomial time algorithm that transforms
an instance hG; ki of Independent set into an instance hG0; k0i of Clique where

G0 = Gc and k0 = k.

� Vertex cover �m Clique by the polynomial time algorithm that transforms an

instance hG; ki of Vertex cover into an instance hG0; k0i of Clique where G0 = Gc

and k0 = jV j � k.
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Note however that only some of these reductions also hold between the versions of these

decision problems that are parameterized relative to the size k of the selected set of

vertices V 0, e.g., hki-Independent set parametrically reduces to hki-Clique by the �rst

reduction above as k0 = k = f(k) but hki-Vertex cover does not parametrically reduce to

hki-Clique by the second reduction above as k0 = jV j � k 6= f(k).

A more important consequence of the close relationship between decision and parameterized

problems is that under certain conditions, results for parameterized problems can propagate

to decision and search problems. As noted above, an algorithm for a decision problem can

be used to solve any of that problem's associated parameterized problems. Hence, given a

polynomial-time intractable decision problem � with parameter p, if it can be shown that

the parameterized problem hpi-� is C-hard for some class C in the W hierarchy above FPT ,

then � cannot be solved by an algorithm whose non-polynomial time complexity is purely

a function of the aspects encoded in p unless C = FPT . If in turn this decision problem

is related to a search problem in the manner described in Section 2.1.1, �xed-parameter
intractability results for parameterized problems propagate to and have implications for

search problems as well.

Example 2.1.27 Such a relationship cannot hold relative to the parameter k for the vertex

cover problems, as hki-Vertex cover is in FPT (see [DF99] and references). However,
this relationship does hold relative to the parameter d for the 3-D robot motion planning

problems de�ned in Example 2.1.7, where d is the number of joints in the given robot:
Any algorithm for the decision version of this problem also solves the version of this problem
parameterized relative to d, and since hdi-3-D Robot motion planning is W [SAT ]-hard

[CW95], the decision version (and hence, by the reasoning in the previous section, the search
version) of this problem does not have an algorithm whose non-polynomial time complexity
is purely a function of the number of joints in the given robot unless FPT =W [SAT ].

Parameterized computational complexity has been de�ned here relative to the class P ,

in that parameterized problems in FPT must have algorithms whose time complexities

may be non-polynomial in the parameter but polynomial in the main part of the problem
instance. Theories of parameterized computational complexity can be de�ned relative to any

resource-usage class C, e.g., PSPACE or DLOGTIME, by restating �xed-parameter
tractability to require an algorithm whose resource requirements on any instance (x; y) are

bounded by f(y) � g(x) where f : �+ 7! N is an arbitrary function and g satis�es the

resource-usage restrictions implicit in C. One such parameterized analogue relative to par-
allel complexity classes is given in [CI97]. Hence, it is possible to create parameterized anal-

yses that can isolate non-C sources of algorithmic behavior for any resource-usage class C of
interest. This shows that parameterized computational complexity theory is not so much a

single theory as a family of theories which all embody a general technique for analyzing prob-

lem complexity that is orthogonal yet complementary to computational complexity theory
as de�ned to date.
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Alphabet Size j�j
Parameter Unbounded Parameter

| NP -complete 62 XP

k W [t]-hard for t � 1 W [t]-hard for t � 1

m W [2]-hard FPT

k;m W [1]-complete FPT

Table 2.1: A Systematic Parameterized Complexity Analysis of the Longest common

subsequence Problem Relative to S = fj�j; k;mg (adapted from [BDF+95, Table 1]).

See page 100 for a de�nition of this problem.

2.1.3 Systematic Parameterized Complexity Analysis

Individual parameterized results are very good at establishing whether or not a given problem
has an algorithm whose non-polynomial time complexity is purely a function of a particular

set of aspects of that problem, e.g., the 3-D robot motion planning problem relative to the
number of joints in the given robot (see Example 2.1.27). However, if one is interested in fully
characterizing the set of non-polynomial time algorithms for a polynomial-time intractable

problem � relative a set S of aspects of �, individual results are not suÆcient because a
�xed-parameter tractability (intractability) result relative to a particular set S 0 � S says

nothing about which aspect-subsets (supersets) of S 0 also render � �xed-parameter tractable
(intractable). Rather, such a characterization requires that all possible parameterized results
be derived relative to S.

De�nition 2.1.28 Given a decision problem � and some subset S = fs1; : : : ; sng of the

aspects of �, a systematic parameterized complexity analysis of � relative to S

determines the parameterized complexity of � relative to all 2n � 1 non-empty subsets of S.

Several such analyses have been done to date for various problems [BDFW95, BDF+95,
Ces96, CW95, Eva98, Hal96, War96a]. The list of parameterized results produced by a

systematic parameterized complexity analysis relative to some set of aspects S for a problem

� can be visualized as a polynomial time intractability map1 that shows the manners

(and some of the forms) in which the polynomial time intractability of � can manifest itself

as algorithms whose non-polynomial time complexities are purely functions of the aspects in

S (see Table 2.1).

Performing a systematic parameterized complexity analysis relative to a set S of aspects
of a decision problem � may involve proving far less than 2jSj � 1 parameterized results.

1This mapping metaphor, as well as the idea of using parameterized complexity analysis as a tool to
discover the roots of a problem's polynomial time intractability, was inspired by Garey and Johnson's classic
discussions on how to apply computational complexity theory to analyze polynomial time intractable prob-
lems [GJ79]. The historically-minded reader is strongly encouraged to re-read this book (especially Sections
4.1 and 4.3) if only to see an early and elegant framing of various issues that would subsequently be addressed
in parameterized computational complexity theory.
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Indeed, as the following lemmas show, each proven result automatically implies many others.

These lemmas have been implicit in many previous parameterized analyses, and are stated

here for the sake of clarity. Note that depending on context in the proofs below, S denotes

either a set of aspects or an encoding of this set into a string over some alphabet �.

Lemma 2.1.29 Given sets S and S 0 of aspects of a decision problem �, if S 0 � S then

parameterized problem hSi-� parametrically reduces to parameterized problem hS 0i-�.

Proof: Let S 00 = S�S 0, i.e., the set of aspects in S that are not in S 0. Given an instance

(x; S) of hSi-�, construct an instance (x0; S 0) of hS 0i-� such that S 0 = S � S 00 and x0 = x.

This can be done in f(S)jxj� time for some function f : �+ 7! N and some constant � that

is independent of x and S. To complete the proof, note that as S 0 is trivially a function

of S by the construction given above, x = x0, and the set Y� is the set of yes-instances

underlying both hSi-� and hS 0i-�, the given instance of hSi-� has a solution if and only if

the constructed instance of hS 0i-� has a solution.

Lemma 2.1.30 Given sets S and S 0 of aspects of a decision problem �, if parameterized

problem hS 0i-� is �xed-parameter tractable and S 0 � S, then parameterized problem hSi-�
is �xed-parameter tractable.

Proof: Follows from Lemmas 2.1.29 and 2.1.16.

Lemma 2.1.31 Given sets S and S 0 of aspects of a decision problem �, if parameterized

problem hSi-� is C-hard for some class C in the W hierarchy above FPT and S 0 � S,

then parameterized problem hS 0i-� is C-hard.

Proof: Follows from Lemma 2.1.29 and the C-hardness of hSi-�.

Example 2.1.32 Consider the Longest common subsequence (LCS) decision problem

as analyzed in Table 2.1 relative to the set of aspects A = fj�j; k;mg. As hj�j; mi-LCS is in
FPT [BDFW95], hj�j; k;mi-LCS is also in FPT by Lemma 2.1.30. Moreover, as hk;mi-LCS
isW [1]-complete [BDFW95] (and hence W [1]-hard by de�nition), hki-LCS and hmi-LCS are
also W [1]-hard by Lemma 2.1.31.

There are additional ways of linking sets of numerical-valued aspects from the same problem.

Given two sets S and S 0 of numerical-valued aspects for some decision problem �, write
S � S 0 if for each aspect s 2 S, there is a function gs : �

+ 7! N such that it is always

the case in any instance of � that s � gs(S
0). For example, in the Longest common

subsequence decision problem, fmg � fmin1�i�k jXijg because the common subsequence

cannot be longer than the shortest given string.

Lemma 2.1.33 Given sets S and S 0 of numerical-valued aspects of a decision problem �,

if parameterized problem hSi-� is �xed-parameter tractable and S � S 0, then hS 0i-� is

�xed-parameter tractable.
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Proof: Let A be any FPT algorithm for parameterized problem hSi-� with instances

of the form (x; S). By de�nition, A runs in time f(S)jxj� for some function f : �+ 7! N
and some constant � that is independent of x and S. Create a function g : �+ 7! N by

replacing every occurrence of every aspect s 2 S in function f by the appropriate function

gs(S
0). As s � gs(S

0) for every s 2 S by de�nition, algorithm A runs in time g(S 0)jxj�.
To complete the proof, note that FPT algorithm for hSi-� will also solve hS 0i-�.

Lemma 2.1.34 Given sets S and S 0 of numerical-valued aspects of a decision problem �,

if parameterized problem hS 0i-� is C-hard for some class C in the W hierarchy above FPT

and S � S 0, then hSi-� is not �xed-parameter tractable unless C = FPT .

Proof: Follows from Lemmas 2.1.33 and the C-hardness of hS 0i-�.
Under certain conditions, very powerful parameterized results may be implicit in an

NP -hardness result for a decision problem.2

Lemma 2.1.35 Given a set S of aspects of a decision problem �, if � is NP -hard when

the value of every aspect s 2 S is �xed, then the parameterized problem hSi-� is not in XP

unless P = NP .

Proof: If hSi-� is in XP then by de�nition this problem is solved by an algorithm that
runs in time f(S)jxjg(S) for some functions f and g. When the value of every aspect in

S is �xed, the values of f(S) and g(S) become constants and this running time becomes
polynomial in jxj. As this algorithm also solves � and � is NP -hard when the value of every
aspect in S is �xed, every NP -complete decision problem (and hence every decision problem

in NP ) can be solved in polynomial time, i.e., P = NP .

Example 2.1.36 Consider again the Longest common subsequence (LCS) decision

problem. As LCS is NP -complete (and hence NP -hard by de�nition) when j�j = 2 [Mai78],
hj�ji-LCS 62 XP unless P = NP by Lemma 2.1.35.

The analyses given in Chapter 4 will show that it is possible to create large
polynomial time intractability maps by applying the lemmas above to a relatively small

core of parameterized results.

2Lemma 2.1.35 has been noticed independently by several researchers over the last few years. It has
recently gained signi�cance in light of the following:

Lemma [DFS98] Given a set S of numerical-valued aspects of a decision problem �, if � is NP -hard when

the value of every aspect s 2 S is �xed to a constant, then the parameterized problem hSi-� is not XP -hard

unless P 6= NP .

Taken together, these results imply that XP is a natural \top" class of theW hierarchy, in the sense that the
relationship of certain parameterized problems to XP and any classes above it cannot be resolved without
�rst answering certain open questions within classical computational complexity theory, i.e., whether P is
or is not equal to NP [Fel97]. This and other relationships between classical and parameterized theories of
computational complexity are promising topics for future research.
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Though the polynomial-time intractability maps produced by systematic

parameterized complexity analyses will typically contain both W -hardness results and FPT

algorithms, it is perhaps the algorithms that are of the most interest. Two possible groups

of users for such algorithms and the manners in which they would use these algorithms are

as follows:

1. Algorithm Users: Given a polynomial time intractable problem and typical ranges

of aspect-values from actual instances of the problem, one can use these ranges of

aspect-values to select the FPT algorithms within the intractability map that will

operate the most eÆciently on problem instances that occur in practice.

2. Algorithm Designers: Given a polynomial time intractable problem, one can use the

FPT algorithms within the polynomial time intractability map to guide research on new

algorithms for the problem. This is possible because many general algorithmic tech-

niques for polynomial time intractable problems have characteristic
non-polynomial running times, e.g., both backtracking and branch-and-bound search

are exponential in the depth and degree of the search tree and dynamic program-
ming is exponential in the number of dimensions and maximum dimension size of the
implicit table. Hence, knowing which sets of aspects can express the non-polynomial

time complexity of an algorithm for a problem speci�es both the algorithmic
techniques that can be productively applied to that problem and the sets of aspects
relative to which these applications can be made.

These two approaches to using the FPT algorithms in polynomial-time intractability maps

are illustrated in Figure 2.3. These approaches apply intractability maps in opposite
manners and to di�erent ends. In the former case, one uses aspects to select good

algorithms from the intractability map for practical applications; in the latter case, one uses
the algorithms in the intractability map to select signi�cant groups of aspects for further
algorithm research and enhancement of the map. In both cases, note that �xed-parameter

intractability results are important because they establish relative to which sets of aspects
FPT algorithms do not exist.

The ability to systematically delimit the manners of FPT algorithms that can exist for
a given problem allows us to answer an outstanding question in computer science: namely,

given a polynomial-time intractable problem, which sets of aspects of the problem can be said
to be responsible for (and hence are sources of) that problem's polynomial-time intractabil-

ity? As algorithms are the ultimate goals of complexity analysis, perhaps the most useful

de�nition of a problem's sources of polynomial-time intractability is those sets of aspects
of the problem that encode this intractability relative to FPT algorithms for that problem,

i.e., those sets of aspects that can be exploited in subsequent applications and research as
described above.

De�nition 2.1.37 Given a polynomial-time intractable decision problem � and some sub-

set S of the aspects of �, S is a source of polynomial-time intractability for �

if hSi-� is in FPT .
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Parameter Unbounded Parameter

| | W [1]-complete

a FPT FPT

A1: O(2ab2 log c) A2: O(acb)

b W [2]-hard W [2]-complete

a; b FPT FPT

A3: O(abc3) A4: O(cb
p
a

)

(a)

c

a b small large

small small A1, A2, A3, A4 A3, A4

small large A1, A2 |

large small A2, A3 A3

large large A2 |

(b)

Figure 2.3: Systematic Parameterized Complexity Analysis and Polynomial Time
Intractability Maps. a) The polynomial time intractability map resulting from the

systematic parameterized complexity analysis of a hypothetical polynomial-time intractable
decision problem � relative to a set of aspects S = fa; b; cg of �. The time complexity
of each FPT algorithm is given in O-notation. b) The list of practical FPT algorithms

relative to the aspects in S when the typical values for each aspect are either small or large.
Note that no given FPT algorithm is practical when both b and c have large values.

For example, the sources of polynomial-time intractability in the intractability map given

in Figure 2.3 relative to aspect-set S = fa; b; cg for problem � are fag, fa; cg, fa; bg, and
fa; b; cg via the FPT algorithms A1, A2, A3, and A4, respectively. In this thesis, the focus

will be on sources of polynomial-time intractability that are \minimal" in the sense that

their associated FPT algorithms are not trivial extensions of other FPT algorithms along
lines such as those described in Lemmas 2.1.30 and 2.1.33. Though this kind of minimality is

almost impossible to de�ne formally and must thus be evaluated on a case-by-case basis (as is

done in the analyses given in Chapter 4), such minimal sources are a useful characterization

of the \core" of distinct FPT algorithms for a problem relative to some set of its aspects.

At �rst glance, the de�nition of a source of polynomial-time intractability given above may
seem trivial and obvious. However, as will be discussed further in Chapter 3, the failure

to make such a de�nition underlies certain misinterpretations of the results of classical

complexity analyses.
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When interpreting polynomial-time intractability maps, it is very important to

remember that an FPT algorithm for a parameterized problem hSi-� based on a

decision problem � only implies that S is a source of polynomial-time intractability for � if �

is polynomial-time intractable, and that any subsequent conclusions based on

interpreting the aspects associated with the FPT algorithms in this map as sources of

polynomial-time intractability for � are valid to the extent that all hardness results in the

map are stated relative to classes of the W hierarchy that properly include FPT .

These assumptions will often be violated in practice, in that the decision problem being

analyzed will only be known to be NP -hard and the intractability map will be constructed

from FPT algorithms and W -hardness results. However, given the con�dence in the work-

ing hypotheses that P and NP as well as the levels of the W hierarchy are separate and

the promising applications described above that are latent in intractability maps, the FPT

algorithms in a polynomial-time intractability map for a problem � relative to a set of

aspects S of � can, for all practical purposes, be considered as representing the sources of

polynomial-time intractability in � relative to S, and will be treated as such in the remainder
of this thesis.

Even given the acceptance of the working hypotheses above, a polynomial-time
intractability map for a given decision problem � relative to some set S of the aspects

of � will typically be incomplete in two senses:

1. Such a map does not summarize all possible non-polynomial time algorithms for �,
as some of these algorithms may have non-polynomial time complexities that are purely

functions of sets of aspects that include aspects that are not in S.

2. Such a map need not even summarize all possible FPT algorithms relative to S

because parameterized complexity analysis can only say whether at least one or no

FPT algorithm can exist relative to a particular subset S 0 of S. There may be many
FPT algorithms relative to S 0, and knowing some of them does not necessarily imply
anything about the others.

This incompleteness is inherent in the map, and is di�erent from the potentially

resolvable uncertainty introduced by conjecture-dependent intractability results.
Experience has shown that these de�cits are not as serious as they may �rst appear.

As for the �rst point, my own experience in doing systematic parameterized analyses of

phonological processing systems [DFK+94, War96a, War96b] suggests that such analyses
on some initial set of aspects will often lead to the discovery and subsequent analysis of

new and hopefully more relevant aspects. As for the second point, the proliferation of suc-
cessively more eÆcient FPT algorithms for the parameterized problem hki-Vertex cover
(see [DF95a, SF99] and references) suggests that once the discovery of the �rst FPT al-

gorithm establishes that a decision problem � can be �xed-parameter tractable relative to
some set of aspects S, further research (aided by various techniques developed speci�cally

for creating FPT algorithms (see [DF95c, DF99] and references)) will uncover more FPT

algorithms relative to S. Hence, the inherent incompleteness of an intractability map should
be seen not as an insurmountable diÆculty but rather as a reection of the incomplete

knowledge that characterizes the intermediate stages of any scienti�c investigation.
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Ideally, a systematic parameterized complexity analysis should be part of an ongoing

discovery procedure for analyzing a polynomial-time intractable problem, in which classical

and parameterized computational complexity are used in an alternate and complementary

fashion, the former to show what subproblems of the given problem are polynomial-time

intractable and the latter to diagnose the sources of this intractability. Such analyses do

not preclude and indeed should actively encourage further research into various kinds of

polynomial time approximation algorithms for the given problem. It must be remembered

that the ultimate goal of algorithm research is to solve a given problem in the most eÆcient

manner by whatever means are most appropriate. What is important is ensuring that when

this choice of means is made, we know all our options. It is in aiding this, by making

possible the discovery of the sets of non-polynomial time optimal-solution algorithms for

polynomial-time intractable problems, that systematic parameterized complexity analysis

will probably have its greatest impact in years to come.
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2.2 Phonology

2.2.1 What is Phonology?

Phonology is the area of linguistics that studies the mapping between mental and spoken

representations in human languages [Ken94]. Every human language (be it spoken, signed,

or written) exhibits regularities in the way that symbols are combined to form utterances

in that language; the phonology of a language both describes these regularities and uses

them to discover the nature of the mapping between mental and spoken representations in

that language. To the extent that such mappings are computable and can thus be used to

recover mental representations from spoken representations and vice versa, phonology is an

important component of natural language processing systems. This section gives a very brief

introduction to some of the types of phenomena studied within phonology. Readers wishing

more comprehensive treatments should consult a standard textbook such as [Ken94].

The most basic type of phonological phenomenon is the dependence of the form of a
symbol on its surrounding symbols.

Example 2.2.1 (English) The spoken form of the plural suÆx in English seems to be a
function of the �nal sound in the noun being pluralized.3

spoken form
noun plural of plural suÆx

mop mops [s]

pot pots [s]

pick picks [s]

mob mobs [z]

pod pods [z]

pig pigs [z]

Such regularities can involve not only change in symbol form but also insertion or deletion
of symbols.

Example 2.2.2 (Maori [SB78, Exercise 7.4]) Consider the following verb forms from

Maori, a language spoken in New Zealand.

3In the following, boldface symbols enclosed in square brackets will represent sounds according to the
conventions of the International Phonetic Alphabet (IPA). For instance, [s] and [z] will stand for the \s"
and \z" sounds at the beginning of the words \sop" and \zoo" as pronounced by a native speaker of English.
When IPA notation is not used in presenting language data, it will be assumed that word spelling accurately
reects pronunciation.
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(hypothesized)

active passive gerund root verb meaning

a� a�tia a�ta�na a�t \embrace"

hopu hopukia hopuka�na hopuk \catch"

aru arumia aruma�na arum \follow"

paa paa�nia paa�na�na paa�n \shut"

mau mauria maura�na maur \carry"

wero werohia weroha�na weroh \stab"

patu patua patu�na patu \strike"

kite kitea kite�na kite \see"

This somewhat confusing mass of data is simpli�ed if one assumes that there is a common

root verb underlying each triple of verb forms given above, and that the spoken form of each

verb form of a root verb depends on whether the �nal sound in that root is a consonant

or a vowel. Given this, active forms are created by deleting root-�nal consonants, passive
forms are created by adding a suÆx \-ia" (\-a") if the �nal sound in the root is a consonant

(vowel), and gerund forms are created by adding a suÆx \-a�na" (\-�na") if the �nal sound in
the root is a consonant (vowel).

Regularities may also be a function of symbols in more distant parts of the word. In one
such phenomenon, vowel harmony, certain aspects of vowels in one particular part of a word

propagate to vowels in the rest of the word.

Example 2.2.3 (Turkish [Ken94, p. 25]) In Turkish, the form of the vowel in many

suÆxes seems to be a function of the vowel in the root word, e.g., the vowel in the
plural suÆx:

noun plural meaning

dal dallar \branch"

kol kollar \arm"
kul kullar \slave"

yel yeller \wind"
di�s di�sler \tooth"

g�ul g�uller \rose"

It is tempting to suggest that such regularities are simply encoded in the mental lexicon,
i.e., all possible forms of a word are stored in the mental lexicon. In this case, the mapping

between mental and spoken forms is that of identity and hence is trivial. However, several

lines of evidence suggest otherwise. Consider for instance languages which have both vowel
harmony and complex inectional systems.
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Example 2.2.4 (Turkish [Spr92, p. 44]) In Turkish, whole sentences may be formed by

concatenating suÆxes onto a root word. By vowel harmony, the vowels in each of these

suÆxes is a function of the vowel in the root word, e.g.,

�c�opl�uklerimizdekilerdenmiydi =

�c�op + l�uk + ler + imiz + de + ki + ler + den + mi + y + di

\was it from those that were in our garbage cans?"

The combinatorial explosion of possible word forms (many of which may never have been

heard or used by the speaker before) makes the storage of all such word forms in a

mental lexicon unlikely. More compelling evidence comes from regularities involving words

which are introduced into a language, e.g., nonsense words and words borrowed from other
languages. As such words could not previously have been in the mental lexicon, these
regularities suggest that at least some observed symbolic regularities are not static

patterns but are rather the result of productive mechanisms operating on spoken and mental
representations. For instance, English speakers awlessly pluralize nonsense nouns according
to the regularity given in Example 2.2.1, e.g., \grikip" ) \grikips" ([s]) and

\grikib") \grikibs" ([z]). The treatment of borrowed words can be even more provocative.

Example 2.2.5 (Chinenglish [DeF91, Exercise 3.10]) Chinenglish is a hybrid of
English and Cantonese that is spoken in Hong Kong. Words borrowed from English that
contain [r] are changed to conform with the sound-patterns of Cantonese.

List I: [r] deleted

1. tart 4. guitar 7. sergeant

2. party 5. bar

List II: [r] pronounced as [l] 4

1. strawberry 3. aspirin 5. curry

2. brandy 4. Listerine

It seems that [r] is deleted if it occurs before a consonant or as the �nal sound in a word,
and [r] becomes [l] if it occurs before a vowel. Note that the pattern of [r]-deletion in

List I is also characteristic of certain New England dialects of English such as that spoken

in Boston.

4I've literally seen this particular phenomenon in action. Several years ago, I shared an oÆce with a
native speaker of Cantonese who was learning English. I came in one morning to �nd the following note he
had left on my desk: \Phone Let Kloss about giving blood."
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Example 2.2.6 (Japanese [Lov73]) Japanese does not recognize any di�erence between

the [r] and [l] sounds { that is, there are no pairs of words in Japanese with di�erent

meanings whose pronunciations are distinguished only by an [l] sound in a certain position

in one word and an [r] sound in the corresponding position in the other word, cf., \ball" and

\bar" in English. Moreover, Japanese words have a very restricted syllabic structure that

does not allow many types of multi-consonant clusters. Hence, words borrowed from English

are changed both by having [l]-sounds either deleted or transformed into [r] and by having

vowels inserted to break up certain multi-consonant clusters.

dosutoru \duster"

sutoroberri \strawberry"

kurippaa \clippers"

sutoraiki \strike"

katsuretsu \cutlet"

parusu \pulse"

gurafu \graph"

Such evidence as that given above suggests that (1) there are at least two distinct
levels of representation in natural language, the mental (at which elements of the lexicon are

combined) and the spoken, and (2) the regularities observed in spoken forms are not encoded
in the lexicon directly but are rather properties of the non-trivial mapping between men-
tal and spoken representations. As phonology is inherently intertwined with morphology,

the area of linguistics that studies how elements of the lexicon are stored and subsequently
combined to create mental representations, the two are often merged into the area of

linguistics called morphophonology. Note that the emphasis on symbols rather than
sounds in the preceding paragraphs is intentional, because phonological phenomena
occur in all types of natural human languages. For example, regularities similar to those

described above have also been observed in the manner in which hand and body movements
are combined in sign languages used by the deaf [Bre95].

There are many theories within phonology, each of which proposes types of represen-
tations for mental and spoken forms and mechanisms for describing the mapping between

these representations. Broadly speaking, phonological theories can be divided into two types

which di�er in their conception of these mechanisms:

1. Rule-Based: Mental representations are transformed into spoken representations by

the application of rewriting rules.

2. Constraint-based: A set of candidate spoken representations is associated with a

given mental representation, and constraints are applied to this set in some manner to
select the actual spoken representation.

These mechanisms are descriptively equivalent, in that any phonological phenomenon can

be described using either rules or constraints. Hence, these theories are evaluated more
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in terms of the ease with which regularities such as those described in the examples in

this section can be captured by their respective mechanisms. At present, constraint-based

theories are preferred because they focus on capturing the essence of phonological map-

pings without invoking (possibly unjusti�able) mechanisms for implementing these mappings

(see [Bir95, LP93] for further discussion). This concern with unjusti�able mechanisms seems

to have been motivated in part by the computational intractability associated with older

phonological theories based on rewriting rules. Implicit in many discussions of

constraint-based theories is the belief that the simple machinery by which constraints are

invoked to create phonological mappings will make computations associated with these

theories tractable. However, as will be shown in Chapter 4, such faith is very

sadly misplaced.

2.2.2 Phonological Representations

The cornerstone of any phonological theory are the types of mental and spoken representa-
tions used within that theory. Indeed, as noted by Kenstowicz, the chief theoretical problem
in examining phonological phenomena is \ ... to discover a representation that permits

the facts to be stated clearly so that generalizations emerge which provide the basis for an
explanatory theory." [Ken94, p. 548]. This section gives an overview of the representations

used by the phonological theories examined in this thesis.

There are three types of phonological representations (see Figures 2.4 and 2.5).

Each is linear in the sense that it describes the order of phonological events in an
utterance; however, they di�er in the detail and manner in which these events are described

and related.

1. Strings of symbols (Figure 2.4(a)): A phonological representation is a string of

symbols s1s2s3 : : : sn 2 �n for some alphabet �. This is the simplest form of
representation, and it is motivated by the recognition of discrete items in speech,
e.g., sounds, syllables, stress.

2. Strings of segments (Figure 2.4(b) and Figure 2.5(e)): A phonological representation

is a string of segments, where a segment is essentially a symbol that has an inter-

nal structure. This internal structure is de�ned relative to a set F of features, each

of which has an associated set of possible values. In principle, there is no limit to
the number of values that can be in this set; however, in practice most features are

binary-valued and have the value-set f+;�g. A segment relative to a feature-set F

is de�ned by a subset F 0 � F and a value for each of the selected features in F 0.
Features in F � F 0 for such a segment are said to be unde�ned for that segment.

Following linguistic convention, segments will be written as sets of feature-value pairs,
e.g. f[f1 v1], [f2 v2],: : :, [fm vm]g where vi is one of the values associated with fea-

ture fi for 1 � i � m. Typically, only a small subset of the possible subsets of F

can de�ne valid segments. One popular way of encoding these constraints on feature
co-occurrence is to use the features in F to label the vertices of a rooted tree called a

feature geometry such that for each valid segment, the set of features de�ning that
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Figure 2.4: Phonological Representations. a) A string of symbols over the alphabet

� = fA;B;C;Dg. b) A string of segments over the binary-valued features a, b,

and c. Note that feature c is unde�ned for the �rst segment. c) A \paddle wheel"

autosegmental structure for the segment-string in (b), in which the timing-tier slots are
denoted by X's and each of the features in (b) has its own tier.
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Figure 2.5: Phonological Representations (Cont'd). d) A feature geometry over the

binary-valued features a, b, c, d, and e which is rooted at feature a. e) A string of valid

segments over the feature-geometry in (d). f) The autosegmental structure associated with

the segment-string in (e) relative to the feature geometry in (d), in which the timing-tier

slots are denoted by X's and each of the features in (d) has its own tier.
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segment corresponds to the set of features labeling the nodes of a subtree of this rooted

tree. A sample feature geometry is shown in Figure 2.5(d).

Segmental strings are the representation on which most phonological research has

been based; in such representations, each feature in a feature-set F represents some

signi�cant feature of sounds in the language of interest, e.g., vowel length, consonant

voicing. Features and segments in phonology were originally proposed by Jakobson and

Trubetzkoy in the 1930's, and the �rst formal theory of segmental phonology was

given by Chomsky and Halle in their classic book The Sound Pattern of English

(SPE) in 1968 [CH68]. The division of symbols into bundles of feature-value pairs was

motivated by the realization that, given an appropriate set of features, the seemingly

random alternation of symbols in many phonological phenomena could be accounted

for by simple mechanisms that propagate feature-values across adjacent segments.

Example 2.2.7 Under standard sets of phonological features, sounds [s] and [z] di�er only

in the feature voiced { that is, [s] has the feature-value pair [voiced �] and [z] has the
feature-value pair [voiced +]. The same relationship also holds for the pairs of sounds
[p] / [b], [t] / [d], and [k] / [g]. Hence, the alternation of [s] and [z] for the English plural

suÆx in Example 2.2.1 can be accounted for by postulating a mechanism which ensures that
the plural suÆx-segment takes on the value of the feature voiced in the �nal segment of the

word to which it is aÆxed.

3. Autosegmental structures (Figure 2.4(c) and Figure 2.5(f)): A phonological repre-

sentation is a collection of single-feature segment-strings called tiers, one of which is
a special string of timing slots. Each feature can appear on only one tier, and a tier

consists of segments based on a single feature. Each segment in a tier is linked to some
set of segments in other tiers by association lines. The set of features describing the
sound at any particular point in the utterance encoded by the representation is the set

of features in all segments linked by association lines to the timing slot corresponding
to the moment of interest. Such a representation is called autosegmental because each
segment in the representation is autonomous, i.e., it exists and can be manipulated

independently of other segments.

Since their introduction by Goldsmith in 1976 [Gol76] (see also [CL92, Gol90] and
references), autosegmental representations have become the dominant type of

representation in phonological research. Originally, all tiers were assumed to be
associated directly to the timing tier (the so-called \paddle-wheel" con�guration)

(Figure 2.4(c)). However, current research organizes tier associations according to

feature geometries (Figure 2.5(f)). The division of strings of segments into collections
of tiers of linked autosegments was motivated by the realization that the description of

certain long-range phonological patterns could be simpli�ed by allowing features that
could be associated with (and hence could automatically propagate changes in value

by being associated with) multiple, possibly non-adjacent, segments.

Example 2.2.8 Under standard sets of phonological features, the vowels [e] and [a]

di�er only in the feature back { that is, [e] has the feature-value pair [back �] and
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[a] has the feature-value pair [back +]. Moreover, all vowels in the set f [e], [i], [�u] g
(f [a], [o], [u] g) have the feature-value pair [back �] ([back +]). Hence, Turkish vowel

harmony as described in Example 2.2.3 can be accounted for by postulating a tier for

feature back and a mechanism which ensures that the back autosegment associated with

the (rightmost) vowel in the root is also associated with the vowels in all suÆxes.

Note that these representations are, for the most part, equivalent in the sense that almost

anything that can be encoded in one representation can be encoded into one of the others:

� Strings of symbols over an alphabet � can be encoded as strings of single-feature /

j�j-valued or log2 j�j-feature / binary-valued segments, or as log2 j�j-tier
autosegmental structures.

� Strings of segments relative to some set of features F can be encoded as strings

of symbols over an alphabet composed of all possible segments de�ned by F or as

autosegmental structures under an appropriate feature geometry for F .

� An autosegmental structure can be encoded as a set of symbol-strings such that
each string corresponds to the string of autosegments on a particular tier and the
associations between autosegments on di�erent tiers are encoded in the relation of a

given multi-tape �nite-state transducer [Kay87] (see Section 2.2.3) or as a segment
(symbol)-string such that each segment (symbol) encodes the features on all tiers that

are linked to a particular slot on the timing tier, i.e., the features describing a sound
at a particular point in an utterance [BE94, Eis97a].

More complex encodings of autosegmental structures that explicitly record the associations
between autosegments on di�erent tiers are reviewed in [BE94, Kor95].

Every phonological theory is based on one of the types of representations described

above. Each such theory posits mental (lexical) and spoken (surface) forms that are
described using this representation, and the mechanisms posited by that theory are used
to relate these forms. The representations used by the phonological theories examined in

this thesis are given in Table 2.2. Simple phonological phenomena such as those described
in the examples above can be accounted for in a framework in which both the lexical and

surface forms are instances of a particular kind of representation and phonological processing
occurs by transforming one of these forms into the other (possibly via a chain of intermediate

forms that are themselves instances of this representation). However, certain more com-

plex phonological phenomena, e.g., stress-placement, seem to require form-internal structure
latent within and computed from the lexical form that is not itself pronounced but is used
to produce aspects of the surface form. For example, metrical grids [Ken94, Chapter 10]

and prosodic trees [Ken94, Chapters 6 and 11] are not themselves pronounced but are used

to compute the positions of various kinds of stress in words and the syllable-structure of

words, respectively (a somewhat analogous situation occurs in Optimality Theory where
unpronounced \silent" copies of lexical forms must be included in candidate surface forms

in order to properly evaluate those candidate surface forms relative to the constraint set
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Phonological

Theory Characteristics

Simpli�ed Representation:
Segmental Segment strings

Grammars Aspects:

� Number of segments in the given (lexical or surface) form

� Number of features used to de�ne segments

� Maximum number of values associated with any feature

FST-based Representation:
rule systems Symbol strings

Aspects:

� Number of symbols in the given (lexical or surface) form
� Size of the alphabet from which lexical and surface forms

are drawn

The Representation:

KIMMO Symbol strings
System Aspects:

� Number of symbols in the given (lexical or surface) form

� Size of the alphabet from which the lexical form is drawn
� Size of the alphabet from which the surface form is drawn

Declarative Representation:
Phonology Simpli�ed autosegmental structures (symbol strings)

& Aspects:
Optimality � Number of symbols in the given (lexical or surface) form

Theory � Size of the hidden-component alphabet �h

� Size of the visible-component alphabet �v

Table 2.2: Characteristics of Representations of Phonological Theories Examined in this
Thesis. This table lists, for each phonological theory examined in this thesis, the type
of phonological representation used and the aspects of that representation relative to

which that theory is analyzed. Note that the analyses for Declarative Phonology and

Optimality Theory are done relative to simpli�ed autosegmental structures; see main text

and Figures 2.7 and 2.8 and for details.

(see Section 4.6.1)). This implies that lexical and surface forms are actually di�erent
kinds of representations. Tesar and Smolensky [Tes95, Tes96, Tes97a, TS96] have elegantly

handled such cases by proposing the existence of a \master" form composed of pronounced

and unpronounced material that is intermediate in any processing of surface and lexical forms

{ that is, a surface form must be transformed into a master form by a reconstruction of the

unpronounced material in order to recover its associated lexical form(s) and a lexical form
must be transformed into a master form by the addition of the appropriate pronounced and

unpronounced material to generate its associated surface form. Under this scheme, lexical

and master forms are (respectively, partially and fully-speci�ed) instances of a representa-

tion and surface forms are extracted from this representation. In this thesis, let the following
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Figure 2.6: Form Decomposition of Phonological Representations (adapted from [Tes96]).
This diagram shows the relation of lexical, full, and surface forms and the hidden and visible
components of the full form in the case of stress-placement. The X's denote syllables and

the heavy dash indicates a stressed syllable. See main text for further explanation of terms.

terms (adopted with slight modi�cations from those of Tesar and Smolensky) denote the

new entities described above:

� Full form (full structural description [TS96]): A well-formed and fully-speci�ed phono-

logical representation created by applying the mechanisms of the phonological theory
of interest to a lexical form.

� Hidden component (non-overt, \hidden" structure [TS96]): Unpronounced portion

of the lexical form and its associated full form.

� Visible component (overt form / structure [TS96]): Pronounced portion of the lexical

form and its associated full form.
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If one conceives of the full form as an autosegmental structure, segment string, or symbol

string, one can imagine the associated hidden and visible components as a partition of the set

of tiers, the set of features, and the symbol-positions in the string, respectively. Within this

framework, a surface form would consist of the entire visible component of its associated full

form and a lexical form would consist of those portions of the hidden and visible components

of the associated full form that are stored in the lexicon. These various forms in the case of

stress-placement are shown in Figure 2.6.

In the parameterized analyses given in this thesis, phonological representations will

be characterized very broadly by aspects that capture the size of the given (lexical or

surface) form and the composition of both the given and computed forms. These aspects

are listed in Table 2.2. Note that an aspect describing the size of the computed form

will not be necessary as all problems associated with phonological theories examined in

this thesis will be restricted to have lexical and surface forms of the same size, i.e., no

mechanisms that allow insertion or deletion of material in relating lexical and surface forms

will be permitted. The aspects listed for Simpli�ed Segmental Grammars, FST-based

rule systems, and the KIMMO system can be derived in a straightforward fashion from
their respective representations. The situation is somewhat more complex for Declarative
Phonology and Optimality Theory, which have no �xed type of representation. It would be

interesting to examine the complexity of these problems relative to autosegmental structures
with associated hidden and and visible components; however, certain results [Ris90, Ris94]

suggest that fairly basic manipulations of arbitrarily-complex autosegmental structures in-
dependent of the application of any theory-speci�c phonological mechanisms are NP -hard.

In order to factor out the complexity-theoretic e�ects of manipulating
arbitrarily-complex representations while retaining some sort of internal hidden and visible

structure in the representations, the formulations of Declarative Phonology and Optimality
Theory examined in this thesis will use a simpli�ed autosegmental representation
consisting of two strings h1h2 : : : hn and v1v2 : : : vn drawn from alphabets �h and �v,

respectively. This representation will be encoded as a single symbol string of the form
v1h1v2h2 : : : vnhn. The manner in which parts of this representation correspond to the

various forms and components described above is illustrated in Figures 2.7 and 2.8.
Note that in this representation, various forms can incorporate underspeci�ed elements,
which are denoted by the subsets �hU and �vU of the hidden- and visible-component alpha-

bets �h and �v, respectively. The appearance of elements from �vU or �hU indicates that

a particular element is underspeci�ed in a particular manner, e.g., symbol � 2 �vU can
be speci�ed as any of the symbols in a particular subset of �v � �uV . Such underspeci�ed

elements are the simplest way to allow mechanisms to make changes to lexical forms without
invoking more complex representations that allow arbitrary addition and deletion of elements.

Within this representation, lexical forms may have underspeci�ed elements in their associated

visible and hidden components, surface forms have fully speci�ed visible components and
empty hidden components, and full forms cannot have any underspeci�ed elements in their

associated visible and hidden components. This matches well with linguistic

intuitions that lexical forms represent the unpredictable (relative to phonological
mechanisms) portions of visible and hidden components that must be stored in the lexi-

con, surface forms consist of all of the visible and none of the hidden structure in full forms,

43



Hidden h1 | h2 | h3 | h4 | h5 | h6
j j j j j j

Visible v1 | v2 | v3 | v4 | v5 | v6

String: v1h1v2h2v3h3v4h4v5h5v6h6

(a)

Hidden h1 | h2 | h3 | h4 | h5 | h6

Visible

String: h1h2h3h4h5h6

(b)

Hidden

Visible v1 | v2 | v3 | v4 | v5 | v6

String: v1v2v3v4v5v6

(c)

Figure 2.7: A Simpli�ed Autosegmental Representation. a) A full form in the simpli�ed
autosegmental representation used in this thesis. b) The hidden component for the full form
in (a). c) The visible component for the full form in (a).

and full forms are fully speci�ed. This representation can be viewed as an autosegmental
structure consisting of a timing tier and two sets of tiers encoding the hidden and visible

components that consist of log2 j�hj and log2 j�vj binary-valued feature tiers apiece, and is
thus very similar to the second encoding of autosegmental structures into symbol strings

described earlier in this section. As such, this representation is perhaps the simplest form of

autosegmental representation which incorporates both visible and hidden components, and
should thus be a special case of more complex types of autosegmental representation used

in practice.

The seemingly arbitrary restrictions on phonological representations considered here may

seem mystifying at this point. However, as will be explained more fully in
Chapter 3, these restrictions will allow the parameterized analyses both to focus on the

most basic mechanisms responsible for NP -hardness in various problems associated with the

phonological theories examined in this thesis and to make more obvious the tradeo�s by which

various of these aspects can be encoded into other aspects to maintain

this NP -hardness.
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Hidden

Visible v1 | v2 | v3 | v4 | v5 | v6

String: v1 � v2 � v3 � v4 � v5 � v6�

(d)

Hidden h2 h5 | h6
j j j

Visible v1 | v2 v4 v5 | v6

String: v1 � v2h22� v4 � v5h5v6h6

(e)

Figure 2.8: A Simpli�ed Autosegmental Representation (Cont'd). d) The visible form con-
sistent with the full form in (a). e) A lexical form consistent with the full form in (a).
The string-encodings for each form and component are also given, in which symbols � and

2 denote underspeci�ed hidden and visible elements in �hU and �vU that can specify any
element in �h � �hU and �v � �vU , respectively.

2.2.3 Phonological Mechanisms as Finite-State Automata

If, as noted by Kenstowicz at the beginning of Section 2.2.2, a good phonological rep-

resentation is important because it allows facts to be stated clearly so that generaliza-
tions can emerge, good phonological mechanisms that manipulate these representations are
equally important because those generalizations are stated in terms of these mechanisms.

Several important classes of phonological mechanisms are:

� the mechanisms (rules or constraints) that implement the mapping between surface

and lexical forms;

� the various types of lexicons in which the components of lexical forms are stored; and

� the manners in which components in the lexicon can be combined to create lexical

forms.

Each of these mechanisms can be implemented in terms of �nite-state automata, which

are essentially a type of very simple computational device for manipulating strings of sym-

bols. All of the phonological theories examined in this thesis are either de�ned to use

or can be rephrased such that they use �nite-state automata to implement their phono-

logical mechanisms. Hence, this section gives an overview of several important types of

�nite-state automata (using the con�guration-notation for describing automaton computa-

tion given in [Brs79, LP81]) and discusses how these automata can be used to implement
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(a)

�

Q a b

q1 q2 q1
q2 q2 q3
q3 Fail q3
Fail Fail Fail

(b)

b a b

ba

a

a,b

q2

q3

Fail

q1

Figure 2.9: A Finite-State Acceptor. The FSA is speci�ed by the 5-tuple hQ;�; Æ; s; F i
where Q = fq;1 ; q2; q3; Failg, � = fa; bg, Æ is de�ned by the table in (a) above, s = q1 and
F = fq3g. The transition diagram for this FSA is given in (b)

phonological mechanisms. Readers wishing more comprehensive treatments should consult

[Brs79, HU79, LP81, Per90, RS97b].

The most basic type of �nite-state automaton operates on a single string of symbols over

some alphabet.

De�nition 2.2.9 A �nite state acceptor (FSA) is a 5-tuple hQ;�; Æ; s; F i where Q is

some set of states, � is an alphabet, Æ : Q� f� [ f�gg �Q is a transition relation, s 2 Q is

the start state, and F � Q is a set of �nal states.

Each FSA has an associated edge-labeled directed graph called a transition diagram in
which the vertices correspond to states and the arcs have labels from � such that each arc

corresponds to one entry of Æ, e.g., (q; s; q0) 2 Æ becomes q
s! q0 in the transition diagram. A
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sample FSA and its transition diagram are given in Figure 2.9. The notion of a computation

of a FSA on a given input string can be stated formally in terms of con�gurations of a FSA.

De�nition 2.2.10 A con�guration of a FSA A = hQ;�; Æ; s; F i is a pair (q; x) where

q 2 Q and x 2 ��.

De�nition 2.2.11 Given two con�gurations (q; x) and (q0; x0) of a FSA A = hQ;�; Æ; s; F i,
(q; x) yields (q0; x0) in one step, i.e., (q; x) ` (q0; x0), if x = wx0 for some w 2 � [ f�g and

(q; w; q0) 2 Æ.

Let `� represent the reexive transitive closure of the yield relation, i.e., (q; x) `� (q0; x0) if
and only if either q = q0 and x = x0 or there exists some sequence (q1; x1); (q2; x2); : : : ; (qn; xn)

of one or more con�gurations such that (q; x) ` (q1; x1) ` (q2; x2) ` � � � ` (qn; xn) ` (q0; x0).

De�nition 2.2.12 Given a FSA A = hQ;�; Æ; s; F i and string x 2 ��, x is accepted by A

if and only if (s; x) `� (q; �) for some q 2 F .

Essentially, a computation of a FSA on a given string x is a path p in the transition diagram
for that FSA such that p starts at the vertex corresponding to s and the concatenation of
the edge-labels of the edges in p is x; if the �nal vertex in p corresponds to a state in F ,

then x is accepted by the FSA.

Example 2.2.13 Consider the computation of the FSA in Figure 2.9 on several given

strings. If the given string is x = baabb, x is accepted as there is a computation of the
FSA on x which ends at state q3 2 F .

(q1; baabb) ` (q1; aabb)
` (q2; abb)

` (q2; bb)
` (q3; b)

` (q3; �)

However, if x = baabbab, as the state q4 in the �nal con�guration is not in F , x is

not accepted.

(q1; baabbab) ` (q1; aabbab)

` (q2; abbab)

` (q2; bbab)

` (q3; bab)

` (q3; ab)

` (q4; b)

` (q4; �)

47



Each FSA can be visualized as encoding a set of strings.

De�nition 2.2.14 Given a FSA A = hQ;�; Æ; s; F i, the (regular) language L associ-

ated with A is the set of all strings that are accepted by A, i.e., L = fx j x 2 �� and

9q 2 F such that (s; x) `� (q; �)g.

For instance, the regular language associated with the FSA in Figure 2.9 is the set of strings

composed of zero or more b's, followed by one or more a's, followed by one or more b's.

Finite-state automata can be classi�ed into two types depending on the structure of the

transition-relation Æ. If Æ has no entries of the form (q; �; q0) and is also a function, i.e., for

each q 2 Q and s 2 � there is at most one state q0 2 Q such that (q; s; q0) 2 Æ, the FSA is

deterministic; else, it is nondeterministic. For example, the reader can verify that the

FSA in Figure 2.9 is deterministic. This thesis will be concerned primarily with deterministic

FSA (abbreviated henceforth as DFA).

The observant reader will have noticed that none of the de�nitions given for FSA or
FSA computation require that the transition relation be de�ned for every possible q 2 Q

and x 2 �. If a FSA has a transition relation Æ such that for every q 2 Q and x 2 �
there is a state q0 2 Q such that (q; x; q0) 2 Æ, the FSA is total; else, the FSA is partial.
Though the majority of the constructions given in this thesis work whether the given FSA

are partial or total, the constructions given in and subsequently based on that in part (5)
of Theorem 4.5.4 require that the FSA be total; hence, without loss of generality, all FSA

used in this thesis will be assumed to be total. If the reader is rankled by the baldness of
this assumption, note that one can trivially transform a partial FSA into a total FSA by
adding a new non-�nal \failure" state and modifying the transition relation such that all

previously unde�ned transitions (including those originating from the new state) go to this
new state. Indeed, it is the presence of just such a state (labeled, appropriately enough,
Fail) that makes the DFA in Figure 2.9 total.

The other type of �nite-state automaton of interest in this thesis operates on pairs

of symbol-strings.

De�nition 2.2.15 A �nite state transducer (FST) is a 6-tuple hQ;�i;�o; Æ; s; F i where
Q is some set of states, �i and �o are the input and output alphabets, respectively,

Æ : Q � f�i [ f�gg � f�o [ f�gg � Q is a transition relation, s 2 Q is the start state,

and F � Q is a set of �nal states.

The transition diagram associated with a FST is much like that for a FSA except that arcs

have labels from �i [ f�g � �o [ f�g; these labels are written as x : y, where x 2 �i [ f�g
and y 2 �o [ f�g. A sample FST and its transition diagram are given in Figure 2.10.
The notion of computation of a FST on a given pair of input strings can be stated formally

in terms of con�gurations of a FST.

De�nition 2.2.16 A con�guration of a FST A = hQ;�i;�o; Æ; s; F i is a triple (q; x; y)

where q 2 Q, x 2 ��
i , and y 2 ��

o.
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(a)

�i � �o

Q a : c a : d b : c b : d

q1 q2 Fail Fail q1
q2 q2 Fail Fail q3
q3 Fail Fail Fail q3
Fail Fail Fail Fail Fail

(b)

b:d a:c b:d

b:da:c

a:c,
a:d,
b:c

a:d,
b:c

a:c,a:d,b:c,b:d

q2q1

Fail

a:d,
b:c

q3

Figure 2.10: A Finite-State Transducer. The FST is speci�ed by the 6-tuple
hQ;�i;�o; Æ; s; F i where Q = fq;1 ; q2; q3; Failg, �i = fa; bg, �o = fc; dg, Æ is de�ned by
the table in (a) above, s = q1 and F = fq3g. The transition diagram for this FST is given

in (b).

De�nition 2.2.17 Given two con�gurations (q; x; y) and (q0; x0; y0) of a FST

A = hQ;�i;�o; Æ; s; F i, (q; x; y) yields (q0; x0; y0) in one step, i.e., (q; x; y) ` (q0; x0; y0),

if x = wix
0 for some wi 2 �i [ f�g, y = woy

0 for some wo 2 �o [ f�g, and (q; wi; wo; q
0) 2 Æ.

Again, let `� represent the reexive transitive closure of the yield relation.

De�nition 2.2.18 Given a FST A = hQ;�i;�o; Æ; s; F i, a string x 2 ��
i , and a string

y 2 ��
o, string-pair x=y is accepted by A if and only if (s; x; y) `� (q; �; �) for some q 2 F .

As with FSA, computations in FST can be visualized as paths in their associated

transition diagrams.
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Example 2.2.19 Consider the computation of the FST in Figure 2.10 on given

string-pairs. If the given string-pair is x=y = baabb=dccdd, x=y is accepted as the

computation of the FST ends at state q3 2 F .

(q1; baabb; dccdd) ` (q1; aabb; ccdd)

` (q2; abb; cdd)

` (q2; bb; dd)

` (q3; b; d)

` (q3; �; �)

However, if x=y = baaa=dccc, as the state q2 in the �nal con�guration is not in F , x=y is

not accepted.

(q1; baaa; dccc) ` (q1; aaa; ccc)

` (q2; aa; cc)
` (q2; a; c)
` (q2; �; �)

In addition to accepting string-pairs, a FST can also reconstruct strings that can pair with
a given string to form a valid string-pair.

De�nition 2.2.20 Given a FST A = hQ;�i;�o; Æ; s; F i and a string x 2 ��
i , x is

i-accepted by A if and only if there exists a string y 2 ��
o such that (s; x; y) `� (q; �; �)

for some q 2 F . Each such string y is called an i-reconstruction for x relative to A.

The notions of o-acceptance and o-reconstruction can be de�ned analogously. Note that
depending on the structure of the transition relation Æ, there may be more than one

i-reconstruction associated with a given string from ��
i or more than one o-reconstruction

associated with a string from ��
o. By analogy with relation-based (see below) de�nitions in

[KK94], let the set of i-reconstructions for a string x 2 ��
i relative to a FST A be written as

x=A and the set of o-reconstructions for a string y 2 ��
o relative to A be written as A=y.

Example 2.2.21 Relative to the FST in Figure 2.10, string x = baabb is i-accepted because

there is a string y = dccdd such that x=y is accepted by the FST. This string y can be

constructed by concatenating the o-labels encountered while traversing the transition dia-

gram for the FST using the i-labels relative to x. The reader can verify by the same sort of

traversal argument that there is no i-reconstruction for x = baaa.

Each FST can be visualized as encoding a set of string-pairs.

De�nition 2.2.22 Given a FST A = hQ;�i;�o; Æ; s; F i, the (regular) relation R

associated with A is the set of all string-pairs that are accepted by A, i.e., R = fx=y j x 2 ��
i ;

y 2 ��
o; and 9q 2 F such that (s; x; y) `� (q; �; �)g.
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For instance, the regular relation associated with the FST in Figure 2.10 is the set of

string-pairs x/y in which x is composed of zero or more b's, followed by one or more

a's, followed by one or more b's, and y is the version of x in which each a has been

replaced by c and each b has been replaced by d. If each string-pair in a regular relation

consists of strings of the same length (as in the preceding example), the relation is called a

same-length regular relation. Like FSA, �nite-state transducers can also be classi�ed

according to the structure of the transition-relation Æ. However, in this case, there are several

possible de�nitions of determinism [RRBP92, pp. 19{20]. The following types of determinism

for FST will be of interest in this thesis:

1. i- (o-) Deterministic FST: For each q 2 Q and si 2 �i (so 2 �o), there is at

most one so 2 �o (si 2 �i) and q0 2 Q such that (q; si; so; q
0) 2 Æ. That is, the FSA

created from the FST by taking the �i-components (in the case of i-determinism) or

the �o-components (in the case of o-determinism) as the leaf labels is deterministic.

Note that i-deterministic FST compute functions from input to output strings and

o-deterministic FST compute functions from output to input strings. FST that are
i-deterministic are also known as sequential transducers [Moh97].

2. i=o-Deterministic FST: For each q 2 Q, si 2 �i and so 2 �o, there is at most

one q0 2 Q such that (q; si; so; q
0) 2 Æ. That is, the FST is a DFA over the alphabet

� = �i � �o of symbol-pairs.

Note that none of the types of determinism de�ned above allow � to appear in Æ. Each type

of determinism has an associated type of nondeterminism, i.e., if a FST is not i-deterministic
then it is i-nondeterministic. The reader can verify that the FST in Figure 2.10 is i-, o-, and
i=o-deterministic. The following observations about the various kinds of deterministic FST

will be of use in the analyses given in Chapter 4.

� All i- and o-deterministic FST are also i=o-deterministic FST; however, an

i=o-deterministic FST is not necessarily either an i- or o-deterministic FST.

� The reconstruction-process relative to individual strings is only guaranteed to

produce a single i- (o-) reconstruction for a string from ��
i (��

o) if the FST is

i- (o-) deterministic. If the FST is i=o-deterministic, reconstruction may associate

a set of strings with the given string.

� It is known that a regular relation is same-length if and only it is associated with an
�-free FST [KK94, Lemma 3.3], and as i�, o�, and i=o-deterministic FST are �-free,

their associated regular relations are all same-length.

This thesis will be concerned primarily with i=o-deterministic FST.

A number of operations have been de�ned on single �nite-state automata and pairs of
�nite-state automata [HU79, KK94, LP81, RS97b]. The following operations will be of

particular interest in this thesis:
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1. FST composition: Given a pair of string-relations R1 � � � �0 and

R2 � �0 � �00, the composition of R1 and R2 is the string-relation R = fx=y j
x 2 ��; y 2 �00�; and 9z 2 �0� such that x=z 2 R1 and z=y 2 R2g. Given a pair

of �-free FST A1 = hQ1;�i;1;�o;1; Æ1; s1; F1i and A2 = hQ2;�o;1;�o;2; Æ2; s2; F2i, the
composition FST of A1 and A2 is the FST A = hQ1 �Q2;�i;1;�o;2; Æ; (s1; s2); F1 � F2i
such that Æ = f((q1; q2); a; c; (q01; q02)) j 9b 2 �o;1 such that (q1; a; b; q

0
1) 2 Æ1 and

(q2; b; c; q
0
2) 2 Æ2g. An algorithm for constructing the composition FST of arbitrary

FST is described in [PR97].

By the construction above, the composition FST of any two

�-free FST is also �-free. However, the composition FST of two i=o-deterministic FST is

not necessarily i=o-deterministic. To see this, note that any two given

i=o-deterministic FST whose transition relations contain transition-sets of the form

ffq1; a; b; q2g; fq1; a; c; q3gg and ffq01; b; d; q02g; fq01; c; d; q03gg respectively will by the

construction above have a composition FST whose transition-relation contains the

transition-set ff(q1; q01); a; d; (q2; q02)g; f(q1; q01); a; d; (q3; q03)gg. As this composition FST
has two transitions with the same label originating from the same state, this FST is
not i=o-deterministic.

Given two �-free FST A1 = hQ1;�i;1;�o;1; Æ1; s1; F1i and
A2 = hQ2;�o;1;�o;2; Æ2; s2; F2i, the construction above creates a composition FST that

has at most jQ1jjQ2j states and at most (jQ1jjQ2j)2j�i;1jj�o;2j transitions
(assume that each set of transitions with the same label between the same state-pairs
created during the construction is collapsed to a single transition). A naive imple-

mentation of this construction for �-free FST compares each transition in A1 against
each transition in A2; as there are at most jQ1jj�i;1jj�o;1jjQ1j and jQ2jj�o;1jj�o;2jjQ2j
transitions in A1 and A2, respectively, this implementation runs in O((jQ1jjQ2j)2
j�i;1jj�o;1j2j�o;2j) time.

2. Finite-state intersection:

(a) FSA: Given a pair of languages L1 � �� and L2 � ��, the intersection of
L1 and L2 is the language L = fx j x 2 L1 and x 2 L2g. Given a pair
of FSA A1 = hQ1;�; Æ1; s1; F1i and A2 = hQ2;�; Æ2; s2; F2i, the intersection

FSA of A1 and A2 is the FSA A = hQ1 � Q2;�; Æ; (s1; s2); F1 � F2i such that

Æ = f(q1; q2); a; (q01; q02) j (q1; a; q01) 2 Æ1 and (q2; a; q
0
2) 2 Æ2g.

By the construction above, the intersection FSA of any two DFA is also a DFA.

To see this, note that if the intersection FSA is not deterministic, then its tran-

sition relation must contain a transition-set of the form ff(q1; q01); a; (q2; q02)g;
f(q1; q01); a; (q3; q03)gg. However, by the construction above, this would imply

that the transition relations for the two given DFA contain the transition-sets

ffq1; a; q2g; fq1; a; q3gg and ffq1; a; q2g; fq1; a; q3gg respectively, and that these

DFA are not deterministic, which is a contradiction.

Given two DFA A1 = hQ1;�; Æ1; s1; F1i and A2 = hQ2;�; Æ2; s2; F2i, the
construction above creates an intersection DFA that has at most jQ1jjQ2j states
and at most jQ1jjQ2jj�j transitions. A naive implementation of this
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construction for DFA compares each transition in A1 against each transition in A2;

as there are at most jQ1jj�j and jQ2jj�j transitions in A1 and A2,

respectively, this implementation runs in O(jQ1jjQ2jj�j2) time.
(b) FST: Given a pair of string-relations R1 � � � �0 and R2 � � � �0, the

intersection of R1 and R2 is the string-relation R = fx=y j x=y 2 R1 and

x=y 2 R2g. Given a pair of �-free FST A1 = hQ1;�i;�o; Æ1; s1; F1i and

A2 = hQ2;�i;�o; Æ2; s2; F2i, the intersection FST of A1 and A2 is the FST A =

hQ1 � Q2;�i;�o; Æ; (s1; s2); F1 � F2i such that Æ = f((q1; q2); a; b; (q01; q02)) j
(q1; a; b; q

0
1) 2 Æ1 and (q2; a; b; q

0
2) 2 Æ2g. Note that the intersection of two reg-

ular relations is not necessarily a regular relation. At present, it is known only

that the intersection of two same-length relations is itself a regular relation [KK94]

(see also discussion in Section 4.4.1).

By the construction above, the intersection FST of any two �-free FST is also

�-free. Moreover, the intersection FST of any two i=o-deterministic FST is also

i=o-deterministic. To see this, note that if the intersection FST is not
i=o-deterministic, then its transition relation must contain a transition-set of the

form ff(q1; q01); a; d; (q2; q02)g; f(q1; q01); a; d; (q3; q03)gg. However, by the construc-
tion above, this would imply that the transition relations for the two given FST

contain the transition-sets ffq1; a; d; q2g; fq1; a; d; q3gg and ffq1; a; d; q2g;
fq1; a; d; q3gg respectively, and that these FST are not i=o-deterministic, which
is a contradiction.

Given two �-free FST A1 = hQ1;�i;�o; Æ1; s1; F1i and A2 = hQ2;�i;�o; Æ2; s2; F2i,
the construction above creates an intersection FST that has at most jQ1jjQ2j
states and at most (jQ1jjQ2j)2j�ijj�oj transitions. A naive implementation of this
construction for �-free FST compares each transition in A1 against each transition

in A2; as there are at most jQ1jj�ijj�ojjQ1j and jQ2jj�ijj�ojjQ2j transitions in A1

and A2, respectively, this implementation thus runs in O((jQ1jjQ2j)2(j�ijj�oj)2)
time. If A1 and A2 are i=o-deterministic, they have at most jQ1jj�ijj�oj and
jQ2jj�ijj�oj transitions, respectively and by reasoning analogous to that given
above, their intersection FST will have at most jQ1jjQ2j states and at most

jQ1jjQ2jj�ijj�oj transitions and can be created by a naive implementation of the
construction above in O(jQ1jjQ2j(j�ijj�oj)2) time.

Note that the given upper bounds on the sizes of automata created by these operations

are exact, in that automata may be created that have numbers of states and transitions

that are equal to these upper bounds. Hence, though there exist implementations of some

of these operations that can be much more eÆcient than the given naive implementations

in certain applications, e.g., lazy composition [PR97], the worst-case running times of all

such implementations are lower-bounded by the given upper bounds on the sizes of the

created automata.

In the case of those operations de�ned above which create automata of exactly the
same type as their given pair of automata, e.g., i=o-deterministic FST intersection, it is

possible to de�ne versions of those operations that take as input an arbitrarily large

number of automata. Two possible ways of de�ning these operations are (1) extend the
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constructions given above relative to cross products on arbitrary numbers of rather than

pairs of state-sets and (2) iterate the pairwise operations over the given set of automata, i.e.,

repeatedly remove two automata from the given set, apply the pairwise operation, and put

the created automaton back in the set until only one automaton is left in the set. For the

sake of simplicity, only alternative (2) will be considered in more detail here. In the case

of intersection, the automata can be combined in a pairwise fashion in any order; however,

as composition is sensitive to the order of its operands, e.g., the composition of A1 and

A2 is not necessarily equivalent to the composition of A2 and A1, the automata must be

combined in a speci�ed order. For simplicity in the analyses below, assume that automata

in a given set are combined in a pairwise manner relative to their order of appearance

when that set is written down, i.e., given a set of automata A = fA1; A2; : : : ; Akg, A1 and

A2 will be combined to create A0, A0 and A3 will be combined to create A00, and so on.

Under this scheme, for a given set of automata A = fA1; A2; : : : ; Akg of the appropriate

type such that jQj is the maximum number of states in any automaton in A and j�j is the
maximum number of symbols in any alphabet associated with an automaton in A, the time
complexities of this iterative process relative to several pairwise operations on automata are
derived as follows:

� �-free FST composition: Given that the composition FST of two �-free FST

A1 = hQ1;�i;1;�o;1; Æ1; s1; F1i and A2 = hQ2;�o;1;�o;2; Æ2; s2; F2i in A can be
computed in O((jQ1jjQ2j)2j�i;1jj�o;1j2j�o;2j) = O(jQj4jj�j4) = cjQj4j�j4 time for some
constant c > 0, the composition FST of A can be computed in

�k
i=2O(jQj2ij�j4) = cj�j4�k

i=2jQj2i
� cj�j4kjQj2k
= O(jQj2kj�j4k)

time.

� DFA intersection: Given that the intersection DFA of two DFA
A1 = hQ1;�; Æ1; s1; F1i and A2 = hQ2;�; Æ2; s2; F2i in A can be computed in

O(jQ1jjQ2jj�j2) = O(jQj2j�j2) = cjQj2j�j2 time for some constant c > 0, the

intersection DFA of A can be computed in

�k
i=2O(jQjij�j2) = cj�j2�k

i=2jQji
� cj�j2�k

i=0jQji
= cj�j2(jQjk+1 � 1)=(jQj � 1)

� cj�j2jQjk+1
= O(jQjk+1j�j2)

time.

� i=o-deterministic FST intersection: Given that the intersection FST of two

i=o-deterministic FST A1 = hQ1;�i;�o; Æ1; s1; F1i and A2 = hQ2;�i;�o; Æ2; s2; F2i in
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Upper Bound on Asymptotic Worst-Case

Automaton Operation Automaton Size Time Complexity of

States Transitions Automaton Creation

�-free FST composition jQjk jQj2kj�j2 O(jQj2kj�j4k), 
(jQj2kj�j2)
DFA intersection jQjk jQjkj�j O(jQjk+1j�j2), 
(jQjkj�j)
i=o-deterministic FST intersection jQjk jQjkj�j2 O(jQjk+1j�j4), 
(jQjkj�j2)
�-free FST intersection jQjk jQj2kj�j2 O(jQj2kj�j4k), 
(jQj2kj�j2)

Table 2.3: Characteristics of Iterated Finite-State Automaton Operations. This table gives

the asymptotic worst-case time complexities of the operations of (as well as upper bounds on

the sizes of automata created by) iterating various operations de�ned on pairs of automata

over sets of automata, where k is the number of automata in the given set, jQj is the

maximum number of states in any automaton in that set, and j�j is the maximum number

of symbols in any alphabet associated with an automaton in that set.

A can be computed in O(jQ1jjQ2j(j�ijj�oj)2) = O(jQj2j�j4) = cjQj2j�j4 time for some
constant c > 0, the intersection FST of A can be computed in

�k
i=2O(jQjij�j4) = cj�j4�k

i=2jQji
� cj�j4�k

i=0jQji
= cj�j4(jQjk+1 � 1)=(jQj � 1)
� cj�j4jQjk+1
= O(jQjk+1j�j4)

time.

� �-free FST intersection: Given that the intersection FST of two �-free FST

A1 = hQ1;�i;�o; Æ1; s1; F1i and A2 = hQ2;�i;�o; Æ2; s2; F2i in A can be computed
in O((jQ1jjQ2j)2(j�ijj�oj)2) = O(jQj4j�j4) = cjQj4j�j4 time for some constant c > 0,
the intersection FST of A can be computed in

�k
i=2O(jQj2ij�j4) = cj�j4�k

i=2jQj2i
� cj�j4kjQj2k
= O(jQj2kj�j4k)

time.

The time complexities of these operations and upper bounds on the sizes of the created
automata are given for each of these operations in Table 2.3. Note that if the number of

states in each of the given automata is the same, the given upper bounds on the sizes of

automata created by these operations are exact, in that automata may be created that have

numbers of states and transitions that are equal to these upper bounds. Hence, though there
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exist implementations of some of these operations that can be much more eÆcient than the

given naive implementations in certain applications [PR97, Tap97], the worst-case running

times of all such implementations are lower-bounded by the given upper bounds on the sizes

of the created automata.

Each of the types of �nite-state automata described above can implement several phono-

logical mechanisms.

1. Finite-state acceptors:

(a) Constraints on symbol-strings: A constraint can be viewed as the set of strings

satisfying that constraint; this set of strings can be encoded as the

language associated with a FSA. A given string thus satis�es a constraint if that

string is accepted by the FSA corresponding to that constraint.

(b) Symbol-string lexicons: A lexicon can be viewed as a set of strings; this set of
strings can be encoded as the language associated with a FSA. A given string is

in the lexicon if that string is accepted by the FSA corresponding to that lexicon.

(c) Symbol-string lexical form creation: The simplest way of creating lexical
forms is to concatenate elements of the lexicon together, e.g.,
denationalize = de + nation + al + ize. This can be encoded by modifying

the lexicon FSA that accepts the language D of symbol-strings in the lexicon to
create another FSA that accepts some subset of D+ that corresponds to the set

of valid lexical forms.

2. Finite-state transducers:

(a) Constraints on pairs of symbol-strings: A constraint on pairs of strings

can be viewed as set of string-pairs that satis�es that constraint; this set of
string-pairs can be encoded as the relation associated with a FST. A given
string-pair thus satis�es a constraint if that string-pair is accepted by the FST

corresponding to that constraint.

(b) Symbol-string rewriting rules: A string rewriting rule can be viewed as a

relation between input strings and the sets of strings generated by applying the

rule to input strings; this relation can be encoded as the relation associated with

a FST. A rule produces a string y from an input string x if y is a possible

i-reconstruction of x relative to the FST corresponding to that rule.

The operations on automata de�ned above can be used to make such automata simulate the
operation of their corresponding mechanisms in phonological computations.

For instance, FST composition can be used to create cascaded sequences of rewriting rules
and FST and FSA intersection can be used both to simulate simultaneous applications of

constraints and to integrate the lexicon into the process of relating surface forms to lexical

forms. All of the phonological theories examined in this thesis use automata to implement
some (if not all) of their phonological mechanisms; the interested reader is referred to the

56



relevant sections in Chapter 4 for details. The one use common to all of these theories

is representing lexicons and word-formation processes as DFA { that is, the lexicon will

be a set D of segment- or symbol-strings and will be speci�ed in problem instances as a

DFA DFA(D) which recognizes the language D+. Such a �nite-state model is admittedly

too simple because it does not capture known constraints on how lexical elements can be

combined, e.g., pod + s = pods is a valid English word with multiple lexical elements but

s + pod = spod is not, and it cannot easily account for some of the more exotic types of

word-formation processes in human languages, e.g., in�xation or reduplication

[And94, Spr92]. However, �nite-state models of word formation underlie many natural

language processing systems [Spr92, p. 90], and analyses framed in terms of the simple

�nite-state model used in this thesis should hold both for these systems and systems based

on more complex and realistic models.

In the parameterized analyses given in this thesis, the focus is on those

phonological mechanisms that implement the relation between lexical and surface forms.

These mechanisms will be characterized very broadly by aspects listed in Table 2.4 that

capture the number of these mechanisms (constraints or rules) and some conception of the
internal complexity of these mechanisms. An aspect of the latter type that is of partic-
ular interest is the context-size of a rule or constraint { that is, the size of the largest

area of the phonological representation that an individual rule or constraint can operate on.
For instance, if the representation is symbol-strings, the context-size is the length of the

largest substring which a rule or constraint can examine and/or change. It is possible
to characterize the context-size of a known automaton in terms of the state-relationship
structure of that automaton, e.g., the concept of locality [Lap97, Section 14.5.3]. However,

one may not always be able to independently assess the e�ects of bounded context-size
and bounded automaton-size in conventional �nite-state automata because, at least in some
cases, the number of states and the context-size are correlated in such automata.

Example 2.2.23 Consider the following constraint with context size n, n > 1, on strings
over the alphabet f0; 1g:

\String x 2 L if and only if every n-length substring of x contains exactly one 1-symbol."

Note that any string that satis�es this constraint must have adjacent 1's separated by
exactly n � 1 0's. It can be shown that any FSA that accepts the language of strings

speci�ed by this constraint (and hence encodes this constraint) will require at least n states.

To see this, suppose that an FSA A existed for this constraint which had k < n states.
Let x = x1x2 : : : xm m > n, be any string accepted by A that contains exactly two 1's,

and let s = q1x1q2x2q3 � � � qmxmqm+1 be the sequence of alternating states and symbols

that label the vertices and arcs of the directed path in the transition diagram for A that

corresponds to one of the accepting computations of A on x. Consider the subsequence

s0 = 1qi0qi+10 : : : 0qi+(n�1)1 of s corresponding to the computation of A on the substring of
x between and including the 1's. Note that there are n states in s0. As k < n, some state of

A must appear twice in this sequence; call this state q0. Replace s0 in s by the sequence s00
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Phonological

Theory Characteristics

Simpli�ed Mechanism:
Segmental Rewriting rules implemented as context-sensitive rewriting rules

Grammars Aspects:

� The number of rewriting rules
� The maximum context-size of any rewriting rule

� Various aspects characterizing the number of rewriting rules
of particular types (see Section 4.1.2 for details)

FST-based Mechanism:

rule systems Rewriting rules implemented as i=o-deterministic �-free FST

Aspects:
� The number of rule FST
� The maximum number of states in any rule FST

The Mechanism:

KIMMO Constraints implemented as i=o-deterministic �-free FST
system Aspects:

� The number of constraint FST
� The maximum number of states in any constraint FST

Declarative Mechanism:

Phonology Constraints implemented as CDFA
& Aspects:

Optimality � The number of constraint CDFA
Theory � The maximum number of states in any constraint CDFA

� The maximum context-size of any constraint CDFA

Table 2.4: Characteristics of Mechanisms of Phonological Theories Examined in this

Thesis. This table lists, for each phonological theory examined in this thesis, the type
of mechanism used to implement relations between lexical and surface forms and the aspects
of this mechanism relative to which that theory is analyzed. Note that the analyses for

Declarative Phonology and Optimality Theory are done relative to contextual deterministic

�nite automata (CDFA); see main text for details.

which replaces the subsequence s000 of states and symbols between the occurrences of q0 in s0

by two copies of s000. This modi�ed sequence is also an accepting computation of A; however,
the string accepted by this computation has more than n � 1 0's between the 1's, which is
a contradiction.

While further work is necessary to gauge exactly how often the situation in the example
above occurs, this example does establish that it can occur. Hence, in order to investigate

the context-size of constraints or rules in a manner independent of the number of states in
the associated �nite-state automata, it will be necessary to de�ne new types of automata.

Consider the following de�nitions relative to FSA.
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substring substring DFA

# b a a b a b b a accept reject

1 b a a
p

2 a a b
p

3 a b a
p

4 b a b
p

5 a b b
p

6 b b a
p

3 3

Figure 2.11: Operation of a Contextual Deterministic Finite-State Automaton. The underly-

ing DFA is that given in Figure 2.9 and the context size is 3. Given the string x = baababba,

the result of the application of the CDFA to x is 3, i.e., 3 out of 6 substrings of length 3 are

not accepted.

De�nition 2.2.24 A contextual �nite-state automaton (CFSA) is a 6-tuple

hQ;�; Æ; s; F; ci such that A = hQ;�; Æ; F; si is a �nite-state acceptor and and c is a

positive integer. The FSA associated with a CFSA A is the underlying FSA of A and c is

the context-size of A. A CFSA whose underlying FSA is deterministic is a

contextual deterministic �nite-state automaton (CDFA).

De�nition 2.2.25 Given a string x = x1x2 � � �xn over an alphabet � and an integer c such

that 0 < c � n, the c-decomposition of x is the set of strings Sx;c = fyi j 1 � i �
(n� c) + 1 and yi = xixi+1 � � �xi+(c�1)g.

De�nition 2.2.26 Given a CFSA A = hQ;�; Æ; s; F; ci, the result function associated

with A is the function resA : �� 7! N such that for a string x 2 ��, resA(x) = jf y j
y 2 Sx;c and y is not accepted by the underlying FSA of Agj. Given a string x 2 ��, the

result of applying A to x is resA(x).

The operation of a CFSA based on the DFA from Figure 2.9 is shown in Figure 2.11.
As de�ned above, a CFSA is not a conventional �nite-state automaton with a well-de�ned

notion of computation and an associated language but rather an abstract speci�cation of a
procedure for evaluating strings which can be used to de�ne string acceptance and languages.

One such set of de�nitions that will be used later in this thesis is as follows.

De�nition 2.2.27 Given a CFSA A = hQ;�; Æ; s; F; ci and a string x 2 ��, x is accepted

by A if and only if resA(x) = 0.

Example 2.2.28 Consider the CDFA A with context-size 3 whose underlying DFA is that

given in Figure 2.9. As shown in Figure 2.11, A does not accept the string x1 = baababba as
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resA(x1) = 3. However, the reader can verify that strings x2 = aab, x3 = babb, and x4 = ba

are accepted by A as resA(x2) = resA(x3) = resA(x4) = 0. Note that acceptance is trivial

in the case of x4 as the 3-decomposition of x4 is empty.

De�nition 2.2.29 Given a CFSA A = hQ;�; Æ; s; F; ci, the language L associated with A

is the set of all strings that are accepted by A, i.e., L = fx j x 2 �� and resA(x) = 0g.

Languages associated with CFSA may in turn have associated FSA. For example,

a construction for creating a DFA for the language associated with a CDFA as de�ned

above is given in Part (7) of Theorem 4.5.4. Contextual �nite-state automata will be used in

the analysis of Declarative Phonology and Optimality Theory given in Chapter 4 to model

constraints with bounded context-size. Analogous de�nitions for FST which can be applied

to �nite-state implementations of rewriting rules are not obvious, and are a topic for future

research.
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Chapter 3

Computational Analyses of

Phonological Theories

In part because of the integral role of phonology in processing speech and written text, there
have been a number of implementations of various phonological theories as

modules in natural language processing systems (see [Col95, Spr92] and references).
This work is important because it shows that these theories can be implemented
computationally; however, such systems and the algorithms encoded in them do not

characterize the full range of algorithmic possibilities and limitations latent within these theo-
ries. Such a characterization requires a more formal and abstract computational
analysis. In this chapter, I will give a brief overview of the two main approaches to the com-

putational analysis of linguistic theories and discuss how the analysis of the computational
complexity of linguistic theories can be improved by incorporating the techniques of param-

eterized complexity analysis.

There are two main approaches to the formal computational analysis of theories of
natural language processing. Each of these approaches focuses on a di�erent measure of
the computational power encoded within the mechanisms postulated by such a theory.

In the following, let a mapping system be a particular speci�cation of the mechanisms
postulated by a linguistic theory that relate the representations manipulated by that theory.

For instance, a mapping system could be either a formal grammar that links mental repre-

sentations and derivation trees in a theory of syntax or a collection of rules or constraints
that relate lexical and surface forms in a theory of phonology.

1. Generative Capacity: The generative capacity of a linguistic theory is the set of

formal languages or relations that can be generated by mapping systems within that

theory. In the case of formal languages, this set is often summarized by considering
the most powerful type of formal language within this set relative to the Chomsky

hierarchy of formal languages:

(a) Regular Languages (Type 0; generated by regular grammars /

�nite-state automata);
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(b) Context-free languages (Type 1; generated by context-free grammars /

pushdown automata);

(c) Context-sensitive languages (Type 2; generated by context-sensitive grammars /

bounded-tape Turing machines); and

(d) Turing-equivalent languages (Type 3; generated by unrestricted grammars /

Turing machines)

In the case of relations, this set may be similarly summarized relative to the known hier-

archy of relation-classes and their associated automata [Brs79, RS97b].

The generative capacity of a linguistic theory is a broad characterization of types of

linguistic phenomena that can be encoded within that theory (and, by the equivalence

of language-types and generating mechanisms, a rough measure of the computational

power encoded in that theory in terms of the types of automata needed to implement

the mapping systems implicit in that theory).

This approach originated in Chomsky's classic 1957 work Syntactic Structures [Cho57],
in which he de�ned the Chomsky hierarchy and used it to examine the generative

capacities of various theories of English syntax. This approach, both in terms of
formal-language characterizations of various linguistic theories and phenomena as well

as algorithmic work on eÆcient parsing of various types of formal-language grammars,
has been the dominant approach to computational analysis of natural
language (see [Ber84, Gaz85] and references). Examples of such analyses within

computational phonology include Johnson's characterization of the automata required
to implement SPE-style phonological rules under various rule-application schemes

[JoC72], Ritchie's characterization of the relations encoded within sets of
KIMMO-style Two-Level rules [Rit92], and the investigations by Eisner [Eis97a],
Ellison [Ell94, Ell95], Frank and Satta [FS97], and Karttunen [Kar98] into the types of

constraints that can and cannot be accommodated within a �nite-state implementation
of Optimality Theory.

2. Computational Complexity: The computational complexity of a linguistic theory is
the computational complexity (phrased in terms of both algorithms and
intractability results) of various search problems de�ned within that theory.

For reasons outlined in Section 2.1.1, these analyses are often done on decision prob-
lems associated with these search problems. Of typical interest are problems in which
mapping systems for a linguistic theory X access the representations postulated by X

in the following natural ways:

(a) Encoding Problems: Problems that determine the surface forms of given

lexical forms. There are several types of encoding problems:

X-Encode-I

Instance: A mapping system G for theory X, a lexical form u, and a surface

form s.
Question: Does G produce s when it is applied to u?
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X-Encode-II

Instance: A mapping system G for theory X and a lexical form u.

Question: Does G produce a surface form that satis�es some property P when it

is applied to u?

X-Encode-III

Instance: A mapping system G for theory X and a lexical form u.

Question: Does G produce a surface form when it is applied to u?

The �rst two types of encoding problem are appropriate for analyzing

theories that always produce surface forms, e.g., Simpli�ed Segmental Grammars

(Section 4.1), FST-based rule systems (Section 4.3), or Optimality Theory

(Section 4.6). The third type of problem is more appropriate for analyzing

constraint-satisfaction based systems in which a given lexical form may or may

not have associated surface forms, e.g., the KIMMO system (Section 4.4) or

Declarative Phonology (Section 4.5).

(b) Decoding Problems: Problems that determine the lexical forms associated with
a given surface form, e.g.,

X-Decode

Instance: A mapping system G for theory X with an associated lexicon D and a

surface form s.
Question: Is there a lexical form u that is generated relative to D such that the
result of applying G to u is s?

Encoding and decoding problems are also referred to as generation and
comprehension problems, as these problems correspond informally to the operations
of natural language generation and comprehension, i.e., creating surface forms from

lexical forms and recovering lexical forms from surface forms, respectively. However,
I will follow the naming conventions above established by Ristad [Ris93b], as this will

constantly remind the reader both that the problems de�ned here only manipulate

mathematical objects within a particular formal framework and that the relevance
of these frameworks and results derived using them to natural language processing

must be established separately ([Ris93b, Footnote 2]; see also [MaR95]). One can also
de�ne problems that correspond to the learning of natural language grammars and

lexicons [Ber85, JoM92, TS96, WC80]. The computational complexity of a linguistic

theory is a direct characterization of the computational power encoded within that
theory in terms of the amounts of computational resources required to (and hence the

possible types of algorithms that can) implement operations within that theory.

This approach was developed by Berwick in various papers published in the late 1970's
and early 1980's (summarized in [Ber85, BW84]) which focused on the

computational complexity associated with various theories of syntax. Perhaps the

clearest statement of how to use this approach in practice is given in [BBR87].
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Examples of such analyses within computational phonology include work done by

Barton on the KIMMO system [Bar86, BBR87], Ristad on various formalizations of

segmental [Ris90, Ris93b] and autosegmental [Ris94] phonology, Eisner [Eis97a] and

Wareham [War96a, War96b] on Optimality Theory, Wareham [War96a] on

Declarative Phonology, and Johnson on the learning of rules within segmental

phonology [JoM92].

Though certain authors have advocated using computational complexity instead of

generative capacity for describing and analyzing the computational power of linguistic

theories [BBR87, Ber89], each approach characterizes the computational power of a

linguistic theory in a di�erent way, and the choice of which approach to use in a

particular situation depends on the investigator's goals. If one is interested in characterizing

a linguistic theory in terms of the formal languages that it can generate or the types of

automata that can implement it, then that theory should be evaluated in terms of its

generative capacity. However, if one is more concerned with how eÆciently that theory

can be implemented relative to any computational model, then an analysis in terms of com-
putational complexity is preferable.

Now that these two approaches have been introduced, the remainder of this chapter will
focus on analyses of the computational complexity of linguistic theories { in particular, the

manner in which these analyses are done, critiques of these analyses, and the role that the
techniques of parameterized complexity analysis can play in improving these analyses.

An analysis of the computational complexity of a linguistic theory can be broken down
into �ve phases:

I. Formalize the linguistic theory of interest in a particular computational framework of

well-de�ned and fully-speci�ed representations and mechanisms, and establish the
assumptions under which computational results derived relative to this framework

apply back to the original theory.

II. De�ne computational problems of interest within this framework.

III. Analyze the computational complexity of these problems.

IV. Relate results derived in (III) to the framework.

V. Relate the results as interpreted within the framework back to the linguistic theory.

Let us consider some of the characteristics of each phase in turn.

� Phase I is perhaps the most crucial part of this process. It may require less work if the
linguistic theory of interest is already stated formally (as is the case with segmental

phonological grammars [CH68] and the KIMMO system); however, some simpli�cation
and abstraction is always involved in order to focus the analysis on those aspects of

the theory that are of particular interest to the investigation. The de�ned framework

must satisfy the often contradictory requirements of rigor and relevance:
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{ It must be simple enough to analyze but complex enough to reect important

aspects of the linguistic theory.

{ It must be well-de�ned and abstract enough to make analysis possible but not so

abstract that derived results are irrelevant to the linguistic theory.

{ It must allow the derivation of results that are simple enough to be

comprehensible but complex enough to have nontrivial implications for the

linguistic theory.

Some sample derivations of such frameworks for various linguistic theories are given

in [Ber85, BBR87, BW84, Ris90, Ris93a, Ris94]. Formal frameworks that satisfy the

requirements given above often seem to be a bewildering mix of formal simpli�ca-

tions and informal justifying assumptions, and their creation and interpretation has

more the avor of an arcane art than scienti�c method. Some consolation can be

taken in realizing that these diÆculties seem to be an unavoidable part of build-

ing mathematical models of any natural phenomenon, be it another human cogni-

tive ability like vision [Tso90, Tso93, Tso95], the three-dimensional folding of proteins
[NMK94], or the hydrology and geochemistry of landmasses [OSB94]; if the creation of
appropriate frameworks is an art, it is at least one that can draw on similar practice

and experience within many disciplines besides linguistics.

Note that at this point in the analysis, simpli�cations and justifying assumptions must
also be made for the actual methods that will be used to do the computational analysis.
For example, as noted in Section 2.1.1, computational complexity analyses are often

simpli�ed to deal only with asymptotic worst-case complexity relative to deterministic
Turing machines. The usual justifying assumption in this case is to invoke simplicity

in order to be able to do the analysis at all; the use of more complex justi�cations is
fraught with peril.1 The interested reader is referred to [BBR87, BW83, BW84, Rou91,
War96a] for more detailed discussions of the assumptions under which computational

complexity results can be interpreted within linguistics (see also [Tso90, Tso93, Tso95]
for a similar perspective relative to vision).

� Phase II is an extension of Phase I, in that it further focuses the scope of the anal-
ysis by de�ning problems that embody both the operations in the framework that

1The alleged correspondence of computational complexity to measured human linguistic performance is
a particularly insidious justifying assumption, in that it implies that tractable language processing problems
can be solved quickly by humans and intractable language processing problems cannot be solved quickly
by humans. Hence we get what Ristad [Ris93a] has called Cordemoy's Paradox: If language process-
ing is polynomial-time intractable, how can humans process language so fast? The problem here is that
measures of asymptotic worst-case complexity and observed human linguistic performance are not directly
comparable by virtue of the wildly di�erent architectures underlying general-purpose algorithmic and human
neural computing systems and the fundamentally di�erent sets of inputs in each case, e.g., asymptotically
large and worst-case on one hand and small and (perhaps) average-case on the other ([BW83, BW84];
see also [War96a]).
It is interesting that similar paradoxes based on similarly awed correspondences have also arisen when

computational complexity has been used to analyze other natural phenomena such as protein folding and
vision. The interested reader is strongly encouraged to read [NMK94] (especially Section 5) and [Tso90,
Tso93, Tso95] for insightful perspectives on such paradoxes and their resolution.
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are of interest and those aspects of the framework that will be examined. If the

intent of the analysis is to investigate a particular problem within the framework

such as a problem arising in an practical implementation of the linguistic theory, this

phase is straightforward; however, if the intent is to characterize the theory in general,

there is much more choice involved, e.g., the encoding and decoding problems de�ned

earlier in this chapter. Once again, this is somewhat of an art that can draw on the

experience of many disciplines. A particularly interesting discussion of how problems

should be de�ned for computational complexity analyses within linguistics is given in

[Ris93a, Chapters 1 and 2]; for similar discussions relative to vision, see

[Tso90, Tso93, Tso95].

As results derived later in the analysis will be phrased in terms of the problems de-

�ned during this phase, problems must be de�ned very carefully in order to obtain

relevant results. The assumptions relating results within the framework to the original

theory are frequently stated in terms of correspondences between representations and

mechanisms in the linguistic theory and those in the problems de�ned in this phase

(if the theory is stated informally) or as formally-de�ned reductions between the prob-
lems in the theory and the problems de�ned in this phase (if the theory is
stated formally).

� Phase III is perhaps technically the most demanding but conceptually the easiest {
the problems have been stated and they have to be analyzed. A potentially confusing

aspect of this phase is that complexity analyses often work relative to either restricted
or generalized versions of the problems de�ned in Phase II. This is a product of the way
complexity results derived for one problem propagate to related problems. Given an

eÆcient algorithm for a problem �, that algorithm also works for (and thus establishes
the tractability of) appropriately restricted versions of �; conversely, a proof of the
intractability of � also establishes the intractability of any problem which has � as a

restricted version of that problem. Thus, by establishing the tractability of the most
general possible versions of a problem and the intractability of the most restricted

possible versions of that problem, individual results can be made to have the widest
impact on characterizing the computational complexity of that problem. Such results
are therefore merely a way of summarizing and saving time in deriving the set of

results underlying a comprehensive analysis of a problem, and should not themselves
be misconstrued as comprising the only results of that analysis.

� In Phases IV and V, the \raw" algorithms and hardness and completeness results

derived in Phase III are applied in some manner to say something about the framework
and then the original linguistic theory. Phase V tends to be speci�c to the assumptions

relating the theory and the framework derived in Phase I and will not be discussed

here further. Phase IV, however, has some interesting general aspects. There seem to
be three approaches to applying raw complexity-theoretic results within a framework:

1. As a tool for establishing the polynomial-time intractability of individual

problems. This follows directly from hardness and completeness results.
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2. As a tool for ranking and classifying linguistic theories [BBR87, Ris90, Ris93a].

This follows from hardness and completeness results and known hierarchical

inclusion relations between the complexity classes for which these results were

derived (see [JoD90] for a list of known complexity classes and their

relationships).

3. As a probe for discovering the sources of polynomial-time intractability in

linguistic theories [BBR87, Ris93a]. This is typically done by examining the

reductions used to prove hardness results for the various problems examined and

selecting aspects of those problems that seem to be important to proving hardness

and hence to polynomial-time intractability, e.g., those aspects that are required

to have unbounded values in order for the reduction to work ([BBR87, KC88,

Rou87, Spr92]; see also discussions in Sections 4.4.3 and 4.6.3).

The third application is of particular interest for how it can inform us not only

about the set of non-polynomial time algorithms available for implementing the exam-
ined problems (as discussed in Section 2.1.3) but also about the relationship between

descriptive adequacy and computational power in the framework (and, if Phase I was
done correctly, the linguistic theory of interest). To the extent that aspects responsi-
ble for polynomial-time intractability characterize the types of phenomena that can be

dealt with by a linguistic theory and the level of detail with which such phenomena can
be described, knowing the sources of polynomial-time
intractability of problems associated with that theory can help us assess the

computational consequences of various manners of describing linguistic phenomena
within that theory. These consequences may then be used to guide future research in

(and possibly revisions to) that theory.

Such a research process seems to have been in action with respect to Transformational

Grammar over the last 30 years [BF95]: The various failures to implement the origi-
nal theory of Transformational Grammar in an eÆcient parser in the mid-1960's led

to 25 years of collaborative linguistic and computational research into restrictions on
linguistic and algorithmic mechanisms which culminated in the development of both
a formally constrained but nonetheless empirically adequate theory of Transforma-

tional Grammar and an implementation of this theory in an eÆcient natural language

parser. This research process has been formalized as \the language complexity game"

by Ristad in [Ris93a], wherein he shows how linguistic and computational research

can be applied iteratively to derive a theory of anaphoric reference that has the low-
est computational complexity and the highest descriptive power, cf. [MaR95] (see also

[Tso90, Tso93, Tso95] for a description of a similar research process rooted in the

physical realizability of derived algorithms). Such examples highlight the importance
of this application of complexity-theoretic results in particular and the interaction of

linguistics and computer science in general.

It is very important to realize that by virtue of the justifying assumptions made in
Phases I and II and used in V, the computational analyses in Phases III and IV can be

carried out independently of any considerations about the linguistic theory being analyzed {
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that is, the techniques used and the results derived in Phase III and IV need only be faithful

to the conventions of computational complexity theory, and need not mirror or correspond

to any aspect of natural language processing in humans. This point will be particularly

relevant in the discussion of critiques of complexity-theoretic analyses of linguistic theories

given below.

The analyses of phonological theories given in Chapter 4 are examples of the

computational analyses described above. All are stated in terms of simpli�ed and some-

what abstract frameworks that do not directly correspond to versions of these theories that

are typically used in practice. As the phonological theories examined in that chapter are

all de�ned more or less formally, the assumptions linking the results derived in the analy-

ses to these theories are for the most part stated as implicit reductions from the restricted

problems studied here to general operations within these theories. It is important to real-

ize that the restrictions on the phonological theories examined here, such as the simpli�ed

autosegmental representations used in the formulations of Declarative Phonology and the

restriction on all theories to deal exclusively with mechanisms that map lexical forms onto

surface forms of the same size, are meant not to accurately and directly model these the-
ories but are rather a convenient way of simplifying the problems involved such that they
can be analyzed and the relationships between various aspects in these problems (and hence

in the associated phonological theories) can be more easily recognized. If the problems
examined in this thesis have been de�ned correctly, various kinds of intractability results

will automatically propagate to various operations in the associated phonological theories.
Though algorithms for the restricted problems studied here do not propagate so readily,
they may yet be useful in suggesting strategies for implementing those operations.

There have been many critiques of complexity-theoretic analyses in linguistics

(see also [Tso90, Tso93] and references for critiques of complexity-theoretic analyses of
vision). The criticisms seem to fall into three groups:

1. The assumptions linking the formal framework and the linguistic theory are awed,
e.g., the model of natural language processing implicit in the framework is incomplete
or is contradicted by empirical language data [KC88, MaR95].

2. The assumptions underlying computational complexity theory (and hence
computational complexity analysis) are unrealistic, e.g., asymptotic worst-case

complexity measures do not adequately model either the small �nite inputs or the

bounded computational power of the human brain that characterize natural language
processing in humans [BW84, MaR95, Rou91, War96a].

3. The assumptions underlying the derived results are unrealistic, e.g., the instances of
linguistic systems produced by reductions do not correspond to natural linguistic sys-
tems and thus invalidate the applicability of any derived intractability results to natural

language processing in humans [KC88, Rou87, Spr92].

When considered in light of the �ve-phase analysis process described above, these criticisms

are not as damaging as they may �rst appear to be. Criticisms of the �rst kind are valid
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for the particular frameworks they address, but ultimately point out only that one must be

careful when constructing those frameworks and relating both those frameworks and results

derived within them to linguistic theories. Criticisms of the second kind would be valid

if (as noted in the descriptions of Phases I and II above) the simpli�cations they deride

were not necessary to do formal analysis of the computational power of natural language

systems. That such simpli�cations need to be made is undeniable; to be truly e�ective,

criticism of extant simpli�cations would have to present a more reasonable alternative set

of simpli�cations, which none has to date. Criticisms of the third kind are misguided;

as noted above, neither reductions or results in Phase III need to be consistent with the

reality of natural language processing, and hence cannot of themselves be unrealistic.

Plainly put, any correct mathematically derived result is valid and does not in itself

imply anything that can be realistic or unrealistic. Criticism based on realism should rather

be directed at the justifying assumptions underlying the framework that relate results to a

linguistic theory, and the way those assumptions are used to interpret formal results relative

to the linguistic theory in Phase V.

It is interesting that perhaps the most damning criticism to date stems from the por-
tion of the analysis not addressed by any previous criticism { namely, Phase IV and the
interpretation of complexity theoretic results in the formal framework. In particular, con-

sider the second and third of the three applications of complexity-theoretic results within
Phase IV that were described several pages back. Using hardness and completeness results

to rank problems associated with linguistic theories is perhaps justi�able (though one must
wonder just how valid such rankings obtained by collapsing all information about the set
of algorithms for a problem into single quantity can be, or indeed what they really mean).

However, the sources of polynomial-time intractability in problems cannot be discovered
using aspects derived from the reductions underlying classical hardness results. Indeed, this
frequently-used approach is doubly awed:

1. There may be many possible reductions that establish the polynomial-time intractabil-

ity of a problem, and each of these reductions may employ di�erent sets of aspects to
encode instances of one problem into instances of another. It is not clear that an
aspect that is crucial in the operation of a particular reduction will also be impor-

tant in any other reduction, let alone all of them. Hence, it is not clear how an aspect

selected in such a manner could be considered to be responsible for the

polynomial-time intractability of a problem.

2. A reduction can only show that a particular type of algorithm does not exist for a

problem. It cannot in itself prove the existence of an algorithm, let alone prove that

any aspect that is crucial to the operation of that reduction has an associated algorithm

whose non-polynomial time complexity is purely a function of this aspect (and hence

that this aspect can potentially be exploited to in subsequent applications and research

as described in Section 2.1.3).

This is, granted, a awed use of a sound technique; as noted in Section 2.1.2, it is possi-

ble to structure a classical complexity-theoretic analysis (albeit in a somewhat cumbersome
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manner) to search for the sources of polynomial-time intractability in a problem. However,

the issues noted above do highlight disturbing technical and conceptual de�cits in current

approaches to the computational analysis of linguistic theories { that is, technically, classical

theories of computational complexity like NP -completeness are not designed to investigate

increasingly important questions concerning individual aspects and their roles as sources of

polynomial-time intractability, and conceptually, the lack of an appropriate theory to answer

these questions seems to have stunted the formulation of realistic notions about the compu-

tational complexity of a problem, such as what a source of polynomial-time intractability is

or what classical polynomial-time intractability results really mean.

It is precisely these de�cits that the theory of parameterized computational

complexity addresses. It addresses the conceptual de�cit by putting forward de�nitions that

explicitly acknowledge the role of individual aspects (via their selection by

parameters) in problem complexity, thus allowing realistic conceptions of the set of

non-polynomial time algorithms associated with a polynomial-time intractable problem and

the sources of polynomial-time intractability for such a problem. It addresses the technical

de�cit by de�ning the appropriate formal machinery, i.e., the parametric reducibility and
the rich set of complexity classes forming the W hierarchy, for investigating the sources of
polynomial-time intractability in problems via systematic parameterized complexity

analysis. Thus, parameterized computational complexity theory (as embodied in
systematic parameterized complexity analysis) �lls an important void in current

analyses of the computational complexity of linguistic theories, and should be added to
the list of techniques employed in such analyses.

In conclusion, parameterized computational complexity theory satis�es known
technical and conceptual needs in the analysis of the sources of polynomial-time

intractability of computational problems associated with linguistic theories in particular and
of computational problems in general. It is my hope that the systematic parameterized com-
plexity analyses of �ve phonological theories given in the next chapter will amply illustrate

the promise of parameterized computational complexity theory, and will serve as exemplars
on how to do and interpret the results of such analyses for computational problems in other

disciplines.
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Chapter 4

A Systematic Parameterized

Complexity Analysis of Phonological

Processing under Rule- and

Constraint-Based Formalisms

This chapter contains systematic parameterized complexity analyses of �ve phonological
theories, namely Simpli�ed Segmental Grammars (Section 4.1), FST-based rule systems

that operate by FST composition (Section 4.3), the theory of Two Level Morphology as
implemented by the KIMMO system (Section 4.4), Declarative Phonology (Section 4.5), and
Optimality Theory (Section 4.6). Each section will consist of an overview of a particular

theory and a review of previous complexity-theoretic analyses of that theory, a systematic
parameterized analysis relative to some set of aspects, and a discussion of the implications of

this analysis. Many of the results in these analyses are derived by using reductions from the
Bounded DFA Intersection (BDFAI) problem (Section 4.2). This chapter concludes
with a brief discussion of some patterns in the results derived in the preceding sections and

the implications of these patterns for phonological processing in general.

The analyses in this chapter will be done relative to the appropriate parameterized ver-
sions of the encoding and decoding problems introduced in Chapter 3 which will be further

restricted to operate on lexical and surface forms that are of the same length, i.e., mechanisms

that add portions to or delete portions from the given form are not

allowed. Hardness results will be derived by a chain of reductions from four basic prob-

lems: Bounded DFA Intersection, Bounded nondeterministic Turing machine

acceptance, Dominating set, and Longest common subsequence. This chain of

reductions is shown in Figure 4.1. The analysis of each theory X 2 fSSG, FST, KIM,

DP, OTg will be followed by a discussion of the derived results. Each such discussion will

consider the following issues:

1. The sources of polynomial-time intractability in X-Encode and X-Decode:
These sources will be listed and (where possible) characterized in terms of

particular mechanisms in theory X. This portion of the discussion will also
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examine the justi�cations for including in X the mechanisms underlying these sources

of polynomial-time intractability to see if the computational complexity of problems

associated with X can be reduced by modifying or eliminating these mechanisms, and

compare results derived here with previous speculation about the sources of

polynomial-time intractability in X.

2. The computational complexity of the versions of X-Encode and X-Decode

that allow additions and deletions: Where such problems can be meaningfully

de�ned, this part of the discussion will involve brief sketches of how results derived

here apply to these more general problems.

3. The computational complexity of search problems associated with X-Encode

and X-Decode: This part of the discussion will focus on the following three search

problems, which are phrased as functions:

� CHKX(g; u; s): Given a lexical form u, a surface form s, and a phonological
mapping system g for theory X, return True if s can be produced from u under

g, and False otherwise.

� ENCX(g; u): Given a lexical form u and a phonological mapping system g for
theory X, return any surface form s that g produces from u if such an s exists,

and special symbol ? otherwise.

� DECX(g; s): Given a surface form s and a phonological mapping system g for

theory X, return any lexical form u such that g produces s from u if such a u

exists, and special symbol ? otherwise.

The encoding and decoding problems associated with a phonological theory may have

multiple solutions, i.e., multiple surface forms may be associated with a given lexical
form or multiple lexical forms may be associated with a given surface form. The search
problems de�ned above are a �rst step in investigating the complexity of accessing

the elements in these solution-sets. Problems ENC and DEC access this set in the
simplest possible way, i.e., see if it is empty and if not, return an arbitrary element.

Problem CHK is the simplest problem that accesses particular elements in this set,
i.e., see if a particular element is in the set. More complex search problems are possible,

and are a topic for future research.

4. Applications of derived results. This part of the discussion will look at the im-

plications of the results derived here for implementations of theory X and for related
phonological theories.

5. Future research. This part of the discussion will list topics speci�c to theory X that
show promise for future research, and (where possible) list connections of this future

research to other theories examined in this thesis.

The intent of these discussions is both to interpret the results derived for each theory and
to illustrate various points made in Section 2.1.3 and Chapter 3 about how systematic

parameterized complexity analysis can and should be used in practice.
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Figure 4.1: Reductions in Chapter 4. An arrow from problem � to �0 means that there is

at least one parametric reduction between parameterized versions of � and �0.
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4.1 Simpli�ed Segmental Grammars

4.1.1 Background

The earliest formal model of phonology was given by Chomsky and Halle in their classic

book The Sound Pattern of English (SPE) [CH68]. The SPE model is based on rewriting

rules operating on strings of segments | in particular, a sequence of sets of context-sensitive

rewriting rules is applied repeatedly to transform given lexical segment-strings into surface

segment-strings. Though the SPE model has been immensely inuential, it has not had

a great impact on practical natural language processing because both attempts at build-

ing systems based on (see [Col95, Spr92] and references) as well as theoretical investiga-

tions of [JoC72] the SPE model suggest that it encodes unnecessary and often troublesome

computational power. This was con�rmed by Ristad [Ris90, Ris93b], who showed that the

encoding and decoding problems associated with the SPE model are undecidable. In an

e�ort to reduce the computational power inherent in the SPE model while retaining its abil-
ity to describe natural languages, Ristad de�ned the Simpli�ed Segmental Grammar (SSG)

model [Ris93b].

An important part of this model is its conception of a rewriting rule and how such rules
are applied to segment-strings. The notations used and de�nitions given below are adapted

from those given to the appendix to Chapter 8 of [CH68]. Recall from Section 2.2.2 that
a segment is de�ned relative to a set of features F . Let SF denote the set of all possible
segments relative a feature-set F , let the set of features that have values for a particular

segment s, i.e., those features that are de�ned relative to s, be denoted by F (s) and for each
feature f 2 F (s), let s(f) denote the value of feature f in segment s. If F (s) = �, s is
the null segment and is written as �. A traditional rewriting rule matches some substring

of a given symbol-string and replaces it with another speci�ed symbol-string. Segmental
rewriting rules are slightly more complex, as they may match and replace both portions of

segments and whole segments. Consider �rst how segments can match each other.

De�nition 4.1.1 A segment s matches a segment t if F (s) � F (t) and for all

f 2 F (s), s(f) = t(f).

De�nition 4.1.2 a segment-string x = x1x2 � � �xk matches a segment-string

y = y1y2 � � � yk if xi matches yi, 1 � i � k.

Example 4.1.3 Consider the set of segments S de�ned relative to a set F = fa;b; cg of
binary-valued features. In this and subsequent examples in this section, write each segment

as the concatenation of its de�ned feature-value pairs, e.g., segment f [a +],[c -] g will

be written as [a+c-]. Segment [a+] matches segments [a+b-], [a+b+c-], and [a+c+];

however, it does not match the segments [a-], [b+c-], [a-b-c-], and �. Similarly, the
segment-string [a+][a-b+] matches the segment-strings [a+b-][a-b+], [a+c+][a-b+c-],

and [a+b-c+][a-b+c+] but does not match the segment-strings [a-], [a+][a+b+],

[b+][a+c+], and �.
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Let the number of segments in a segment-string x be denoted by jxj. Consider next how a

matched segment can be modi�ed within a rule.

De�nition 4.1.4 Given segments c, r, s, and s0, c modi�es s via r to create s0 if

1. c matches s; and

2. (a) s0 = � (if r = �) or

(b) F (s0) = F (s) [ F (r), f(s0) = f(s) for all f 2 F (s) � F (r), and f(s0) = f(r)

for all f 2 F (r) (if r 6= �).

This operation can add or delete segments, depending on whether s or r are equal to �,

respectively. Note, however, that this operation cannot delete features from segments but

can only add new features or modify the values of existing ones.

Example 4.1.5 Segment [a+] modi�es [a+c-] via [a+b-] to create [a+b-c-]. Similarly,
[a+] modi�es [a+c-] via [b+c+] to create [a+b+c+] and [a+] modi�es [a+c-] via �

to create �. However, it is not the case that [a+] modi�es [a-b+] via [c+] to create
[a-b+c-] (as [a+] does not match [a-b+]), [a+] modi�es [a+b+] via [c+] to create [b+]
(as f b g 6= f a,b g) [ f c g), or [a+] modi�es [a+b+] via [c+] to create [a+b+c-]

(as [c+](c) = + 6= � = [a+b+c-](c)).

De�nition 4.1.6 A segmental rewriting rule r is an ordered pair (x; y) 2 S�
F � S�

F

such that x and y have the structures XAY and XBY , respectively, where X; Y 2 S�
F ,

A;B 2 S�1
F , and it is not the case that F (A) = F (B) = �. The �rst component of r

is called the structural description (or context) and the second component is called the

structural change. Rule r can be written either as XAY ) XBY or as

A! B=X Y .

Some examples of segmental rewriting rules are given in Figure 4.2. Consider now how such
a rule applies to a segment-string.

De�nition 4.1.7 A segmental rewriting rule XAY ) XBY applies to a segment-

string Z if XAY matches Z, i.e., Z has the structure X 0A0Y 0 such that X matches X 0, A

matches A0, and Y matches Y 0. The result of applying this rule to Z is a segment-string

Z 0 = X 0A00Y 0, where A modi�es A0 via B to create A00. If the rule does not apply to the given

segment-string, the result of the application is the given segment-string.

Example 4.1.8 Rule (a) in Figure 4.2 applies to segment-string [c+][a+][c-], and the result

of this application is the segment-string [c+][a+b-][c-]. Similarly, rules (b) and (c) apply

to the segment-strings [c+][c-] and [c+][a+b-][c-], and the results of these applications

are the segment-strings [c+][a+b+][c-] and [c+][c-], respectively. However, rules (b) and

(c) do not apply to the segment-strings [c+][b-] and [c+][a-][c-], and the results of these
applications are [c+][b-] and [c+][a-][c-], respectively.
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Figure 4.2: Segmental Rewriting Rules. Each rule is de�ned relative to the set
fa;b; cg of binary-valued features. (a) Feature modi�cation. (b) Segment insertion.

(c) Segment deletion. (d) Summary of two feature modi�cation rules via by one rule which
uses feature-value variable �.

Note that either A or B (but not both) may be the empty segment �; in these cases, a

rule would insert a segment into a segment-string (if A = �; see Figure 4.2(b)) or delete a
segment from a segment-string (if B = �; see Figure 4.2(c)). Rules may also contain features

whose values are variables; such feature-values are denoted by Greek letters. Each such rule
summarizes a group of rules constructed by letting each variable take on all possible values

of its associated feature and restricting the assignment of values within a rule such that

each instance of a particular variable has the same value wherever it appears in that rule
(see Figure 4.2(d)).

Example 4.1.9 Rule (d) in Figure 4.2 applies to both of the strings [c+][a+][c-] and

[c+][a+] [c+], and the results of these applications are the strings [c+][a+b-][c-] and

[c+][a+b+] [c+], respectively.
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Given a segment-string that is longer than the context of a rule, there are a variety of

orders in which the rule can be applied to segment-substrings that are the length of that

rule's context, e.g., iterative left to right, iterative right to left. In simpli�ed segmental

grammars, rules are applied simultaneously, i.e., a rule applies to all matching context-length

segment-substrings in a given segment-string at the same time. A rule is said to successfully

apply to a given segment-string if the context of the rule matches at least one substring of

the given string.

Given the above, a simpli�ed segmental grammar g = hF;D;R; cp; C; fCi consists of
the following:

� A set of features F which de�nes a set of segments SF .

� A lexicon D � S+
F .

� A sequence R = r1; : : : ; rjRj of segmental rewriting rules. This sequence R is divided

into blocks BR = b1b2 � � � bjBRj, 1 � jBRj � jRj, of contiguous subsequences of rules
such that each block either contains a single rule or more than one rule. Each block of
several rules is called a mutually exclusive (m.e.) rule-set.

� A progression constant cp.

� A set of control strings, C � f0; 1; ?gjRj and a recursive function fC : D+ 7! C.

Given a lexical segment-string u 2 D+, the control-string fC(u) describes the status of each
rule in the application of R to u. For 1 � i � jRj, if the ith symbol in fC(u) is 1 then rule ri
is obligatory, if the ith symbol is 0 then rule ri is ignored, and if the ith symbol is ? then

rule ri is optional. Given a lexical segment-string u, the blocks of rules in R are applied
to u in their order in R. Let res(i), 0 � i � jBRj, be the set of segment-strings generated
by block i in R, and set res(0) = fug. We can now de�ne the result of applying R to u

recursively as follows.

� If the current block bi is a single rule, the result of applying this block depends on the
status of the rule relative to fC(u):

{ If the rule is obligatory, res(i) is the set of segment-strings generated by applying

the rule to each segment-string in res(i� 1).

{ If the rule is ignored, res(i) = res(i� 1).

{ If the rule is optional, res(i) is the union of res(i � 1) and the set of
segment-strings generated by applying the rule to each segment-string in

res(i� 1).

� If the current block bi is a m.e. rule-set, the result of applying this block depends on

the statuses of the rules in the block relative to fC(u):

{ If bi consists of ignored rules, res(i) = res(i� 1).
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{ If bi consists of some combination of ignored rules and optional rules, res(i) is the

union of res(i� 1) and the sets of segment-strings Rx, x 2 res(i� 1), such that

Rx consists of the segment-strings generated by applying each optional rule in bi
to x.

{ If bi consists of some combination of ignored rules, optional rules, and obligatory

rules, res(i) consists of the union of the sets of segment-strings Rx, x 2 res(i�1),

such that Rx consists of either the segment-strings generated by applying to x

all optional rules in bi preceding the �rst obligatory rule that can be successfully

applied to x, as well as the segment-string generated by applying that obligatory

rule to x (if such an obligatory rule exists in bi) or the segment-strings generated by

applying each optional rule in bi to x (if no obligatory rule in bi can be successfully

applied to x).

Example 4.1.10 Given a rule-set R in which the �rst rule is rule (b) from Figure 4.2 and

the second rule is rule (a) from Figure 4.2, the assignment of di�erent control strings to the

segment-string [c+][c-] produces the following results:

Control String Results

00 f [c+][c-] g
01 f [c+][c-] g
0? f [c+][c-] g
10 f [c+][a+b+][c-] g
11 f [c+][a+b-][c-] g
1? f [c+][a+b+][c-], [c+][a+b-][c-] g
?0 f [c+][c-], [c+][a+b+][c-] g
?1 f [c+][c-], [c+][a+b-][c-] g
?? f [c+][c-], [c+][a+b+][c-],[c+][a+b-][c-] g

If these two rules are in turn considered not as separate rules but as a m.e. rule-set, the
results are as follows:

Control String Results

00 f [c+][c-] g
01 f [c+][c-] g
0? f [c+][c-] g
10 f [c+][a+b+][c-] g
11 f [c+][a+b+][c-] g
1? f [c+][a+b+][c-] g
?0 f [c+][c-], [c+][a+b+][c-] g
?1 f [c+][c-], [c+][a+b+][c-] g
?? f [c+][c-], [c+][a+b+][c-] g
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The rule-sequence R will be constrained such that no rule in R can be applied to a

segment-string s to create a segment-string s0 that is more than cp segments longer or

shorter than s, i.e., cp � jsj � js0j � cp + jsj. Let g(u) = res(jRj) be the set of surface

segment-strings resulting from the application of the rules of simpli�ed segmental grammar

g to lexical segment-string u 2 D+.

The SSG model was de�ned and analyzed by Ristad in [Ris93b]. His analysis focused on

the following two problems:

SSG-Encode

Instance: A simpli�ed segmental grammar g = hF;D;R; cp; C; fCg and segment-strings

u; s 2 S+
F .

Question: Is it the case that s 2 g(u)?

SSG-Decode

Instance: A simpli�ed segmental grammar g = hF;D;R; cp; C; fCg and a segment-string
s 2 S+

F .

Question: Is there a string u 2 D+ such that s 2 g(u)?

These problems are NP -complete by the proofs in [Ris93b, Theorem 3]. The versions
of these problems that are analyzed in this thesis di�er from those de�ned by Ristad
in two ways: (1) The lexicon D is included in the problem instances, and (2) problem

instances are restricted to simpli�ed segmental grammars in which rules can only change fea-
ture values | that is, segments cannot be inserted or deleted, i.e., cp = 0.

The lexicon D is included in the problem instances so that it can be accessed in algo-
rithms for SSG-Decode that are described in the next section. The lexicon D will be
speci�ed as a DFA DFA(D) = hQD; SF ; ÆD; sD; FDi on jQDj states whose transitions are

labeled with segments and which recognizes the language D+. The restriction to rules that
can only change feature values makes results derived here for simpli�ed segmental grammars
comparable to results derived for the other theories examined in this thesis, which are simi-

larly restricted to having surface and lexical forms of the same length.

For various technical and theoretical reasons, the SPE model has ceased to be a formal-

ism of choice in current linguistics research. Hence, it can be argued that further analysis

of either the SPE or SSG models is not worthwhile. However, I believe that the systematic
parameterized analysis given in the next section is of interest for two reasons. Firstly, the

SSG model is one of the few linguistic theories that has been derived within the frame-

work proposed by Ristad in [Ris93a], in which classical complexity-theoretic analyses are

used to diagnose and subsequently restrict the sources of computational power in linguistic

theories (see Chapter 3). In light of criticisms of such uses of classical complexity-theoretic

results in Section 2.1.2 and Chapter 3, the systematic parameterized analysis in the next

section illustrates how further complexity-theoretic analysis of linguistic theories like the

SSG model can still proceed along the lines suggested by Ristad. Secondly, even if the

SPE and SSG models are not themselves currently in favor, they are still the prototypical
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rule-based phonological theories, and (as will be discussed in Section 4.1.3) analyses of the

SSG model are still relevant to other more popular rule-based theories, such as those which

encode phonological rules as �nite-state transducers [KK94, Lap97, PR97].

4.1.2 Analysis

The systematic parameterized analysis in this section will focus on the following aspects:

� The number of rules in R (jRj).

� The number of m.e. rule-sets in R, where individual rules not in m.e. rule-sets are

counted as m.e. rule-sets of size 1 (jRm:e:j).

� The maximum number of rules in any m.e. rule-set in R (#(Rm:e:)).

� The maximum number of optional rules in any control-string (jR?j).

� The maximum length of the context of any rule in R (c).

� The length in segments of the given lexical / surface form (juj / jsj).

� The number of features (jf j).

� The maximum number of values for any feature (jvj).

Aspects jRj, jRm:e:j, #(Rm:e:), and jR?j are measures of the complexity of the rule-application
control machinery embedded within R. Though jRj may at �rst sight be the most
natural measure of rule-set complexity, jRm:e:j and #(Rm:e:) are in fact more accurate

measures of the number and complexity of phonological phenomena encoded in R.
This is so because each m.e. rule-set in the SSG model corresponds to a rule-set in the SPE

model, which in turn corresponds to an particular phonological phenomenon
[Ris93b, pp. 10{11].1

Many of the hardness results given in this section will be derived via reductions from the
following problem:

1One might also de�ne aspects that characterize R in a broader sense by restricting rule applications or
interactions within individual derivations. For instance, de�ne the length of a derivation of s from u via
g as the number of rules in R that are successfully applied in transforming u into s [Ris90, pp. 20{23 and
32{33]. As the number of m.e. rule-sets is an upper bound on the length of a derivation, the W -hardness
results relative to jRm:e:j in Theorems 4.1.16 and 4.1.18 in conjunction with Lemma 2.1.34 show that the
versions of SSG-Encode and SSG-Decode that are parameterized relative to derivation length are not in
FPT unless at least part of the W -hierarchy collapses to FPT . Several other rule-based aspects that may
be of interest in future investigations are given in [Ris90, pp. 26{30].

80



Bounded nondeterministic Turing machine acceptance (BNTMA)

Instance: A nondeterministic Turing machine N = hQ;�; Æ; s; F i, a string u 2 ��, and a

positive integer t.

Question: Does N accept u via a computation that requires at most t steps?

A Turing machine is essentially a �nite-state automaton augmented by a read/write head

which can move both forward and backward on a one-way in�nite tape of symbols.

At the beginning of a computation, the input is at the beginning of the tape (the rest

of the tape squares are �lled with special blank (#) symbols), the read/write head is on the

�rst tape square, and the state is s. Using the transition relation Æ : Q�� 7! Q���fL;Rg,
a Turing machine computes next states and actions (each invocation of Æ being considered a

step) much like a �nite-state automaton, accepting (rejecting) its input if the computation

ends (does not end) in a �nal state. Readers wishing a more detailed description of Turing

machines should consult standard textbooks on computation theory such as [HU79, LP81]).

The unbounded version of problem BNTMA, i.e., t = 1, is the Halting Problem, which
is known to be undecidable [HU79, LP81]. Problem BNTMA is NP -hard because every

problem in NP trivially reduces to it (given a problem � 2 NP whose associated nondeter-
ministic polynomial time algorithm requires p(jxj) time for an input x when implemented
on a nondeterministic Turing machine, create the appropriate instance of BNTMA in which

t = p(jxj)).
In the following, assume without loss of generality that the set of �nal states F in the

nondeterministic Turing machine in each instance of BNTMA consists of a single state h.

Lemma 4.1.11 BNTMA �m SSG-Encode (adapted from [Ris93b, Theorem 3]).

Proof: This is essentially the reduction given in [Ris93b, Theorem 3], modi�ed such
that the constructed instance of SSG-Encode uses rules that can only change feature

values. This reduction simulates Turing machine computations by using segment-strings to
encode Turing machine con�gurations and rules to simulate the nondeterministic transitions
between con�gurations. By analogy with the notion of con�guration for �nite-state

automata, the con�guration of a Turing machine will have three components | namely,

the current non-blank tape contents, the current position of the read/write head on the
tape, and the current state. Note that a t-step NTM computation can use at most t tape

squares; hence, as current head position and state can be encoded onto a tape by addi-
tional markings in the appropriate tape squares, each con�guration of the Turing machine

can be encoded as a t-segment string. Each segment in such a string has three features,

f1, f2, and f3, with feature-value sets Q [ f g, � [ f#g, and fL;R; Sg, respectively.
Feature f1 indicates the current state and the position of the read/write head on the tape.

If s(f1) = for some segment s, the read/write head is not on the square corresponding to
that segment; else, the read/write head is on the tape square corresponding to that segment

and the current state is s(f1). Feature f2 indicates the contents of the tape square correspond-

ing to the segment, and feature f3 indicates the read/write head's current direction of motion.

For instance, a con�guration in which the tape has four squares that contains the string 110,
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the read-write head is on the second tape square, and the current state is q5 would correspond

to the segment-string

2
64
f1
f2 1

f3 S

3
75
2
64
f1 q5
f2 1

f3 S

3
75
2
64
f1
f2 0

f3 S

3
75
2
64
f1
f2 #

f3 S

3
75

Let [x1; x2; x3] represent a segment s in which s(f1) = x1, s(f2) = x2, and s(f3) = x3.

If a segment is unde�ned for a feature, leave that feature's portion of the encoding blank,

e.g., the segment s such that f1 and f3 are unde�ned and s(f2) = x2 is written as [; x2; ].

Under this scheme, the segment-string described above would be written as

[ ; 1; S][q5; 1; S][ ; 0; S][ ;#; S]

Note that feature f3 will only have a feature-value other than S when a tape head is being
moved to the left or right (see below).

Given an instance hN = hQ;�; Æ; s; F = fhgi; u; ti of BNTMA, construct the following
instance hg0 = hF 0; D0; R0; C 0; f 0Ci; u0; s0i of SSG-Encode: Let D0 = fu0g where u0 is the

t-segment string corresponding to a con�guration in which u is the string in the �rst juj
squares of the tape, the read/write head is on the �rst tape square, and the current state is
s, s0 be the t-segment string where each segment has the form [h;#; S] and f 0 = ff1; f2; f3g
as described above. The rule-sequence R has the following structure:

1. Simulate the transitions of N computing on u.

This is implemented by t blocks of rules, where each block has the following form:

(a) One m.e. rule-set of jÆj rules such that each transition-relation entry of the form
Æ(q; x) = f(q1; x1; d1); (q2; x2; d2); : : : ; (qk; xk; dk)g is replaced by k � 1 optional

rules of the form [q; x; S] ! [qi; xi; di] for 1 � i � (k � 1) and a �nal obligatory
rule of the form [q; x; S]! [qk; xk; dk].

(b) Two obligatory rules of the forms [ ; ; ]! [�; ; ] / [�; ; L] and [; ; L]! [ ; ; S],

respectively.

(c) Two obligatory rules of the forms [ ; ; ] ! [�; ; ] / [�; ; R] and [; ; R] !
[ ; ; S], respectively.

Note that the (a)-rules perform the appropriate transitions from Æ and the (b)- and

(c)-rules respectively move the read/write head left or right as necessary. Each of these

t blocks of rules thus corresponds to a step in the computation of N on u.

2. Clean up the tape at end of computation.

This is implemented by the following three blocks of rules:
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(a) t� 1 obligatory rules of the form [ ; ; ]! [h; ; ] / [h; ; ].

(b) t� 1 obligatory rules of the form [ ; ; ]! [h; ; ] / [h; ; ] .

(c) An obligatory rule of the form [; �; �]! [;#; S].

The (a)- and (b)-rules propagate a �nal state to all segments, and the (c) rule

e�ectively erases the tape contents.

Note that the only rules above that di�er from those in Ristad's original reduction are those

in (2). To complete the construction, let C 0 contain the single control-string implicit in the

rule-sequence described above and f 0C associate this control string with every member of

D0+. This construction can be done in time polynomial in the size of the given instance

of BNTMA.

To see that the construction above is a many-one reduction, note that any solution to

the constructed instance of SSG-Encode is a sequence of applications of rules in R0 that
transforms u0 into s0 such that the rules applied in block (1) described above correspond to
a sequence of transitions in an accepting computation of N on u. Moreover, any solution to

the given instance of BNTMA is a sequence of transitions in an accepting computation of N
on u, which can be used to construct a sequence of rule applications (modulo the addition
of the appropriate rule-applications from block (2) described above) that can transform u0

into s0. Hence, the given instance of BNTMA has a solution if and only if the constructed
instance of SSG-Encode has a solution.

Note that in the constructed instance of SSG-Encode, jR0j = (jÆj + 4)t +
2(t� 1) + 1 � (jQjj�j+ 4)t + 2(t� 1) + 1 = (jQjj�j+ 6)t� 1, jR0

?j � jÆj � 1 � jQjj�j � 1,

jR0
m:e:j = (1 + 4)t + 2(t � 1) + 1 = 7t � 1, #(R0

m:e:) � jÆj � jQjj�j, c0 = 2, ju0j = js0j = t,
jf 0j = 3, and jv0j = max(jQj+ 1; j�j+ 1; 3).

Lemma 4.1.12 SSG-Encode �m SSG-Decode.

Proof: Given an instance hg = hF;D;R; C; fCi; u; si of SSG-Encode, construct the
following instance hg0 = hF 0; D0; R0; C 0; f 0Ci; s0i of SSG-Decode: Let F 0 = F , R0 = R,

C 0 = C, f 0C = fC , s
0 = s, and D0 = fug. This construction can be done in time polynomial

in the size of the given instance of SSG-Encode. Note that, as rules cannot add or delete

segments, the only possible member of D0+ that can possibly be transformed into s0 is u.

Hence, the given instance of SSG-Encode has a solution if and only if the constructed
instance of SSG-Decode has a solution.

Note that all aspects in the constructed instance of SSG-Decode have the same values

as those in the given instance of SSG-Encode.
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Lemma 4.1.13 SSG-Encode �m SSG-Encode such that jvj = 2.

Proof: Given an instance hg = hF;D;R; C; fCi; u; si of SSG-Encode, construct the

following instance hg0 = hF 0; D0; R0; C 0; f 0Ci; u0; s0i of SSG-Encode: Let C 0 = C and F 0 be

the set of binary-valued features created by transforming each feature f 2 F with an associ-

ated set of feature-values fv1; v2; : : : ; vkg into a set of binary-valued features

(f = v1); (f = v2); : : : ; (f = vk). Create D
0, R0, f 0C , u

0, and s0 from D, R, fC , u, and s by

replacing every occurrence of feature-value pair [f vj] with the equivalent set of

feature-value pairs [(f = v1) �]; [(f = v2) �]; : : : ; [(f = vj�1) �]; [(f = vj) +];

[(f = vj+1) �]; : : : ; [(f = vk) �] and replacing every occurrence of feature-value pair

[f �] incorporating a variable � with the equivalent set of feature-value pairs [(f = v1) �1];

[(f = v2) �2]; : : : ; [(f = vk) �k]. This construction can be done in time polynomial in the

given instance of SSG-Encode. It is obvious from this construction that the given instance

of SSG-Encode has a solution if and only if the constructed instance of SSG-Encode has

a solution.

Note that in the constructed instance of SSG-Encode, jf 0j � jf jjvj, jv0j = 2, and all
other aspects have the same values as in the given instance of SSG-Encode.

Lemma 4.1.14 SSG-Decode �m SSG-Decode such that jvj = 2.

Proof: Similar proof to that given for Lemma 4.1.13.

Lemma 4.1.15 SSG-Encode �m SSG-Encode such that #(Rm:e:) = 1.

Proof: Given an instance hg = hF;D;R; C; fCi; u; si of SSG-Encode, construct the
following instance hg0 = hF 0; D0; R0; C 0; f 0Ci; u0; s0i of SSG-Encode: Let F 0 = F [ fappliedg
where applied is a binary-valued feature, create D0, u0, and s0 from D, u, and s by adding
the feature-value pair [applied �] to every segment, and create R0, C 0, and f 0C from R, C,
and fC by replacing each m.e. rule-set of size k in R by k(2juj � 1) + 1 � 2kjuj obligatory
rules in R0 which can be split into the following two rule-sets:

1. k blocks of 2(juj � 1) + 1 = 2juj � 1 rules apiece, where block i consists of a modi�ed
version of the i-th rule from the original m.e. rule-set which only changes a segment

if it has the feature-value pair [applied �] and which adds the feature-value pair
[applied +] to every segment it changes, followed by juj � 1 obligatory rules that

propagate feature-value pair [applied +] to the right and juj � 1 obligatory rules that

propagate feature-value pair [applied +] to the left (these last two sets of rules are
analogous to rule-sets 2(a) and 2(b) in Lemma 4.1.11).

2. A �nal obligatory rule that sets all feature-value pairs [applied +] to [applied �].

Note that each block of the �rst rule-set attempts to apply a rule from the m.e. rule-set,

and if that rule applies, propagates feature-value pair [applied +] to all segments in the
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segment string such that no subsequent rule from the m.e. rule-set can apply (because

such an application would require a segment to have the feature-value pair [applied �]).
The lone rule in the second rule-set ensures that subsequent m.e. rule-sets in R0 can func-

tion properly. Given this equivalence of the operation of R and R0, it is obvious that the

given instance of SSG-Encode has a solution if and only if the constructed instance of

SSG-Encode has a solution. To complete this proof, note that the construction above can

be done in time polynomial in the given instance of SSG-Encode.

Note that in the constructed instance of SSG-Encode, jR0j � 2jRjjuj, jR0
m:e:j = jR0j,

#(R0
m:e:) = 1, c0 = max(c; 2), jf 0j = jf j+1, jv0j = max(jvj; 2), and all other aspects have the

same values as in the given instance of SSG-Encode.

Theorem 4.1.16

1. SSG-Encode is NP -hard when #(Rm:e:) = 1, c = 2, and jf j = 4.

2. SSG-Encode is NP -hard when #(Rm:e:) = 1, c = 2, and jvj = 2.

3. hjR?ji-SSG-Encode is in FPT .

4. hjRji-SSG-Encode is in FPT .

5. hjRm:e:j;#(Rm:e:)i-SSG-Encode is in FPT .

6. hjuj; jf j; jvji-SSG-Encode is in FPT .

7. hjRm:e:j; c2; juj; jf j3i-SSG-Encode is W [1]-hard.

8. hjRm:e:j; c2; juj; jvj2i-SSG-Encode is W [1]-hard.

9. h#(Rm:e:)1; c2; juj; jf j4i-SSG-Encode is W [1]-hard.

10. h#(Rm:e:)1; c2; juj; jvj2i-SSG-Encode is W [1]-hard.

11. h#(Rm:e:)1; c2; jf j4i-SSG-Encode 62 XP unless P = NP .

12. h#(Rm:e:)1; c2; jvj2i-SSG-Encode 62 XP unless P = NP .

Proof:

Proof of (1): Follows from the NP -hardness of BNTMA, the reduction in Lemma 4.1.11

from BNTMA to SSG-Encode in which c = 2 and jf j = 3, and the reduction in

Lemma 4.1.15 from SSG-Encode to SSG-Encode in which #(Rm:e:) = 1.

Proof of (2): Follows from (1) and the reduction in Lemma 4.1.13 from SSG-Encode to

SSG-Encode in which jvj = 2.

Proof of (3): Note that given an unambiguous, i.e. no ?-positions, control string, we can

simulate the application of R to u in O(jRjjujjf jc) time. As each optional rule either applies
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or doesn't apply, there are 2jR?j unambiguous resolutions of jR?j ?-positions.

Consider the algorithm that simulates the application of R to u under each of the

possible 2jR?j unambiguous resolutions of the ?-positions in R and checks if s is produced.

This algorithm runs in O(2jR?jjRjjujjf jc) time, which is �xed-parameter tractable relative

to jR?j.

Proof of (4): As it is always the case that jR?j � jRj, the result follows from (3) and

Lemma 2.1.33.

Proof of (5): As it is always the case that jRj � jRm:e:j#(Rm:e:), the result follows from

(4) and Lemma 2.1.33.

Proof of (6): This result is based on the following observation: there are jvjjf j possi-
ble segments in an SSG grammar, and hence jvjjf jjuj possible segment-strings of length juj.
Pick arbitrary total orders on f and v and use these orders to establish a lexicographic order-

ing on the set of all possible segment-strings of length juj such that each
segment-string of length juj has a unique integer index in the range 1 to jvjjf jjuj.
For instance, the binary form of such an index could be jujjf jjvj bits divided into juj zones of
jf jjvj bits apiece corresponding to individual segments, each of which is in turn subdivided
into jf j zones of jvj bits corresponding to values of individual features within a segment.
Let ind(s) be the index so generated for segment-string s, and str(i) be the segment-string

corresponding to index i. Under the scheme described above, both of these functions can be
computed in O(jujjf jjvj) time.

Given the above, consider the following algorithm:

1. Initialize an array pos of jvjjf jjuj bits to 0, and then set to 1 the bit of pos whose index
corresponds to u.

2. For each m.e. rule-set in R in their order of occurrence in R do:

(a) If the m.e. rule-set does not consist entirely of ignored rules then

i. Initialize an array bu� of jvjjf jjuj bits to 0.
ii. Initialize an array mark of jvjjf jjuj bits to 0.
iii. For each rule r in the m.e. rule-set in their order of occurrence in the

rule-set do:

A. For each segment-string u such that pos(ind(u)) = 1 and

mark(ind(u)) = 0, compute the segment-string u0 resulting from the

application of rule r to u. If u 6= u0, i.e., rule r applied successfully,

set bu�(ind(u0)) = 1, and set mark(ind(u)) = 1 (if r is obligatory) and

bu�(ind(u)) = 1 (if r is optional).

iv. Copy bu� into pos.

3. If pos(ind(s)) = 1, the answer is \yes"; else, the answer is \no".
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Note that in the algorithm above, a lone rule not in an m.e. rule set counts as an m.e.

rule-set of size 1. This algorithm essentially keeps track of all possible segment-strings

that can be generated by any legal sequence of rule-applications possible under R. When

processing a particular m.e. rule-set, the array mark keeps track of segment-strings that

have not yet been transformed by a successful application of an obligatory rule and can

hence still be transformed by optional rules and obligatory rules. If s is in the set of possible

segment-strings when all rules in R have been processed, the answer is \yes"; else, the answer

is \no". Steps (1), (2), and (3) can be done in time O(jvjjf jjuj), O(jvjjf jjujjRj(jujc+ jujjf jjvj)),
and O(jujjf jjvj), respectively. Hence, the algorithm as a whole runs in O(jvjjf jjujjRj(jujc +
jujjf jjvj)) time, which is �xed-parameter tractable relative to juj, jf j, and jvj.
Proof of (7): Follows from the W [1]-completeness of hti-BNTMA [DFK+94], the reduction

in Theorem 4.1.11 from BNTMA to SSG-Encode in which jRm:e:j = 7t� 1, c = 2, juj = t,

and jf j = 3, and Lemma 2.1.25.

Proof of (8): Follows from (7), the reduction in Lemma 4.1.13 from SSG-Encode to

SSG-Encode in which jvj = 2, and Lemma 2.1.25.

Proofs of (9): Follows from (7), the reduction in Lemma 4.1.15 from SSG-Encode to
SSG-Encode in which #(Rm:e:) = 1, and Lemma 2.1.25.

Proof of (10): Follows from (8), the reduction in Lemma 4.1.13 from SSG-Encode to
SSG-Encode in which jvj = 2, and Lemma 2.1.25.

Proofs of (11) and (12): Follow from (1) and (2) and Lemma 2.1.35.

The most important result above is the �xed-parameter tractability of SSG-Encode rel-

ative to jR?j because jR?j is always less than (and hence by Lemma 2.1.33 grants
�xed-parameter tractability relative to) many other aspects. Unfortunately, as the next
reduction shows, this stroke of luck does not extend to problem SSG-Decode.

This reduction is from the following problem:

Dominating set [GJ79, Problem GT2]
Instance: A graph G = (V;E) and a positive integer k.

Question: Does G have a dominating set of size at most k, i.e., a set of vertices V 0 � V ,

jV 0j � k, such that each vertex in V is either in V 0 or adjacent to a vertex in V 0?

Lemma 4.1.17 Dominating set �m SSG-Decode such that all rules are obligatory.

Proof: This reduction will use an appropriately structured lexicon to generate the set

of all possible solutions and use the rules to check these solutions, cf., the reduction in
Lemma 4.1.11 which uses rules to generate and check solutions. Given an instance

hG = (V;E); ki of Dominating set, construct the following instance

hg0 = hF 0; D0; R0; C 0; f 0Ci; s0i of SSG-Decode: Let F = fSegNum; V alue; Format; Checkg
with the associated feature-value sets f1; : : : ; kg, f1; : : : ; jV jg, f�;+g, and f0; : : : ; jV jg,
respectively. Following the convention used in Lemma 4.1.11, let [x1; x2; x3; x4] represent a
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segment s in which s(SegNum) = x1, s(V alue) = x2, s(Format) = x3, and s(Check) = x4,

and if a segment is unde�ned for a feature then that feature's portion of the encoding is

left blank. Let s0 be the segment-string [1; jV j;+; jV j][2; jV j;+; jV j] � � � [k; jV j;+; jV j] and
D = f[i; j;�; 0] j 1 � i � k; 1 � j � jV jg. The rule sequence R has the following structure:

1. Verify that any selected lexical form u0 encodes a candidate solution to the given

instance of Dominating set.

The requisite structure of such a string u0 is [1; v1;�; ][2; v2;�; 0] � � � [k; vk;�; 0] where
vi 2 f1; : : : ; jV jg, 1 � i � k. This structure is ensured by the following block of k

obligatory rules, such that the �rst k � 1 of these rules have the form [i; ;�; 0] !
[i; ;+; 0] / [(i + 1); ; ; ], 1 � i � k � 1, and the kth rule has the form [k; ;�; 0] !
[k; ;+; 0] / [(k � 1); ; ; ] . These rules ensure that the lexical form u0 selected from

D0+ consists of one or more sequences of k segments whose values for feature Segnum

run from 1 to k; as no rules can add or delete segments, any valid u0 must be the same

length as s0, and hence must have exactly k segments.

2. Check whether the candidate solution encoded in lexical form u0 is a dominating set

of size k in G.

This is implemented by jV j blocks of O(k(jV j+2)) obligatory rules apiece, where block
i consists of

(a) O(kjV j) rules of the form [j; l;+; (i � 1)] ! [j; l;+; i], where 1 � j � k and

l 2 V
adj
i , where V

adj
i is the set of vertices adjacent to and including vertex i

in G;

(b) k rules of the form [; ; ; (i� 1)]! [; ; ; i] / [; ; ; i]; and

(c) k rules of the form [; ; ; (i� 1)]! [; ; ; i] / [; ; ; i] .

Note that, as each edge contributes two vertex-adjacencies in the graph G, the total
number of rules of type (a) over all blocks is 2jEj. Each block i above checks that at

least one segment in u0 has a value for feature V alue that is in V
adj
i ; if so, it advances

that segment's value for feature Check by 1 and makes sure that this new value for
Check is propagated to all other segments in u0.

3. Clean up the string s0 created by applying R0 to u0.

This is done by a single obligatory rule of the form [; �; ; ]! [; jV j; ; ], which e�ectively

erases the value of feature V alue in every segment.

Finally, let C 0 contain the single control-string consisting of jRj 1's, i.e., all rules are

obligatory, and f 0C associate this control string with every member of D0+.

This construction can be done in time polynomial in the size of the given instance of

Dominating set.

To see that the construction above is a many-one reduction, note the following

two facts:
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1. The feature-value pair [Format +] can occur in all segments of s0 only if all k rules in

(1) above apply to some lexical form u0, i.e., u0 has the necessary k-segment structure.

2. The feature-value pair [Check jV j] can occur in all segments of s0 only if at least one

rule from 2(a) applies for each block i in (2) above, i.e., u0 encodes a dominating set of

size at most k. Note that none of the rules above guarantee that the vertices encoded

in u0 are distinct. However, this does not matter as any dominating set X of size k0 < k

can be trivially turned into a dominating set of size k by adding k�k0 distinct vertices

from V that are not already in X to X.

This means that any solution to the constructed instance of SSG-Decode is a lexical form

u0 2 D0+ that can be transformed by R0 into s0, which by the logic above corresponds to a

set of at most k vertices that form a dominating set for G. Moreover, any solution for the

given instance of Dominating set is a k-vertex dominating set for G, which corresponds

to a set of k-segment lexical forms from D0+ that can be transformed by R0 into s0. Hence,

the given instance of Dominating set has a solution if and only if the constructed instance
of SSG-Decode has a solution.

Note that in the constructed instance of SSG-Decode, jR0j = jR0
m:e:j = k +

(2jEj + 2kjV j) + 1 = 2jEj + k(2jV j + 1) + 1, jR0
?j = 0, #(R0

m:e:) = 1, c0 = 2, js0j = k,

jf 0j = 4, and jv0j = jV j+ 1.

Theorem 4.1.18

1. SSG-Decode is NP -hard when jR?j = 0, #(Rm:e:) = 1, c = 2, and jf j = 4.

2. SSG-Decode is NP -hard when jR?j = 0, #(Rm:e:) = 1, c = 2, and jvj = 2.

3. hjRj; jsji-SSG-Decode is in FPT .

4. hjRm:e:j;#(Rm:e:); jsji-SSG-Decode is in FPT .

5. hjsj; jf j; jvji-SSG-Decode is in FPT .

6. hjRm:e:j; c2; jsj; jf j3i-SSG-Decode is W [1]-hard.

7. hjRm:e:j; c2; jsj; jvj2i-SSG-Decode is W [1]-hard.

8. hjR?j0;#(Rm:e:)1; c2; jsj; jf j4i-SSG-Decode is W[2]-hard.

9. hjR?j0;#(Rm:e:)1; c2; jsj; jvj2i-SSG-Decode is W[2]-hard.

10. hjR?j0;#(Rm:e:)1; c2; jf j4i-SSG-Decode 62 XP unless P = NP .

11. hjR?j0;#(Rm:e:)1; c2; jvj2i-SSG-Decode 62 XP unless P = NP .
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Proof:

Proof of (1): Follows from theNP -hardness ofDominating set [GJ79, Problem GT2] and

the reduction in Lemma 4.1.17 from Dominating set to SSG-Decode in which jR?j = 0,

#(Rm:e:) = 1, c = 2, and jf j = 4.

Proof of (2): Follows from (1) and the reduction in Lemma 4.1.14 from SSG-Decode to

SSG-Decode in which jvj = 2.

Proof of (3): This result follows from the algorithm that runs a rule-set R in reverse on

the given surface form s. Consider �rst how various types of individual rules may be run in

reverse. Given an obligatory rule r of the form A! B / X Y and a segment-string s,

one can apply r in reverse to s by picking some subset of the occurrences of B in s, creating

the string u from s by replacing all selected occurrences of B with A, and then verifying that

s can be created from u by r. This veri�cation step is necessary because certain occurrences

of B in s may have been present in the underlying forms used to create s and may in turn
have interacted with the context of r to create the occurrences of B in s. As there are
at most jsj occurrences of B in s and any possible subset of these occurrences could have

been produced by r, there will be at most 2jsj underlying forms r could have produced s.
The same logic suÆces to establish that there may be at most 2jsj underlying forms when
r is an optional rule (keeping in mind that in this case, as r may not apply at all, s is

automatically a possible underlying form). The situation is slightly trickier when one is
dealing with the underlying forms that can produce s relative to an m.e. rule-set M with k

rules r1; r2; : : : ; rk. In this case, the set of underlying forms is
Sk
1=1 Ui, where Ui is the set

of strings such that for each u 2 Ui, the result of applying rule ri to u is s and there is no
obligatory rule rj, j < i, in M that successfully applies to u and creates a string other than

s, i.e., the application of ri to u could not have been blocked by the successful application
of an obligatory rule occurring earlier than ri in M . As each rule ri essentially produces

underlying forms independently of the other rules inM , there will be at most k2jsj underlying
forms for s relative to the m.e. rule-set.

Given the above, rule-set R is run in reverse by applying the rules and m.e. rule-sets of
jRj in reverse to s in reverse of their order in R. Note that the number of lexical forms that

can be produced by this process is bounded by (jRj2jsj)jRj = jRjjRj2jsjjRj, as is the number
of intermediate forms that need to be computed to produce these lexical forms. As the
derivation of each of these forms takes O(jsjjf jc) time and each lexical form can be checked

against DFA(D) to see if it is in D+ in O(jsj) time, the running time of the algorithm as a
whole is O(jRjjRj2jsjjRjjsjjf jc), which is �xed-parameter tractable relative to jRj and jsj.

Proof of (4): As it is always the case that jRj � jRm:e:j#(Rm:e:), the result follows from
(3) and Lemma 2.1.33.

Proof of (5): Modify step (1) in the algorithm given in part (6) of Theorem 4.1.16 such

that each possible segment-string of length jsj is tested against the lexicon DFA DFA(D),

and only those strings that are members of D+ have their corresponding bits in pos set

to 1. As each such string can be tested against DFA(D) in O(jsj) time, the algorithm
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as a whole runs in O(jvjjf jjsjjsjc) time, which is �xed-parameter tractable relative to jsj,
jf j, and jvj.

Proofs of (6) and (7): Follows from parts (7) and (8) of Theorem 4.1.16, the reduction in

Lemma 4.1.12 from SSG-Encode to SSG-Decode, and Lemma 2.1.25.

Proof of (8): Follows from the W[2]-hardness of hki-Dominating set [DF95a],

the reduction in Lemma 4.1.17 from Dominating set to SSG-Decode in which jR?j = 0,

#(Rm:e:) = 1, c = 2, jsj = k, and jf j = 4, and Lemma 2.1.25.

Proof of (9): Follows from (8), the reduction in Lemma 4.1.14 from SSG-Decode to

SSG-Decode in which jvj = 2, and Lemma 2.1.25.

Proofs of (10) and (11): Follow from (1) and (2) above and Lemma 2.1.35.

4.1.3 Implications

All parameterized complexity results for problems SSG-Encode and SSG-Decode that

are either stated or implicit in the lemmas and theorems given in the previous section are
shown in Tables 4.1, 4.2, 4.3, and 4.4. Consider the implications of these results for each
problem in turn:

� SSG-Encode: The sources of polynomial-time intractability are fjR?jg and

fjuj; jf j; jvjg. The mechanisms associated with these sources are the degree of
nondeterministic choice in rule-set R and the set of all possible surface forms for the
given lexical form. The aspects in the latter of these sources are de�ning properties

of the segment-string representation, and while some of them may be small in prac-
tice, e.g., jvj will typically be 2, none of these aspects can be eliminated to reduce the

complexity of this problem. The case for jR?j is much weaker. Optional rules were
introduced so that a single lexical form could generate multiple surface forms, each
of which is characteristic of a di�erent speech-situation, e.g., technical vs. oratorical

vs. colloquial spoken English. However, in current linguistic practice, such matters
are handled as part of phonetic processing (that is, the transformation of phonological
surface forms into speech). Even if optional rules are still required to handle other

phenomena, the results derived here suggest that every e�ort should be made to limit

the number of such rules as SSG-Encode can be solved in polynomial time by the

algorithm in part (3) of Theorem 4.1.16 if jR?j is bounded to a constant.

� SSG-Decode: The sources of polynomial-time intractability are fjRj; jsjg and

fjsj; jf j; jvjg. The mechanism associated with both of these sources is the set of lexical

forms that can be associated with a given surface form. As with SSG-Encode, the
aspects in these sources are de�ning properties of simpli�ed segmental grammars and

hence none of them can be eliminated to reduce the complexity of the problem.

In light of the results derived above, it can be seen that the lexicon plays a very

interesting role in the NP -hardness of SSG-Decode. The reduction in
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Lemma 4.1.17 and the algorithm in part (3) of Theorem 4.1.18 show that optional

rules are not required to generate nondeterministic choice in SSG-Decode| rather,

nondeterminism is implicit in the rule-reversal process, i.e., the guesses that have

to be made about which appearances of a pattern in a form x are generated by a

rule and which are already in the underlying form used to create x. This implicit

nondeterminism is a well-known source of the computational diÆculties that have

plagued various attempts to directly reverse SPE-style rule systems to recover

lexical forms from surface forms [KK94, Spr92]. However, a closer examination of the

various reductions above suggests that in order for this implicit nondeterminism to

be exploited, it must be \focused" relative to a lexicon D that can encode into

D+ every possible solution to a polynomial-time intractable or NP -hard problem

(an observation originally made by Ristad [Ris90, Footnote 9, page 23]). There are at

least two ways to do this:

{ Let the lexicon be rich enough to directly encode the set of solutions into D+.

{ Augment the rule-set such that a simple lexicon can be used to indirectly

encode the set of solutions. For instance, the lexicon D in any instance of
SSG-Decode can be reduced to a lexiconD0 consisting of a single string of length
jsj composed of single-feature segments if the appropriate jsjjdj
m.e. rule-sets are added to the beginning of R, where jdj is the length of the
longest string in D (sketch: nondeterministically \�ll in" the blank form in D0

from left to right by selecting and adding in up to jsj elements of D; each rule-set

uses optional rules to implement the choice at each step in a manner not unlike
that in rule-set 1(a) of Lemma 4.1.11).

These two schemes are the ends of a spectrum of possibilities which show that there
are subtle and surprising tradeo�s between D and R in the manners by which the com-
putational power of implicit nondeterminism can be harnessed in simpli�ed segmental

grammars. One goal of future research should be to characterize these tradeo�s in
terms of aspects of D and R relative to the computational complexity SSG-Decode
and to see if any of these tradeo�s lead to algorithms for this problem that are eÆcient

in practice.

An important open question in the analyses of both SSG-Encode and SSG-Decode is
whether or not fjf j; jvjg is a source of polynomial-time intractability. Intuition suggests that
the ability to succinctly encode via F an implicit segment-alphabet S of exponential size jvjjf j
should render a problem polynomial-time intractable all by itself.

However, such exponential-size alphabets are not necessary | indeed, the reader can

verify that the sizes of the segment-alphabets implicit in each of the reductions given above

are polynomial in the size of their given instances, and low-order polynomial at that, e.g.,
jSj = ((jQj + 1) � (j�j + 1) � 3) in the reduction given in Lemma 4.1.11. Answering this

question is yet another topic for future research.

In retrospect, it is surprising that so many of the aspects considered here are not by them-

selves sources of polynomial-time intractability. Indeed, SSG-Encode and
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SSG-Decode remain NP -hard when the values of many of these aspects are bounded

to small constants, e.g., c = 2. This somewhat odd state of a�airs also holds for the other

phonological theories examined in this thesis, and will be discussed in Section 4.7.

When rules that add or delete segments are allowed, all NP - and W -hardness results

derived above still hold (as such rules would imply cp � 0 and the results above hold

when cp = 0). As shown in Appendix B, such rules allow certain results to hold in more

restricted cases or hardness to be established relative to higher levels of the W hierarchy.

It seems inevitable that certain parameterized problems that were in FPT will be shown to

be W -hard when such rules are allowed. The full extent of this change will not be addressed

here. For now, simply observe that the FPT algorithm for hjR?ji-SSG-Encode given in

part (3) of Theorem 4.1.16 will continue to work as stated when rules that add or delete

segments are allowed (albeit with a slightly higher running time), whereas all other FPT

algorithms proposed in the previous section seem to require the addition of aspect cp to the

parameter to remain �xed-parameter tractable.

Consider now what these results have to say about the various search problems associ-
ated with simpli�ed segmental grammars. First, note the following relationships between

SSG-Encode and SSG-Decode and their associated search problems:

� Any instance of SSG-Encode can be solved by a single call to CHKSSG; moreover,

any instance of CHKSSG can be solved by any algorithm for SSG-Encode.

� Any instance of SSG-Decode can be solved by a single call to DECSSG; moreover,
any instance of DECSSG can be solved by any algorithm for SSG-Decode.

Hence, modulo various conjectures, CHKSSG and DECSSG do not have polynomial-time

algorithms and have the same sources of polynomial-time intractability as their correspond-
ing decision problems. The case of problem ENCSSG is more interesting because, by the
algorithm in part (3) of Theorem 4.1.16, it is solvable in polynomial time (namely, pick any

resolution of the ?-positions in R to derive a surface form associated with the given lexical
form). The situation here, in which encoding is easy, is the opposite of that for all other

theories examined in this thesis. It is tempting to suggest that this is characteristics of

rule-based phonological theories, but the results in Section 4.3 show otherwise. The reasons
for this and other patterns in the computational complexity of the search problems associ-

ated with the phonological theories examined in this thesis will become clearer in light of

results derived for these other theories, and will be discussed in Section 4.7.

The results derived above have three practical applications:

1. Covering-Grammar Approximations for General SPE Decoding Problems:

One solution to the SPE decoding problem that has been adopted in practice is to use

a covering grammar to create a set of plausible lexical forms for a given surface form,

and then to determine if any of those lexical forms could have produced the surface
form [KK94, Spr92]. However, as the second part of this procedure is equivalent

to CHKSSG and hence cannot have a polynomial-time algorithm unless P = NP ,
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it seems unlikely that such a procedure can run in polynomial time (unless the number

of optional rules is restricted; see the discussion at the beginning of this section).

2. FST Implementations of General SPE-style Rule Systems: Kaplan and Kay

([KK94]; see also [KCGS96, XFST]) have proposed a calculus of basic operations on

FST and have shown how these operations can be used to implement various types of

rule-based phonological systems operating on either symbol- or

segment-strings as the composition of FST. As SPE-style rule systems are one such

system [KK94, Sections 5 and 6] and simpli�ed segmental grammars are a restricted

type of SPE-style rule system, the results above for SSG-Encode show that the fol-

lowing problem is NP -hard:

Finite-state transducer composition

Instance: A set A of FST over an alphabet �, an order O on A, and strings u; s 2 ��.

Question: Is the string-pair u=s accepted by the FST formed by composing the FST

in A in the order O?

Note that as the process described in [KK94] that constructs FST from phonological
rules creates FST that can add or delete segments, this NP -hardness result only holds

relative to sets of FST that allow insertions and deletions. However, the results in
Section 4.3 show that this problem remains NP -hard when additions and deletions are

not allowed.

3. FST Implementations of Obligatory-Rule-Only SPE-style Rule Systems:

Laporte [Lap97] has described an FST implementation of a rule-based system
operating on symbol-strings in which all rules are obligatory and rules are allowed
to have contexts speci�ed by FSA. As the segment-string contexts used in simpli�ed

grammars can be encoded as simple linear FSA, the reduction in Lemma 4.1.17 and
the results in (2) show that the decoding problem associated with such a system is
NP -hard. Though the encoding problem in such a system when contexts are speci�ed

as symbol-strings is solvable in polynomial time (this is implicit in the proof of part (3)
of Theorem 4.1.16), it would be interesting to know if this problem becomes NP -hard

when FSA contexts are allowed.

Note that as many of the aspects considered here for simpli�ed segmental grammars are
mapped onto aspects of the systems described above by the reductions implicit in (1) { (3),

the results derived in this section also imply variousW -hardness results and FPT algorithms

for these systems.

The above suggests many directions for future research. Several of the more intriguing

directions are:

1. Characterize the relationship between the lexicon and the rule-set in the
computational complexity of SSG-Decode.

2. Characterize the relationship between the structure of the rule-set and structure of

individual rules in the computational complexity of both SSG-Encode and

SSG-Decode.
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3. Characterize the computational complexity of the Finite-state transducer

composition problem in terms of trade-o�s between various aspects of the

individual FST being composed, e.g., type of (non)determinism, structure of the

regular relation encoded by the FST.

The research in (1) may be aided by reformulating all segmental rewriting rules and the

lexicon as FST, as is suggested in Section 4.3.3. The research in (3) could be part of a

more general investigation of the computational complexity of the operations in Kaplan

and Kay's FST calculus [KK94] (which was subsequently extended to create the Xerox

Finite State Calculus [KCGS96, XFST]). As such, the results derived above for general FST

composition should be compared to those in Sections 4.3 and 4.4 for �-free FST composition

and intersection.
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Table 4.1: The Parameterized Complexity of the SSG-Encode Problem.

Segment size (jf j,jvj)
Parameter (Unb,Unb) (Unb,Prm) (Prm,Unb) (Prm,Prm)

{ NP -hard 62 XP 62 XP ???

jRj FPT FPT FPT FPT

jR?j FPT FPT FPT FPT

jRm:e:j W [1]-hard W [1]-hard W [1]-hard ???

#(Rm:e:) 62 XP 62 XP 62 XP ???

c 62 XP 62 XP 62 XP ???

juj W [1]-hard W [1]-hard W [1]-hard FPT

jRj, jR?j FPT FPT FPT FPT

jRj, jRm:e:j FPT FPT FPT FPT

jRj, #(Rm:e:) FPT FPT FPT FPT

jRj, c FPT FPT FPT FPT

jRj, juj FPT FPT FPT FPT

jR?j, jRm:e:j FPT FPT FPT FPT

jR?j, #(Rm:e:) FPT FPT FPT FPT

jR?j, c FPT FPT FPT FPT

jR?j, juj FPT FPT FPT FPT

jRm:ej, #(Rm:e:) FPT FPT FPT FPT

jRm:ej, c W [1]-hard W [1]-hard W [1]-hard ???

jRm:ej, juj W [1]-hard W [1]-hard W [1]-hard FPT

#(Rm:e:), c 62 XP 62 XP 62 XP ???

#(Rm:e:), juj W [1]-hard W [1]-hard W [1]-hard FPT

c, juj W [1]-hard W [1]-hard W [1]-hard FPT

jRj, jR?j, jRm:e:j FPT FPT FPT FPT

jRj, jR?j, #(Rm:e:) FPT FPT FPT FPT

jRj, jR?j, c FPT FPT FPT FPT

jRj, jR?j, juj FPT FPT FPT FPT

jRj, jRm:ej, #(Rm:e:) FPT FPT FPT FPT

jRj, jRm:ej, c FPT FPT FPT FPT

jRj, jRm:ej, juj FPT FPT FPT FPT

jRj, #(Rm:e), c FPT FPT FPT FPT

jRj, #(Rm:e), juj FPT FPT FPT FPT

jRj, c, juj FPT FPT FPT FPT
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Table 4.2: The Parameterized Complexity of the SSG-Encode Problem (Cont'd).

Segment size (jf j,jvj)
Parameter (Unb,Unb) (Unb,Prm) (Prm,Unb) (Prm,Prm)

jR?j, jRm:e:j, #(Rm:e:) FPT FPT FPT FPT

jR?j, jRm:e:j, c FPT FPT FPT FPT

jR?j, jRm:e:j, juj FPT FPT FPT FPT

jR?j, #(Rm:e:), c FPT FPT FPT FPT

jR?j, #(Rm:e:), juj FPT FPT FPT FPT

jR?j, c, juj FPT FPT FPT FPT

jRm:e:j, #(Rm:e:), c FPT FPT FPT FPT

jRm:e:j, #(Rm:e:), juj FPT FPT FPT FPT

jRm:e:j, c, juj W [1]-hard W [1]-hard W [1]-hard FPT

#(Rm:e:), c, juj W [1]-hard W [1]-hard W [1]-hard FPT

jRj, jR?j, jRm:e:j, #(Rm:e:) FPT FPT FPT FPT

jRj, jR?j, jRm:e:j, c FPT FPT FPT FPT

jRj, jR?j, jRm:e:j, juj FPT FPT FPT FPT

jRj, jR?j, #(Rm:e:), c FPT FPT FPT FPT

jRj, jR?j, #(Rm:e:), juj FPT FPT FPT FPT

jRj, jR?j, c, juj FPT FPT FPT FPT

jRj, jRm:e:j, #(Rm:e:), c FPT FPT FPT FPT

jRj, jRm:e:j, #(Rm:e:), juj FPT FPT FPT FPT

jRj, jRm:e:j, c, juj FPT FPT FPT FPT

jRj, #(Rm:e:), c, juj FPT FPT FPT FPT

jR?j, jRm:e:j, #(Rm:e:), c FPT FPT FPT FPT

jR?j, jRm:e:j, #(Rm:e:), juj FPT FPT FPT FPT

jR?j, jRm:e:j, c, juj FPT FPT FPT FPT

jR?j, #(Rm:e:), c, juj FPT FPT FPT FPT

jRm:e:j, #(Rm:e:), c, juj FPT FPT FPT FPT

jRj, jR?j, jRm:e:j, #(Rm:e:), c FPT FPT FPT FPT

jRj, jR?j, jRm:e:j, #(Rm:e:), juj FPT FPT FPT FPT

jRj, jRm:e:j, #(Rm:e:), c, juj FPT FPT FPT FPT

jRj, jR?j, #(Rm:e:), c, juj FPT FPT FPT FPT

jRj, jR?j, jRm:e:j, c, juj FPT FPT FPT FPT

jR?j, jRm:e:j, #(Rm:e:), c, juj FPT FPT FPT FPT

jRj, jR?j, jRm:e:j, #(Rm:e:), c, juj FPT FPT FPT FPT
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Table 4.3: The Parameterized Complexity of the SSG-Decode Problem.

Segment size (jf j,jvj)
Parameter (Unb,Unb) (Unb,Prm) (Prm,Unb) (Prm,Prm)

{ NP -hard 62 XP 62 XP ???

jRj ??? ??? ??? ???

jR?j 62 XP 62 XP 62 XP ???

jRm:e:j W [1]-hard W [1]-hard W [1]-hard ???

#(Rm:e:) 62 XP 62 XP 62 XP ???

c 62 XP 62 XP 62 XP ???

jsj W [2]-hard W [2]-hard W [2]-hard FPT

jRj, jR?j ??? ??? ??? ???

jRj, jRm:e:j ??? ??? ??? ???

jRj, #(Rm:e:) ??? ??? ??? ???

jRj, c ??? ??? ??? ???

jRj, jsj FPT FPT FPT FPT

jR?j, jRm:e:j ??? ??? ??? ???

jR?j, #(Rm:e:) 62 XP 62 XP 62 XP ???

jR?j, c 62 XP 62 XP 62 XP ???

jR?j, jsj W [2]-hard W [2]-hard W [2]-hard FPT

jRm:ej, #(Rm:e:) ??? ??? ??? ???

jRm:ej, c W [1]-hard W [1]-hard W [1]-hard ???

jRm:ej, jsj W [1]-hard W [1]-hard W [1]-hard FPT

#(Rm:e:), c 62 XP 62 XP 62 XP ???

#(Rm:e:), jsj W [2]-hard W [2]-hard W [2]-hard FPT

c, jsj W [2]-hard W [2]-hard W [2]-hard FPT

jRj, jR?j, jRm:e:j ??? ??? ??? ???

jRj, jR?j, #(Rm:e:) ??? ??? ??? ???

jRj, jR?j, c ??? ??? ??? ???

jRj, jR?j, jsj FPT FPT FPT FPT

jRj, jRm:ej, #(Rm:e:) ??? ??? ??? ???

jRj, jRm:ej, c ??? ??? ??? ???

jRj, jRm:ej, jsj FPT FPT FPT FPT

jRj, #(Rm:e), c ??? ??? ??? ???

jRj, #(Rm:e), jsj FPT FPT FPT FPT

jRj, c, jsj FPT FPT FPT FPT
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Table 4.4: The Parameterized Complexity of the SSG-Decode Problem (Cont'd).

Segment size (jf j,jvj)
Parameter (Unb,Unb) (Unb,Prm) (Prm,Unb) (Prm,Prm)

jR?j, jRm:e:j, #(Rm:e:) ??? ??? ??? ???

jR?j, jRm:e:j, c ??? ??? ??? ???

jR?j, jRm:e:j, jsj ??? ??? ??? FPT

jR?j, #(Rm:e:), c 62 XP 62 XP 62 XP ???

jR?j, #(Rm:e:), jsj W [2]-hard W [2]-hard W [2]-hard FPT

jR?j, c, jsj W [2]-hard W [2]-hard W [2]-hard FPT

jRm:e:j, #(Rm:e:), c ??? ??? ??? ???

jRm:e:j, #(Rm:e:), jsj FPT FPT FPT FPT

jRm:e:j, c, jsj W [1]-hard W [1]-hard W [1]-hard FPT

#(Rm:e:), c, jsj W [2]-hard W [2]-hard W [2]-hard FPT

jRj, jR?j, jRm:e:j, #(Rm:e:) ??? ??? ??? ???

jRj, jR?j, jRm:e:j, c ??? ??? ??? ???

jRj, jR?j, jRm:e:j, jsj FPT FPT FPT FPT

jRj, jR?j, #(Rm:e:), c ??? ??? ??? ???

jRj, jR?j, #(Rm:e:), jsj FPT FPT FPT FPT

jRj, jR?j, c, jsj FPT FPT FPT FPT

jRj, jRm:e:j, #(Rm:e:), c ??? ??? ??? ???

jRj, jRm:e:j, #(Rm:e:), jsj FPT FPT FPT FPT

jRj, jRm:e:j, c, jsj FPT FPT FPT FPT

jRj, #(Rm:e:), c, jsj FPT FPT FPT FPT

jR?j, jRm:e:j, #(Rm:e:), c ??? ??? ??? ???

jR?j, jRm:e:j, #(Rm:e:), jsj FPT FPT FPT FPT

jR?j, jRm:e:j, c, jsj ??? ??? ??? FPT

jR?j, #(Rm:e:), c, jsj W [2]-hard W [2]-hard W [2]-hard FPT

jRm:e:j, #(Rm:e:), c, jsj FPT FPT FPT FPT

jRj, jR?j, jRm:e:j, #(Rm:e:), c ??? ??? ??? ???

jRj, jR?j, jRm:e:j, #(Rm:e:), jsj FPT FPT FPT FPT

jRj, jRm:e:j, #(Rm:e:), c, jsj FPT FPT FPT FPT

jRj, jR?j, #(Rm:e:), c, jsj FPT FPT FPT FPT

jRj, jR?j, jRm:e:j, c, jsj FPT FPT FPT FPT

jR?j, jRm:e:j, #(Rm:e:), c, jsj FPT FPT FPT FPT

jRj, jR?j, jRm:e:j, #(Rm:e:), c, jsj FPT FPT FPT FPT
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4.2 A Most Useful Special Case:

The Bounded DFA Intersection Problem

The remaining four phonological theories examined in this thesis explicitly use �nite-state

automata to implement their phonological mechanisms. The analyses of these theories will

be simpli�ed by reference to the following problem:

Bounded DFA Intersection (BDFAI)

Instance: A set A of DFA over an alphabet �, a positive integer k.

Question: Is there a string in �k that is accepted by all DFA in A?

As sections 4.3.2, 4.4.2, 4.5.2, and 4.6.2 will show, this problem is a special case of the

computational problems underlying FST-based rule systems, the KIMMO system,

Declarative Phonology, and Optimality Theory. Hence, complexity-theoretic hardness

results derived for problem BDFAI (as well as certain FPT algorithms) also hold for the
problems associated with these theories.

The systematic parameterized analysis given in this section will focus on the

following aspects:

� The number of DFA in A (jAj).

� The required length of the result-strings (k).

� The maximum number of states in any DFA in A (jQj).

� The size of the alphabet (j�j).

Hardness results will be derived via reductions from problem Dominating set

(see page 87) and the following problem:

Longest common subsequence (LCS) [GJ79, Problem SR10]
Instance: A set of strings X = fx1,. . . , xkg over an alphabet � and a positive integer m.

Question: Is there a string y 2 �m that is a subsequence of xi for i = 1; : : : ; k?

Lemma 4.2.1 LCS �m BDFAI.

Proof: Given an instance hX; k;�; mi of LCS, construct the following instance hA0;�0; k0i
of BDFAI: Let �0 = � k0 = m, and A0 be the set of DFA created by applying to each

string x 2 X the O(jxjmax(jxj; j�j)) time algorithm given in [Bae91] for creating a partial

DFA that recognizes all subsequences of a given string. An example of such a subsequence

DFA is given in Figure 4.3. Transform each subsequence DFA into a total DFA by adding
a new non-�nal state Fail and the appropriate transitions as described in Section 2.2.3.

This construction can be done in time polynomial in the size of the given instance of LCS.
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a bc b

b

b

c a b

a

a

Figure 4.3: A Subsequence Deterministic Finite-State Acceptor. The subsequence DFA
shown above recognizes all subsequences of the string x = acbab and was constructed using
the algorithm given in [Bae91].

To see that this construction is a many-one reduction, note that any solution to the

constructed instance of BDFAI is a string of length k0 that is accepted by each DFA in A0,
and hence is a subsequence of length m of each string in X. Moreover, any solution to the
given instance of LCS is a string of length m which is a subsequence of each string in X,

and hence is a string of length k0 that is accepted by each DFA in A0. Thus, the constructed
instance of BDFAI has a solution if and only if the given instance of LCS has a solution.

Note that in the constructed instance of BDFAI, jA0j = k, k0 = m, and j�0j = j�j.

Lemma 4.2.2 Dominating set �m BDFAI.

Proof: Given an instance hG = (V;E); ki of Dominating set, construct the follow-
ing instance hA0;�0; k0i of BDFAI: Let �0 be an alphabet such that j�0j = jV j and there
is a function sym : V 7! �0 such that each vertex v 2 V has a distinct corresponding

symbol sym(v) in �0, and let k0 = k. For each v 2 V , let adj(v) be the set of vertices in V

that are adjacent to v in G (including v itself) and nonadj(v) = V � adj(v). For each

vertex v 2 V , construct a two-state DFA Av = hfq1; q2g;�0; Æ; q1; fq2gi with transition
relation Æ = f(q1; sym(v0); q1) j v0 2 nonadj(v)g [ f(q1; sym(v0); q2) j v0 2 adj(v)g [
f(q2; sym(v0); q2) j v0 2 V g. Note that a string x is accepted by Av if and only if x contains

at least one symbol corresponding to a vertex that is adjacent to v in G. Let A0 be the set
consisting of all DFA Av corresponding to vertices v 2 V . This construction can be done in

time polynomial in the length of the given instance of Dominating set.

To see that this construction is a many-one reduction, note that any solution to the

constructed instance of BDFAI is a string of length k0 which is accepted by each DFA in
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(a)

State Alphabet �

a b c d e f

q qa qb qc qd qe fqf ; q0fg

(b)

Alphabet �

a b c d e f

Code 000 001 010 011 100 101

Figure 4.4: The Decoding Tree Construction from Lemma 4.2.3. a) Transition-entry for state

q in some hypothetical nondeterministic FSA over alphabet � = fa; b; c; d; e; fg. b) Binary
codewords assigned to symbols of �. As j�j = 6, the codeword length l = dlog2 j�je =
dlog2 6e = 3.

A0, and hence corresponds to a set of size k from V that contains, for each v in V , at least
one vertex that is adjacent or equal to v; moreover, any solution to the given instance of

Dominating set is a set of vertices of size k which such that each vertex in G is adjacent
or equal to at least one vertex in that set, and hence corresponds to a string of k0 symbols

that is accepted by each DFA in A0. Thus, the constructed instance of BDFAI has a solution
of size k0 if and only if the given instance of Dominating set has a solution of size k.

Note that in the constructed instance of BDFAI, jA0j = j�0j = jV j, k0 = k, and jQj = 2.

Lemma 4.2.3 BDFAI �m BDFAI such that j�j = 2.

Proof: Given an instance hA;�; ki of BDFAI, construct the following instance hA0;�0; k0i
of BDFAI: Let �0 = f0; 1g and assign each symbol in � a binary codeword of �xed length
l = dlog j�je. For each DFA a 2 A, create a DFA a0 2 A0 by adjusting Q and Æ such

that each state q and its outgoing transitions in a is replaced with a \decoding tree" on

2l � 1 states in a0 that uses l bits to connect q to the appropriate states (see example in

Figures 4.4 and 4.5). If j�j 6= 2l, there will be l-bit strings that do not correspond to any
symbol in �; in this case, create a new non-�nal state Fail to which all such l-bit strings

are directed and from which subsequent processing cannot escape (this state is analogous to

state Fail created in the transformation of partial to total DFA described in Section 2.2.3).

Finally, set k0 = lk. This construction can be done in time polynomial in the size of the

given instance of BDFAI.

To see that this construction is a many-one reduction, note that any solution to the

constructed instance of BDFAI is a string on k0 = kl bits which is accepted by each DFA in
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(c)

0
1

0

1

1

0

0

0

0

1

1

0,1

1

1q

qq

qb

qc

qd

qe

qf

qf 0

Fail

Figure 4.5: The Decoding Tree Construction from Lemma 4.2.3 (Cont'd). c) Decoding tree
for q relative to transition-entry speci�ed in (a) and the symbol-codes given in (b).

A0, and which can be transformed by substitution of the appropriate symbol in � for each

l-bit codeword into a string of length k that is accepted by each DFA in A. Moreover, any

solution to the given instance of BDFAI is a string of k symbols accepted by every DFA in
A, which can by substitution of the appropriate l-bit codeword be transformed into a string

of length k0 = kl bits that is accepted by each DFA in A0. Thus, the constructed instance of

BDFAI has a solution if and only if the given instance of BDFAI has a solution.

Note that in the constructed instance of BDFAI, jA0j = jAj, jk0j = kl = kdlog j�je,
jQ0j � (j�j � 1)jQj+ 1, and j�0j = 2.

Theorem 4.2.4

1. BDFAI is NP -hard when jQj = 2.
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2. BDFAI is NP -hard when j�j = 2.

3. hk; j�ji-BDFAI is in FPT .

4. hjAj; jQji-BDFAI is in FPT .

5. hjAj; ki-BDFAI is W [1]-hard.

6. hk; jQj2i-BDFAI is W [2]-hard.

7. hjAj; j�j2i-BDFAI is W [t]-hard for all t � 1.

8. hjQj2i-BDFAI 62 XP unless P = NP .

9. hj�j2i-BDFAI 62 XP unless P = NP .

Proof:

Proof of (1): Follows from the NP -hardness of Dominating set [GJ79, Problem GT2]
and the reduction in Lemma 4.2.2 from Dominating set to BDFAI in which jQj = 2.

Proof of (2): Follows from (1) and the reduction in Lemma 4.2.3 from BDFAI to BDFAI

in which j�j = 2.

Proof of (3): Follows from the algorithm that generates all j�jk possible k-length strings

over alphabet � and checks each string in O(jAjk) time to see whether that string is accepted
by each of the DFA in A. The algorithm as a whole runs in O(j�jkkjAj) time, which is

�xed-parameter tractable relative to k and j�j.

Proof of (4): Follows from the algorithm that constructs the intersection DFA of all DFA
in A and the k + 1-state DFA that recognizes all strings in �k, i.e., a DFA hQ;�; Æ; s; F i
such that Q = fq1; q2; : : : ; qk+1g, s = q1, F = fqk+1g, and Æ(qi; x) = qi+1 for i, 1 �
i � k, and x 2 �, and then applies depth-�rst search to the transition diagram for this
intersection DFA to determine if any of its �nal states are reachable from its start state.
By Table 2.3, the intersection DFA can be created in O(jQjjAj+1(k + 1)j�j2) = O(jQjjAj+12k
j�j2) = O(jQjjAj+1kj�j2) time. As the graph G = (V;E) associated with the transition

diagram of this intersection DFA has jV j � (k + 1)jQjjAj � 2kjQjjAj states and jAj �
(k+1)jQjjAjj�j � 2kjQjjAjj�j arcs and depth-�rst search runs in O(jV j+ jAj) time, the algo-
rithm as a whole runs in O(jQjjAj+1kj�j2) time, which is �xed-parameter tractable relative
to jAj and jQj.

Proof of (5): Follows from the W [1]-completeness of hk;mi-LCS [BDFW95], the reduction

in Lemma 4.2.1 from LCS to BDFAI in which jA0j = k and k0 = m, and Lemma 2.1.25.

Proof of (6): Follows from the W [2]-completeness of hki-Dominating set [DF95a], the

reduction in Lemma 4.2.2 from Dominating set to BDFAI in which k0 = k and jQj = 2,
and Lemma 2.1.25.
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Alphabet Size j�j
Parameter Unbounded Parameter

{ NP -hard 62 XP

jAj W [t]-hard W [t]-hard

k W [2]-hard FPT

jQj 62 XP ???

jAj, k W [1]-hard FPT

jAj, jQj FPT FPT

k, jQj W [2]-hard FPT

jAj, k, jQj FPT FPT

Table 4.5: The Parameterized Complexity of the Bounded DFA intersection Problem.

Proof of (7): Follows from theW [t]-hardness of hki-LCS for t � 1 [BDFW95], the reduction

in Lemma 4.2.1 from LCS to BDFAI in which jA0j = k, the reduction in Lemma 4.2.3 from
BDFAI to BDFAI in which jA0j = jAj and j�0j = 2, and Lemma 2.1.25.

Proofs of (8) and (9): Follow from (1) and (2) and Lemma 2.1.35.

All parameterized complexity results for BDFAI that are either stated or implicit in the
theorem above are shown in Table 4.5. An interesting way of viewing the sources of
polynomial-time intractability listed in this table arises when BDFAI is interpreted as a

type of set intersection problem, i.e., given a collection of set-encodings, determine if the
intersection of the sets associated with these encodings is empty. Under this interpreta-

tion of BDFAI, the strings in �� are the possible elements of the sets, the DFA in A are
set-encodings, and the languages associated with these DFA are the sets encoded by these
DFA. The sources of polynomial-time intractability derived above can be then be seen as

general strategies for computing the intersections of such encoded sets:

1. Create the encoding corresponding to the intersection of the encoded sets and and the
encoded set corresponding to �k and apply the eÆcient (in the size of the encoding)

emptiness-check operation to that encoding (fjAj; jQjg).

2. Check each element in �k against each of the encoded sets by applying the eÆcient

(in the size of the encoding) element-check operation (fj�j; kg).

One can also apply such reasoning in reverse, and use strategies for solving the set-intersection
formulation of BDFAI to propose possible sources of polynomial-time intractability for

BDFAI. For instance, consider the following strategy suggested by (2) above:

3. Find the smallest of the encoded sets and check each element of that set against

each of the other encoded sets by applying the eÆcient (in the size of the encoding)

element-check operation.
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Given that Tfs and Tls are the times required to �nd and list the elements of the small-

est of the encoded sets, the running time of the algorithm in (3) is O(Tfs + Tls(jAj � 1)juj).
In light of the NP -hardness of BDFAI, this algorithm suggests possible sources of

polynomial-time intractability in BDFAI that are based on some combination of aspects

associated with the following:

1. The complexity of �nding the smallest encoded set.

2. The size of the smallest encoded set.

3. The complexity of listing the elements of the smallest encoded set.

The possibility that the NP -hardness of BDFAI may be due to properties of the succinct

encoding of very large sets by DFA is intriguing. Perhaps these intuitions can be formalized

by rephrasing these DFA (or rather the constraints implicit in the sets of strings accepted

by these DFA) as formulas in logic along the lines described in [Str94]. In addition to
providing a more formal characterization of the sets encoded by DFA, such a formulation
might make BDFAI amenable to known Dichotomy Theorems [Cre95, FV93, Sch78] which,

for various logics, rigorously characterize the types of constraint-systems that are solvable
in polynomial time. This is an interesting topic for future research, not least of all because
BDFAI seems to be a special case of the encoding and decoding problems associated with

the four phonological theories examined in the remainder of this thesis.

106



4.3 FST-Based Rule Systems

4.3.1 Background

Several phonological theories that emerged in the years after Chomsky and Halle's SPEmodel

attempted to restrict both the generative capacity and computational complexity inherent

in this model by rephrasing its mechanisms in terms of �nite-state automata. This line of

research was initiated by Johnson [JoC72], who noted that under the most commonly-used

schemes of rule application, most phonological rules proposed by linguists could be encoded

as �nite-state transducers (FST). In the early 1980's, Kaplan and Kay [KK94] subsequently

described but did not (at that time) implement a system in which were rules encoded as

FST and these FST were combined by the composition operation to simulate the serial

application of these rules to a lexical form to produce a surface form.2 These proposals were

subsequently implemented in the Xerox Finite State Calculus and Tool [KCGS96, XFST] and

in various other systems (see papers in [RS97a] and references). Each such implementation
is based on particular types of FST and rules. In order to draw general conclusions about

the computational complexity of such systems, the section will focus on generic FST-based
rule systems.

A FST-based rule system g = hA;O;D;�i consists of the following:

1. A lexicon D � �+ for some alphabet �.

2. A set A of i=o-deterministic FST, all of whose input and output alphabets are �, and
a composition-order O on these FST.

Though there has been research on the generative complexity of such FST-based systems
[KK94, RS97b] and various implementations, there has been no work done to date on the

computational complexity of FST-based rule systems. This section will contain the �rst
presentation of such results. The analysis will focus on the following problems:

FST-Encode

Instance: A FST-based rule system g = hA;O;D;�i, a string u 2 �+, and a string s 2 �+

such that s = juj.
Question: Is s generated when the composition of A as speci�ed by O is applied to u?

FST-Decode

Instance: A FST-based rule system g = hA;O;D;�i and a string s 2 �+.

Question: Is there a string u 2 �jsj such that u 2 D+ and s is generated when the

composition of A as speci�ed by O is applied to u?

Note that these problems are restricted in that they do not allow individual FST to delete

or add symbols when transforming one string into another. In these problems, the lexicon D

2The mismatched dates in the preceding sentence are not a misprint. For over a decade until its
publication in 1994, drafts of [KK94] circulated privately but were cited widely, earning this work a
certain notoriety within the computational linguistics community [RRBP92, page 20].
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will be speci�ed as a DFA DFA(D) = hQD;�; ÆD; sD; FDi on jQDj states which recognizes

the language D+.

4.3.2 Analysis

The systematic parameterized analysis in this section will focus on the following aspects:

� The number of FST in A (jAj).

� The length of the given lexical / surface form (juj / jsj).

� The maximum number of states in any FST in A (jQj).

� The size of the alphabet (j�j).

Consider the following reductions.

Lemma 4.3.1 BDFAI �m FST-Encode.

Proof: Given an instance hA;�; ki of BDFAI, construct the following instance
hA0; O0; D0;�0; u0; s0i of FST-Encode: Let �0 = � [ f�g for some symbol � 62 �, u0 =
s0 = �k, and D0 = fu0g. Given a DFA a = hQ;�; Æ; s; F i, let FSTu(a) = hQ;�;�; ÆF ; s; F i
be the FST such that ÆF = f(q; x; x; q0) j (q; x; q0) 2 Æg. Let A00 be the set consisting of all
FST FSTu(a) corresponding to DFA a 2 A. Construct the following two special FST:

� Let FSTinit = hfq1g; f�g;�; Æ; q1; fq1gi be the single-state FST such that
Æ = f(q1;�; x; q0) j x 2 �g, i.e., FSTinit has the associated relation

R = f�jyj=y j y 2 ��g.

� Let FSTfinal = hfq1g;�; f�g; Æ; q1; fq1gi be the single-state FST such that

Æ = f(q1; x;�; q0) j x 2 �g, i.e., FSTfinal has the associated relation
R = fx=�jxj j x 2 ��g.

Let A0 = A00 [ fFSTinitg [ fFSTfinalg. Let O0 be an ordering on A0 such that FSTinit is
the �rst FST in O, FSTfinal is the last FST in O, and the FST in A00 are ordered in some

arbitrary manner between FSTinit and FSTfinal in O0. This construction can be done in
time polynomial in the size of the given instance of BDFAI.

To see that this construction is a many-one reduction, note that if the answer to the

constructed instance of FST-Encode is \yes", then there is some string x 2 �ju0j generated

by FSTinit from u0 that is transformed by each FST in A0 into x and transformed by FSTfinal
into s0, which corresponds to a string x 2 �k that is accepted by each DFA in A. Moreover

each solution to the given instance of BDFAI is a string x 2 �k that is accepted by every DFA

in A, which corresponds to a string x 2 �ju0j such that x can be generated by FSTinit from u0,
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transformed into x by each FST in A0, and transformed by FSTfinal into s
0. Thus, the given

instance of BDFAI has a solution if and only if the constructed instance of FST-Encode

has a solution.

Note that in the constructed instance of FST-Encode, jA0j = jAj + 2, ju0j = k, jQ0j =
max(jQj; 1) = jQj, and j�0j = j�j+ 1.

Lemma 4.3.2 FST-Encode �m FST-Decode.

Proof: Given an instance hA;O;D;�; u; si of FST-Encode, let the constructed instance
of FST-Decode be hA;O;D0;�; si where D0 = fug. This construction can be done in time

polynomial in the size of the given instance of FST-Encode. Note that, as FST cannot

add or delete symbols, the only member of D0+ that can possibly be transformed into s is

u. Hence, the given instance of FST-Encode has a solution if and only if the constructed

instance of FST-Decode has a solution.

Note that all aspects in the constructed instance of FST-Decode have the same values
as those in the given instance of FST-Encode.

Theorem 4.3.3

1. FST-Encode is NP -hard when jQj = 2.

2. FST-Encode is NP -hard when j�j = 3.

3. hjuj; j�ji-FST-Encode is in FPT .

4. hjAj; jQji-FST-Encode is in FPT .

5. hjAj; juji-FST-Encode is W [1]-hard.

6. hjuj; jQj2i-FST-Encode is W [2]-hard.

7. hjAj; j�j3i-FST-Encode is W [t]-hard for all t � 1.

8. hjQj2i-FST-Encode 62 XP unless P = NP .

9. hj�j3i-FST-Encode 62 XP unless P = NP .

Proof:

Proof of (1): Follows from the NP -hardness of BDFAI when jQj = 2 as established in

part (1) of Theorem 4.2.4 and the reduction in Lemma 4.3.1 from BDFAI to FST-Encode

in which jQ0j = jQj.
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Proof of (2): Follows from the NP -hardness of BDFAI when j�j = 2 as established in

part (2) of Theorem 4.2.4 and the reduction in Lemma 4.3.1 from BDFAI to FST-Encode

in which j�0j = j�j+ 1.

Proof of (3): This result follows from an algorithm based on that given in part (6) of

Theorem 4.1.16. The algorithm given here is based on the following observation: there are

j�jjuj possible strings of length juj over an alphabet �. Pick an arbitrary total order on

� and use this order to establish a lexicographic ordering on the set of all possible strings

of length juj such that each string in �juj has a unique integer index in the range 1 to

j�jjuj. For instance, the binary form of such an index could be jujj�j bits divided into juj
zones of j�j bits apiece corresponding to the values of individual symbols within a string.

Let ind(s) be the index so generated for string s, and str(i) be the string corresponding

to index i. Under the scheme described above, both of these functions can be computed in

O(j�jjuj) time.
Given the above, consider the following algorithm:

1. Initialize an array pos of j�juj bits to 0, and then set the bit of pos whose index

corresponds to u to 1.

2. For each FST a in A in the order speci�ed by O do:

(a) Initialize an array bu� of j�jjuj bits to 0.
(b) For i = 1 to j�jjuj do:

i. For j = 1 to j�jjuj do:
A. If pos(i) = 1 and str(i)=str(j) is accepted by a, set bu�(j) = 1.

(c) Copy bu� into pos.

3. If pos(ind(s)) = 1, the answer is \yes"; else, the answer is \no".

This algorithm essentially keeps track of all possible strings that can be generated from u by

the composition of A as speci�ed by O. If s is in this set of possible strings when all FST in A

have been applied as speci�ed by O, the answer is \yes"; else, the answer is \no". Steps (1),
(2), and (3) can be done in timeO(j�jjuj+j�jjuj) = O(2j�jjuj) = O(j�jjuj), O((j�jjuj)2jAj(j�j+
1)juj) = O(j�j2jujjAj2j�jjuj) = O(j�j2jujjAjj�jjuj), and O(j�jjuj),
respectively (note that each string-pair can be checked against FST a in O(juj) time in

step 2(b)i.A because each FST in A is i=o-deterministic). Hence, the algorithm as a whole

runs in O(j�j2jujjAjj�jjuj) time, which is �xed-parameter tractable relative to j�j and juj.

Proof of (4): Construct the composition FST of all FST in A relative to O, and then

intersect this composition FST with the pair of FST that associate u with all strings in

�juj and all strings in �juj with s respectively (these FST are constructed by variants of

the FSTinit and FSTfinal constructions given in Lemma 4.3.1). As noted in Section 2.2.3,

though the FST for u and s are i=o-deterministic, the composition FST is not necessarily
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i=o-deterministic; hence, the �nal intersection FST is not necessarily i=o-deterministic.

Note that the only possible string-pair in the relation of the �nal intersection FST is u=s

and that u=s will be in this relation if and only if s is generated when the composition of

the FST in A as speci�ed by O is applied to u. Apply depth-�rst search to the transition

diagram for the �nal intersection FST to determine if any of its �nal states are reachable

from its start state, i.e., there is a string-pair that is accepted by the FST. If so, as the only

possible member of the relation is u=s, the answer is \yes"; else, the answer is \no".

Consider the running time of the individual steps in this algorithm. By Table 2.3, the

composition FST of A relative to O can be constructed in O(jQj2jAjj�j4jAj) time and will

have at most jQjjAj states and at most jQj2jAjj�j2 transitions. By Table 2.3, the intersection
FST can be constructed in

O((jQjjAj(juj+ 1))2j�j4 + (jQjjAj(juj+ 1)(jsj+ 1))2j�j4)
= O(jQj2jAj(juj+ 1)2(jsj+ 1)2j�j4)
= O(jQj2jAj(juj+ 1)4j�j4)
= O(jQj2jAj(2juj)4j�j4)
= O(jQj2jAjjuj4j�j4)

time. As the graphG = (V;A) associated with the transition diagram of the intersection FST

has jV j = jQjjAj(juj+1)(jsj+1) = jQjjAj(juj+1)2 � jQjjAj(2juj)2 = 4jQjjAjjuj2 states and jAj =
(jQjjAj(juj+1)(jsj+1))2j�j2 = jQj2jAj(juj+1)4j�j2 � jQj2jAj(2juj)4j�j2 = 16jQj2jAjjuj4j�j2 arcs
and depth-�rst search runs in O(jV j+jAj) time, the �nal step runs in O(jQj2jAjjuj4j�j2) time.
Hence, the algorithm as a whole runs in O(jQj2jAjjuj4j�j4jAj) time, which is �xed-parameter
tractable relative to jAj and jQj.

Proofs of (5 { 7): Follow from W -hardness results for BDFAI established in
parts (5 { 7) of Theorem 4.2.4, the reduction in Lemma 4.3.1 from BDFAI to FST-Encode

in which jA0j = jAj+ 2, ju0j = k, jQ0j = jQj, and j�0j = j�j+ 1, and Lemma 2.1.25.

Proofs of (8) and (9): Follow from (1) and (2) and Lemma 2.1.35.

Theorem 4.3.4

1. FST-Decode is NP -hard when jQj = 2.

2. FST-Decode is NP -hard when j�j = 3.

3. hjsj; j�ji-FST-Decode is in FPT .

4. hjAj; jQji-FST-Decode is in FPT .

5. hjAj; jsji-FST-Decode is W [1]-hard.

6. hjsj; jQj2i-FST-Decode is W [2]-hard.

7. hjAj; j�j3i-FST-Decode is W [t]-hard for all t � 1.
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8. hjQj2i-FST-Decode 62 XP unless P = NP .

9. hj�j3i-FST-Decode 62 XP unless P = NP .

Proof:

Proof of (1): Follows from the NP -hardness of FST-Encode when jQj = 2 as established

in part (1) of Theorem 4.3.3 and the reduction in Lemma 4.3.2 from FST-Encode to

FST-Decode.

Proof of (2): Follows from the NP -hardness of FST-Encode when j�j = 3 as established

in part (2) of Theorem 4.3.3 and the reduction in Lemma 4.3.2 from FST-Encode to

FST-Decode.

Proof of (3): Modify step (1) in the algorithm given in part (3) of Theorem 4.3.3 such
that each possible string of length jsj is tested against the lexicon DFA DFA(D), and only

those strings that are members of D+ have their corresponding bits in pos set to 1. As each
such string can be tested against DFA(D) in O(jsj) time, the algorithm as a whole runs in
O(j�j2jsjjAjj�jjsj) time, which is �xed-parameter tractable relative to j�j and jsj.

Proof of (4): Given the lexicon DFA DFA(D) = hQD;�; ÆD; sD; FDi, create the lexi-

con FST FST (D) = hQD;�;�; ÆF ; sD; FDi such that ÆF = f(q; x; y; q0) j (q; x; q0) 2 ÆD and
y 2 �g. Note that FST (D) essentially pairs every lexical string in D+ with every
possible string over � of the same length, i.e., the relation associated with FST (D) is the set

fx=y j x 2 D+ and y 2 �jxjg. Perform the algorithm described in part (4) of Theorem 4.3.3,
substituting FST (D) for the FST constructed from u. Note that the relation associated

with the �nal intersection FST is the set fx=s j x 2 D+ and s is generated by applying the
composition of A as speci�ed by O to xg. Hence, if any of the �nal states in the �nal
intersection FST are reachable from that FST's start state by depth-�rst search, the

answer is \yes"; else, the answer is \no".

Consider the running time of the individual steps in this algorithm. The running time
for the creation of the composition FST is the same as in part (4) of Theorem 4.3.3 under

the appropriate substitution of jQDj for juj. By Table 2.3, the intersection FST can be

constructed in

O((jQjjAj(jsj+ 1))2j�j4 + (jQjjAjjQDj(jsj+ 1))2j�j4)
= O(jQj2jAjjQDj2(jsj+ 1)2j�j4)
= O(jQj2jAjjQDj2(2jsj)4j�j4)
= O(jQj2jAjjQDj2jsj2j�j4)

time. As the graph G = (V;A) associated with the transition diagram of the
intersection FST has jV j = jQjjAjjQDj(jsj+ 1) � 2jQjjAjjQDjjsj states and jAj = (jQjjAjjQDj
(jsj + 1))2j�j2 = jQj2jAjjQDj2(jsj + 1)2j�j2 � jQj2jAjjQDj2(2jsj)2j�j2 = 4jQj2jAjjQDj2jsj2j�j2
arcs and depth-�rst search runs in O(jV j + jAj) time, the �nal step runs in
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O(jQj2jAjjQDj2jsj2j�j2) time. Hence, the algorithm as a whole runs in O(jQj2jAjjQDj2
jsj2j�j4jAj) time, which is �xed-parameter tractable relative to jAj and jQj.

Proofs of (5 { 7): Follow from the W -hardness results for FST-Encode established

in parts (5 { 7) of Theorem 4.3.3, the reduction in Lemma 4.3.2 from FST-Encode to

FST-Decode, and Lemma 2.1.25.

Proofs of (8) and (9): Follow from (1) and (2) and Lemma 2.1.35.

4.3.3 Implications

All parameterized complexity results for problems FST-Encode and FST-Decode that

are either stated or implicit in the lemmas and theorems given in the previous section are

shown in Tables 4.6 and 4.7. Consider the implications of these results for each problem

in turn:

� FST-Encode: The sources of polynomial-time intractability are fjAj; jQjg and
fjuj; j�jg. The mechanisms associated with these sources are the FST set
(speci�cally, the composition FST of the FST in A) and the set of all possible

surface forms for the given lexical form. All of the aspects in these sources are de�ning
properties of FST-based rule systems, and hence none of them can be eliminated to
reduce the complexity of the problem.

� FST-Decode: The sources of polynomial-time intractability are fjAj; jQjg and
fjsj; j�jg. Analogously with FST-Encode above, the mechanisms associated with

these sources are the FST set and the set of possible lexical forms for a given
surface form. All of the aspects in these sources are de�ning properties of FST-based
rule systems, and hence none of them can be eliminated to reduce the complexity of

the problem.

In showing that the lexicon (when given as a FSA) can be interpreted as just

another FST, the construction given in part (4) of Theorem 4.3.4 performs an
unintentionally valuable service by dispelling the notion perhaps inadvertently
fostered in Section 4.1.3 that the lexicon is a separate entity of an altogether

di�erent type than either rules or constraints in phonological processing.

This allows the use of techniques for characterizing the relations associated with
rule FST to be used to characterize the lexicon. Given the important role of the

lexicon in the NP -hardness of SSG-Decode, it would be interesting to characterize
the role of the lexicon in the computational complexity of FST-based rule systems

(possibly in terms of logic, as discussed in Section 4.2).

One very curious aspect of the NP -hardness of FST-Encode and FST-Decode is that it

does not depend at all on the makeup of the given lexical or surface form | indeed, in the

reductions given in Lemmas 4.3.1 and 4.3.2, the given form is just a string over a one-symbol

alphabet whose role is to specify the length of the requested lexical form (in the case of
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FST-Decode) or the intermediate forms in the derivation (in the case of FST-Encode).

This suggests that the NP -hardness of problems associated with FST-based rule systems

may arise in part from these systems having access to intermediate forms that are \hidden",

in the sense that these intermediate forms need not depend on and can be manipulated

independently of any given forms. This tallies with various intuitions concerning the role

of intermediate forms in various computational diÆculties that are often encountered when

implementing FST-based rule systems [Spr92, pp. 138-139]. However, as will be shown by

results derived in subsequent sections and discussed in Section 4.7, the role of such hidden

structure in phonological processing is more subtle than it �rst appears.

Consider the versions of FST-Encode and FST-Decode which allow FST inA that can

add or delete symbols during string-transformations. As FST-Encode and

FST-Decode are special cases of these more general problems, all NP - and W -hardness

results derived above still hold for these new problems. Having insertions and deletions does

allow certain hardness results to hold in more restricted cases; for instance, by modifying the

FST FSTinit and FSTfinal in Lemma 4.3.1 appropriately to map the single-symbol string �

onto all strings in �k and all strings in �k onto �, respectively, it is possible to rephrase all
hardness results above such that the size of the given form alphabet and the length of the
given form are both 1. It seems inevitable that allowing insertions and deletions will also

both allow certain W -hardness results to hold relative to higher levels of the W hierarchy
and allow parameterized problems that were formerly known to have FPT algorithms to be

shown W -hard. The full extent of these changes will not be addressed here. For now, simply
observe that the FPT algorithms based on FST composition will still work as given and the
FPT algorithms based on brute-force enumeration of all possible requested forms will work

if the maximum number of symbols that can be inserted or deleted is also a aspect in the
parameter (this is so because the number of possible versions of a form f over an alpha-
bet � into which k symbols are inserted or from which k symbols are deleted is bounded

by (j�jjf jPk
i=1

 
jf j+ i

i

!
j�ji) + (j�jjf jPk

i=1

 
jf j
i

!
) � (j�jjf jk(jf j+ k)k) + (j�jjf jkjf jk) �

2j�jjf jk(jf j+ k)k, which is a function of j�j, jf j, and k).

Consider now what these results have to say about the various search problems

associated with FST-based rule systems. First, note the following relationships between
FST-Encode and FST-Decode and their associated search problems:

� Any instance of FST-Encode created by the reduction in Lemma 4.3.1 can be solved

by a single call toENCFST (this is because there is only one possible surface form s that

the FST in these instances can associate with u); moreover, any instance of ENCFST
can be solved by the FPT algorithms given in the previous section

for FST-Encode.

� Any instance of FST-Decode can be solved by a single call to DECFST; moreover,
any instance of DECFST can be solved by the FPT algorithms given in the previous

section for FST-Decode.
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� Any instance of FST-Encode can be solved by a single call to CHKFST; moreover,

any instance of CHKFST can be solved by the FPT algorithms given in the previous

section for FST-Encode.

Hence, modulo various conjectures, ENCFST, DECFST, and CHKFST do not have

polynomial-time algorithms and have the same sources of polynomial-time intractability

as their corresponding decision problems. Note that, unlike simpli�ed segmental grammars,

checking is polynomial-time intractable for FST-based rule systems. As will be discussed in

Section 4.7, the reasons for this become clearer in light of the remaining results derived in

this chapter.

The results derived above are relevant to implementations of FST-based rule systems

to the extent that they show some of the conditions under which the encoding and decod-

ing problems associated with these systems are NP -hard and suggest (albeit relative to a

small set of aspects) what the sources of polynomial-time intractability in these systems

may and may not be. These results are also relevant within the investigation proposed in

Section 4.1.3 of the sources of polynomial-time intractability in Kaplan and Kay's FST calcu-
lus, in that they comprise the �rst systematic parameterized complexity analysis of the �-free
FST composition problem. In addition to these immediate applications, these results also

have implications for the computational complexity of phonological processing in general,
as reductions similar to those given from BDFAI also hold relative to the constraint-based

phonological theories examined in the remainder of this chapter.

The above suggests many directions for future research. Several of the more intriguing
directions are:

1. Formalize the notion of context-size for FST and re-do the analyses given here to take
this new aspect into account.

2. Characterize the e�ect of the lexicon on the computational complexity
of FST-Decode.

3. Characterize the computational complexity of FST-Encode and FST-Decode in

terms of trade-o�s between various aspects of the individual rule FST, e.g., type of

(non)determinism, structure of the relation encoded by the FST.

The research in (1) is actually fairly important in light of the role context-size seems to

play in the computational complexity of the automaton-based formulations of Declarative

Phonology and Optimality Theory examined later in this chapter (see discussion in
Section 4.5.3). One approach to the research (3) might be to formulate the relations implicit

in FST in logic along the lines suggested in Section 4.2.
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Table 4.6: The Parameterized Complexity of the FST-Encode Problem.

Alphabet Size j�j
Parameter Unbounded Parameter

{ NP -hard 62 XP

jAj W [t]-hard W [t]-hard

juj W [2]-hard FPT

jQj 62 XP ???

jAj, juj W [1]-hard FPT

jAj, jQj FPT FPT

juj, jQj W [2]-hard FPT

jAj, juj, jQj, FPT FPT

Table 4.7: The Parameterized Complexity of the FST-Decode Problem.

Alphabet Size j�j
Parameter Unbounded Parameter

{ NP -hard 62 XP

jAj W [t]-hard W [t]-hard

jsj W [2]-hard FPT

jQj 62 XP ???

jAj, jsj W [1]-hard FPT

jAj, jQj FPT FPT

jsj, jQj W [2]-hard FPT

jAj, jsj, jQj, FPT FPT

116



4.4 The KIMMO System

4.4.1 Background

In response to various theoretical and practical problems with FST-based rule systems

that operate by FST composition [KK94], Koskenniemi and Karttunen ([Kar83, Kos83];

see also [Kar93]) proposed the theory of Two-Level Morphology and its implementation in

the KIMMO system. In this approach, there are only two levels of representation, lexical

and surface, and rules are encoded as FST operating in parallel which directly transform

lexical into surface forms and vice versa. This approach is surprisingly versatile; indeed,

the various software incarnations of the KIMMO system, e.g., PC-KIMMO [Ant90], are the

most successful and widely-used tools for simultaneously describing and implementing the

morphophonology of human languages [Spr92, p. 153]. As FST can be interpreted both as

rewriting rules transforming either lexical into surface or surface into lexical forms and as

constraints on the distribution of lexical / surface symbol-pairs in the lexical / surface form
string-pair, KIMMO can be seen as both a rule-based and a constraint-based phonological

processing system.

A KIMMO grammar g = hA;D;�u;�si consists of the following:

1. A lexicon D � �+
u for some lexical alphabet �u. This lexicon is speci�ed as a

nondeterministic FSA which recognizes some subset of D+ that corresponds to the
set of valid lexical forms (see [BBR87, Spr92] for details).

2. Two tapes, lexical and surface, such that the surface tape contains strings s 2 �+
s

for some surface alphabet �s and the lexical tape contains strings u corresponding to
valid lexical forms in which the individual elements of D are separated by +{signs,

e.g., denationalize = de + nation + al + ize.

3. A set A of i=o-deterministic FST such that each FST has the lexical tape as its input
tape and the surface tape as its output tape. The input and output alphabets of each

FST may be augmented with a special symbol 0 (null).

The KIMMO system consists of four levels: the lexical form, the lexical tape, the surface
tape, and the surface form (see Figure 4.6). The lexical (surface) tape consists of a copy of

the lexical (surface) form into which zero or more nulls have been inserted. The lexical and

surface forms can be di�erent lengths, but the lexical and surface tapes must be the same
length. Given lexical-surface form string-pair u=s, the KIMMO system accepts u=s if there
is some string-pair u0=s0 such that u0 (s0) is a copy of u (s) into which zero or more nulls have

been inserted, ju0j = js0j, and the string-pair u0=s0 is accepted by every FST in A, i.e., u0=s0

is in the regular relation associated with the intersection FST for the FST in A. KIMMO

can also be used to reconstruct strings (in the sense of De�nition 2.2.20 in Section 2.2.3)
such that the system is given either a lexical or a surface form and then uses the constraints

on valid symbol-pairs encoded in the FST and the lexicon to reconstruct the contents of

the omitted form. It is important to remember that though KIMMO is often described
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Surface Form: moved

Surface Tape: m o v 0 0 e d

Lexical Tape: m o v e + e d

Lexical Form: move +ed

Figure 4.6: The KIMMO System (adapted from [Rit92, Figure 1]).

purely in terms of FST, it was originally de�ned relative to rewriting rules that operate on

symbol-pairs (see [Kar93, Rit92, Spr92] for details). Though these rules specify KIMMO

systems that have a lower generative capacity than those based on �-free FST [Rit92],

such rules are still compiled as FST and the KIMMO systems so produced function as

described above.

The outer two null-manipulating levels of the KIMMO system may seem redundant,

but they (or something like them) are required by any �nite-state system based on FST
intersection that also allows insertions and deletions. This is because FST that allow

�-transitions (and hence directly encode insertions and deletions) are not closed under
intersection, as shown by the following example attributed to Kaplan [BBR87, page 158]:
Given two FST A and B whose regular relations are described by symbol-pair regular

expressions (a : b)�(� : c)� and (� : b)�(a : c)�, their intersection is the string-relation
described by the expression (an=bncn) which cannot be recognized by a FST. To get around

this problem, KIMMO uses an internal representation of form strings in which nulls
explicitly mark the occurrence of �-transitions during the processing of a given lexical-
surface form string-pair. The outer two levels of the system maintain this internal rep-

resentation by the appropriate insertion and deletion of nulls, and the intersection of i=o-
deterministic FST (which have same-length regular relations and are thus closed under inter-
section

[KK94, Section 3.3]) is then applied to this internal representation to do the required
linguistic processing. As the outer two null-manipulating levels can be implemented by FST

and FST are closed under composition, the KIMMO system is �nite-state
[KK94, Section 7].

The �rst complexity analysis of the KIMMO system was done in [Bar86] and is given in

full in Chapters 5 and 6 of [BBR87]. In these analyses, the KIMMO system was restricted

such that no insertions or deletions were allowed, i.e., the constraint FST encode same-length
relations, and +-symbols were not required to separate lexical elements on the lexical tape.

These analyses focused on the following problems:

KIM-Encode

Instance: A KIMMO grammar g = hA;D;�u;�si and a string u 2 �+
u .

Question: Is there a string s 2 �juj
s such that s is generated when g is applied to u?
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KIM-Decode

Instance: A KIMMO grammar g = hA;D;�u;�si and a string s 2 �+
s .

Question: Is there a string u 2 �jsj
u such that u 2 D+ and the result of applying

g to u is s?

The problems were shown to be NP -complete in sections 5.5.1 and 5.5.2 of [BBR87],

respectively. Note that in the versions of these problems examined in this thesis, the lex-

icon D is speci�ed not as a nondeterministic FSA that recognizes some subset of D+ but

rather as a DFA DFA(D) = hQD;�u; ÆD; sD; FDi on jQDj states which recognizes D+.

This was done both to make results derived in this section compatible with those derived for

the other theories examined in this thesis and to make more obvious (by virtue of using a

simpler model) the role played by the lexicon in the computational complexity of the

KIMMO system.

The complexity-theoretic analyses of the problems de�ned above were originally moti-

vated by the claim that as KIMMO uses FST which are by nature eÆcient, KIMMO is

also eÆcient (a motivation that [BBR87] characterized as \The Lure of the Finite State").
While this is true if both lexical and surface strings are given as inputs and there are no

insertions or deletions (indeed, in this case, KIMMO runs in linear time), the proofs cited
above show that if only one string is given then the computations required to recreate
the other input are, in general, NP -hard. These results have been criticized as unnatural

and irrelevant because the reductions used to show NP -hardness require unbounded num-
bers of transducers [KC88] as well as input strings of unbounded length and alphabets of
unbounded size [Rou87] and hence are not characteristic of the bounded representations and

computations underlying human natural language processing. Implicit in these criticisms
is the assumption that the NP -hardness of the encoding and decoding problems associated

with the KIMMO system is purely a function of these aspects, and if the values of these
aspects are bounded then the KIMMO system operates eÆciently. These claims will be
evaluated in the systematic parameterized analysis given in next section.

4.4.2 Analysis

The systematic parameterized analysis in this section will focus on the following aspects:

� The number of FST in A (jAj).

� The length of the given lexical / surface form (juj / jsj).

� The maximum number of states in any FST in A (jQj).

� The sizes of the lexical and surface alphabets (j�uj, j�sj).

The lexical and surface alphabet sizes are considered as separate aspects to give independent

characterizations of the possible composition of and encodings within the forms in the proofs

given below.
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Consider the following reductions, which are loosely based on the NP -hardness

reductions for KIM-Encode and KIM-Decode given in [BBR87].

Lemma 4.4.1 BDFAI �m KIM-Encode.

Proof: Given an instance hA;�; ki of BDFAI, construct the following instance

hA0; D0;�0
u;�

0
s; u

0i of KIM-Encode: Let �0
u = f�g for some symbol � 62 �, �0

s = �,

u0 = �k, and D0 = fu0g. Given a DFA a = hQ;�; Æ; s; F i, let FSTu(a) = hQ;�0
u;�; ÆF ; s; F i

be the FST such that ÆF = f(q;�; x; q0) j (q; x; q0) 2 Æg. Note that FSTu(a) essentially pairs
�n, n � 0, with every string of length n that is accepted by a, i.e., the relation associated

with FSTu(a) is the set fx=y j jxj = �jyj and y is accepted by ag. Let A0 be the set con-

sisting of all FST FSTu(a) corresponding to DFA a 2 A. This construction can be done in

time polynomial in the size of the given instance of BDFAI.

To see that this construction is a many-one reduction, note that any solution to the

constructed instance of KIM-Encode is a string s0 2 �0ju
0j

s such that u0=s0 is accepted by
each FST in A0, which corresponds to a string in �k that is accepted by each DFA in A.
Moreover each solution to the given instance of BDFAI is a string s 2 �k that is accepted by

every DFA in A, which corresponds to a string s0 2 �0ju
0j

s such that u0=s0 is accepted by every
FST in A0. Thus, the given instance of BDFAI has a solution if and only if the constructed

instance of KIM-Encode has a solution.

Note that in the constructed instance of KIM-Encode, jA0j = jAj, ju0j = k,

jQ0j = jQj, j�0
uj = 1, and j�0

sj = j�j.

Lemma 4.4.2 BDFAI �m KIM-Decode.

Proof: Given an instance hA;�; ki of BDFAI, construct the following instance
hA0; D0;�0

u;�
0
s; s

0i of KIM-Decode: Let �0
u = f�g, �0

s = f�g for some symbol � 62 �,
s0 = �k, and D0 = fx j x 2 �g. Note that lexical strings of length js0j are generated by

the interaction of the implicit concatenation of elements in D0 to form D0+ and the FST in
A0 which, by virtue of not encoding symbol insertions or deletions, can only accept lexical

strings of length js0j. Given a DFA a = hQ;�; Æ; s; F i, let FSTs(a) = hQ;�;�0
s; ÆF ; s; F i be

the FST such that ÆF = f(q; x;�; q0) j (q; x; q0) 2 Æg. Note that FSTs(a) essentially pairs

every string of length n, n � 0, that is accepted by a with �n, i.e., the relation associ-

ated with FSTs(a) is the set fx=y j jyj = �jxj and x is accepted by ag. Let A0 be the set

consisting of all FST FSTs(a) corresponding to DFA a 2 A. This construction can be done

in time polynomial in the size of the given instance of BDFAI.

To see that this construction is a many-one reduction, note that any solution to the

constructed instance of KIM-Decode is a string u0 2 D0js0j such that u0=s0 is accepted by
each FST in A0, which corresponds to a string in �k that is accepted by each DFA in A.

Moreover each solution to the given instance of BDFAI is a string u 2 �k that is accepted by
every DFA in A, which corresponds to a string u0 2 D0js0j such that u0=s0 is accepted by every

FST in A0. Thus, the given instance of BDFAI has a solution if and only if the constructed

instance of KIM-Decode has a solution.
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Note that in the constructed instance of KIM-Decode, jA0j = jAj, js0j = k,

jQ0j = jQj, j�0
uj = j�j, and j�0

sj = 1.

Theorem 4.4.3

1. KIM-Encode is NP -hard when jQj = 2 and j�uj = 1.

2. KIM-Encode is NP -hard when j�sj = 2 and j�uj = 1.

3. KIM-Encode is NP -hard when jQj = 4 and j�sj = 3.

4. hjuj; j�sji-KIM-Encode is in FPT .

5. hjAj; jQji-KIM-Encode is in FPT .

6. hjAj; juj; j�uj1i-KIM-Encode is W [1]-hard.

7. hjuj; jQj2; j�uj1i-KIM-Encode is W [2]-hard.

8. hjAj; j�uj1; j�sj2i-KIM-Encode is W [t]-hard for all t � 1.

9. hjQj2; j�uj1i-KIM-Encode 62 XP unless P = NP .

10. hj�sj2; j�uj1i-KIM-Encode 62 XP unless P = NP .

11. hjQj4; j�sj3i-KIM-Encode 62 XP unless P = NP .

Proof:

Proof of (1): Follows from the NP -hardness of BDFAI when jQj = 2 as established in

part (1) of Theorem 4.2.4 and the reduction in Lemma 4.4.1 from BDFAI to KIM-Encode

in which jQ0j = jQj and j�0
uj = 1.

Proof of (2): Follows from the NP -hardness of BDFAI when j�j = 2 as established in
part (2) of Theorem 4.2.4 and the reduction in Lemma 4.4.1 from BDFAI to KIM-Encode

in which j�0
sj = j�j and j�0

uj = 1.

Proof of (3): Follows from the reduction in Section 5.5.1 of [BBR87] which proves that
KIM-Encode is NP -hard when jQj = 4 and j�sj = 3.

Proof of (4): Follows from the algorithm that generates all j�sjjuj possible k-length strings
over alphabet �s and checks each such string s in O(jAjjuj) time to see whether u=s is

accepted by each of the FST in A (this O(juj) running time per FST is possible because

the FST in A are i=o-deterministic). The algorithm as a whole runs in O(j�sjjujjAjjuj) time,
which is �xed-parameter tractable relative to juj and j�sj.

Proof of (5): Construct the intersection FST of all FST in A and the juj + 1-state

FST that associates u with all strings in �juj
s (this FST is constructed by a variant of
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the FSTinit construction given in Lemma 4.3.1). As noted in Section 2.2.3, if each of

the component FST in this intersection is i=o-deterministic then their intersection FST

is i=o-deterministic. Note that the relation associated with this intersection FST is the

set fu=y j y 2 �juj
s and u=y is accepted by every FST in Ag. Apply depth-�rst search to

the transition diagram for this intersection FST to determine if any of its �nal states are

reachable from its start state, i.e., there is a string-pair that is accepted by the FST.

If so, the answer is \yes"; else, the answer is \no".

Consider the running times of the individual steps in this algorithm. By Table 2.3,

the intersection FST can be constructed in O(jQjjAj+1juj(j�ujj�sj)2) time. As the graph

G = (V;A) associated with this transition diagram has jV j = jQjjAj(juj + 1) � 2jQjjAjjuj
states and jAj = jQjjAj(juj+ 1)j�ujj�sj � 2jQjjAjjujj�ujj�sj arcs and depth-�rst search runs

in O(jV j+ jAj) time, the �nal step runs in O(jQjjAjjujj�ujj�sj) time. Thus, the algorithm as

a whole runs in O(jQjjAj+1juj(j�ujj�sj)2) time, which is �xed-parameter tractable relative to

jAj and jQj.

Proofs of (6 { 8): Follow from the W -hardness results for BDFAI established in
parts (5 { 7) of Theorem 4.2.4, the reduction in Lemma 4.4.1 from BDFAI to KIM-Encode

in which jA0j = jAj, juj = k, jQ0j = jQj, j�uj = 1, and j�sj = j�j, and Lemma 2.1.25.

Proofs of (9 { 11): Follow from (1 { 3) and Lemma 2.1.35.

Theorem 4.4.4

1. KIM-Decode is NP -hard when jQj = 2 and j�sj = 1.

2. KIM-Decode is NP -hard when j�uj = 2 and j�sj = 1.

3. KIM-Decode is NP -hard when jQj = 4 and j�sj = 1.

4. hjsj; j�uji-KIM-Decode is in FPT .

5. hjAj; jQji-KIM-Decode is in FPT .

6. hjAj; jsj; j�sj1i-KIM-Decode is W [1]-hard.

7. hjsj; jQj2; j�sj1i-KIM-Decode is W [2]-hard.

8. hjAj; j�sj1; j�uj2i-KIM-Decode is W [t]-hard for all t � 1.

9. hjQj2; j�sj1i-KIM-Decode 62 XP unless P = NP .

10. hj�uj2; j�sj1i-KIM-Decode 62 XP unless P = NP .

11. hjQj4; j�uj3i-KIM-Decode 62 XP unless P = NP .
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Proof:

Proof of (1): Follows from the NP -hardness of BDFAI when jQj = 2 as established in

part (1) of Theorem 4.2.4 and the reduction in Lemma 4.4.2 from BDFAI to KIM-Decode

in which jQ0j = jQj and j�0
sj = 1.

Proof of (2): Follows from the NP -hardness of BDFAI when j�j = 2 as established in

part (2) of Theorem 4.2.4 and the reduction in Lemma 4.4.2 from BDFAI to KIM-Decode

in which j�0
uj = j�j and j�0

sj = 1.

Proof of (3): Follows from the reduction in Section 5.5.2 of [BBR87] which proves that

KIM-Decode is NP -hard when jQj = 4 and j�sj = 3.

Proof of (4): Follows from the algorithm that generates all j�ujjsj possible k-length strings
over alphabet �u and checks each such string u in O((jAj + 1)jsj) = O(jAjjsj) time to

see whether u=s is accepted by each of the FST in A and u is accepted by DFA(D).

The algorithm as a whole runs in O(j�ujjsjjAjjsj) time, which is �xed-parameter tractable
relative to j�uj and jsj.

Proof of (5): Given the lexicon DFA DFA(D) = hQD;�u; ÆD; sD; FDi, create the lexicon
FST FST (D) = hQD;�u;�s; ÆF ; sD; FDi such that ÆF = f(q; x; y; q0) j (q; x; q0) 2 ÆD and
y 2 �sg. Note that FST (D) essentially pairs every lexical string in D+ with every possi-

ble surface string of the same length, i.e., the relation associated with FST (D) is the set
fx=y j x 2 D+ and y 2 �jxj

s g. Perform the algorithm described in part (5) of
Theorem 4.4.3, adding FST (D) to the set of FST to be intersected. Note that the relation

associated with the intersection FST is fx=s j x 2 D+ and x=s is accepted by each FST in Ag.
Hence, if any of the �nal states in the intersection FST are reachable from that FST's start
state by depth-�rst search, the answer is \yes"; else, the answer is \no".

Consider the running times of the individual steps in this algorithm. By Table 2.3, the

intersection FST can be constructed in O(jQjjAj+1jujjQDj(j�ujj�sj)2) time. As the graph G =
(V;A) associated with this transition diagram has jV j = jQjjAj(juj+1)jQDj � 2jQjjAjjujjQDj
states and jAj = jQjjAj(juj + 1)jQDjj�ujj�sj � 2jQjjAjjujjQDjj�ujj�sj arcs and depth-�rst

search runs in O(jV j+ jAj) time, the �nal step runs in O(jQjjAjjujjQDjj�ujj�sj) time. Thus,
the algorithm as a whole runs in O(jQjjAj+1jujjQDj(j�ujj�sj)2) time, which is �xed-parameter
tractable relative to jAj and jQj.

Proofs of (6 { 8): Follow from the W -hardness results for BDFAI established in

parts (5 { 7) of Theorem 4.2.4, the reduction in Lemma 4.4.2 from BDFAI to KIM-Decode

in which jA0j = jAj, jsj = k, jQ0j = jQj, j�sj = 1, and j�uj = j�j, and Lemma 2.1.25.

Proofs of (9 { 11): Follow from (1 { 3) and Lemma 2.1.35.
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4.4.3 Implications

All parameterized complexity results for problems KIM-Encode and KIM-Decode that

are either stated or implicit in the lemmas and theorems given in the previous section are

shown in Tables 4.8 and 4.9. Consider the implications of these results for each problem

in turn:

� KIM-Encode: The sources of polynomial-time intractability are fjAj; jQjg and

fjuj; j�sjg. The mechanisms associated with these sources are the FST set

(speci�cally, the intersection FST of the FST in A) and the set of possible

surface forms for a given lexical form. All of the aspects in these sources are de�ning

properties of the KIMMO system, and hence none of them can be eliminated to reduce

the complexity of the problem.

� KIM-Decode: The sources of polynomial-time intractability are fjAj; jQjg and
fjsj; j�ujg. Analogously with KIM-Encode above, the mechanisms associated with

these sources are the FST set and the set of possible lexical forms for a given
surface form. All of the aspects in these sources are de�ning properties of the KIMMO
system, and hence none of them can be eliminated to reduce the complexity of

the problem.

As is the case for FST-based rule systems that operate by FST composition, part
(5) of Theorem 4.4.4 shows that the lexicon can be treated as just another rule FST
in the KIMMO system. Further analyses of the role of the lexicon in the compu-

tational complexity of the KIMMO system may pro�t from techniques that charac-
terize the relations encoded in FST in terms of logic (as discussed in Section 4.2).

One such analysis of particular interest would be to establish the role played by the
succinctness of the type of encoding used for the lexicon, e.g., nondeterministic or
deterministic FSA.

As in the FST-based rule systems examined in Section 4.3, the NP -hardness of

KIM-Encode and KIM-Decode does not depend at all on the makeup of the given lexi-
cal or surface form | indeed, in the reductions given in Lemmas 4.4.1 and 4.4.2, the given

form is just a string over a one-symbol alphabet whose role is to specify the length of the

requested form. Once again, hidden forms seem to play a role in this NP -hardness; however,

unlike FST-based rule systems based on FST composition that have many such hidden forms,

the results above show that if rules can operate in parallel, one such hidden form suÆces

(but may not be necessary; see further discussion of this point in Section 4.7). The role of

such structure that is hidden relative to the given form will be explored in more detail in

the analyses of Declarative Phonology and Optimality Theory given later in this chapter.

An immediate consequence of the results derived above is that, contrary to statements in
the literature [KC88, Rou87, Spr92], theNP -hardness of the encoding and decoding problems

associated with the KIMMO system is not a consequence of either the size of the alphabet, the

length of the given form, or the number of FST being individually
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unbounded. Rather, it is a function of groups of such aspects being unbounded simul-

taneously. The statements made in [KC88, Rou87] were derived by reasoning from the

NP -hardness reductions for the KIMMO system that were given in [BBR87]. As such,

they are good examples of the problems described in Chapter 3 that can arise in trying

to establish sources of polynomial-time intractability by reasoning from reductions, and are

worth discussing in more detail. The reductions in [BBR87] were from the following problem:

3-Satisfiability (3SAT)

Instance: A boolean formula F in conjunctive normal form such that each disjunction-clause

has at most 3 variables or literals.

Question: Is there a truth-assignment to the variables of F that satis�es F , i.e., makes F

evaluate to True?

The reductions constructed instances of KIM-Encode and KIM-Decode that encoded

the formula F as the given lexical or surface form and the truth-assignments to that for-

mula's variables in the requested surface or lexical form, respectively. The satis�ability of

the truth assignment in the requested form is ensured by structuring A such that there is one
FST for each variable which ensures that this variable has the same value throughout the

requested form and one FST which makes sure that the whole truth-assignment satis�es F .
Various authors [KC88, Spr92] have noted that these reductions require an unbounded num-
ber of FST of the �rst type which ensure long-range agreement within the requested form

of the values taken by a particular variable in F , and concluded that such FST and their
number were a source of polynomial-time intractability in KIMMO. A further conclusion was
that as this type of FST is analogous to a vowel harmony process (see Examples 2.2.3 and

2.2.4 in Section 2.2.1) and no human language has more than three such processes [KC88],
then the reductions were unrealistic and therefore the derived results were irrelevant.

As was noted in Chapter 3, this kind of reasoning is doubly awed (once because instances

produced by reductions need not be realistic and once more because aspects important to
reductions are not necessarily sources of polynomial-time intractability).
This has been borne out in the results derived in this section, e.g., the number of rule FST

cannot be a source of polynomial-time intractability because both hjAji-KIM-Encode and
hjAji-KIM-Decode are W [t]-hard. A result of particular interest in light of the discussion
above is that harmony-like processes are not necessary for NP -hardness in KIMMO. This is

shown by the reductions ultimately originating from Dominating set in part (7) of both

Theorem 4.4.3 and 4.4.4, in which each created FST requires only that one of a particular

set of symbols occur somewhere in the requested form (which is a distinctly un-harmonic

process). Taken as a whole, the various reductions seen to date suggest that the encoding
and decoding problems associated with the KIMMO system can be NP -hard relative to

many types of rules. Adequately characterizing the types of rules that can contribute to this

NP -hardness is yet another promising topic for future research.

As mentioned previously, additions and deletions in KIMMO involve considerations of
null symbols in the FST intersection process. Problems KIM-Encode and KIM-Decode

can be rede�ned as follows to handle additions and deletions:
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KIM(N)-Encode

Instance: A KIMMO grammar g = hA;D;�u;�si and a string u 2 �+
u .

Question: Is there a string s 2 (�s [ f0g)+ and a null-augmented version u0 of u such that

jsj = ju0j and s is generated when g is applied to u0?

KIM(N)-Decode

Instance: A KIMMO grammar g = hA;D;�u;�si and a string s 2 ��
s.

Question: Is there a string u accepted by D, a null-augmented version u0 of u, and a

null-augmented version s0 of s such that js0j = ju0j and the result of applying g to u0 is s0?

As KIM-Encode and KIM-Decode are special cases of KIM(N)-Encode and

KIM(N)-Decode, respectively, all NP - andW -hardness results derived above still hold for

these new problems. Having insertions and deletions does allow certain hardness

results to hold in more restricted cases; for instance, using the trick given in the reduction in

[BBR87, Section 5.7.2] in which a given form in a reduction consists of two dummy termina-
tor symbols and the FST in A are restructured to construct arbitrary requested forms over

the nulls in the given form, it is possible to rephrase all hardness results above such that
the size of the given form alphabet and the length of the given form are both 2. It seems

inevitable that allowing insertions and deletions will also both allow certain hardness results
to hold relative to higher levels of the W hierarchy and allow parameterized problems that
were formerly known to have FPT algorithms to be shown W -hard. The full extent of these

changes will not be addressed here. For now, simply observe that the FPT algorithms based
on FST intersection will still work if each FST is modi�ed to accept arbitrary numbers of
lexical or surface nulls at any point in processing (this can be ensured by adding to each FST

the sets of transitions fÆ(q; 0; x) = q j x 2 �sg and fÆ(q; x; 0) = q j x 2 �ug for every state
q 2 Q), and the FPT algorithms based on brute-force enumeration of all possible requested

forms will work if the maximum number of nulls that can be added is also a aspect in the
parameter (this is so because the number of possible null-augmented versions of a form f over

an alphabet � that incorporate at most k nulls is j�jjf jPk
i=1

 
jf j+ i

i

!
� j�jjf jk(jf j+ k)k,

which is a function of j�j, jf j, and k).

Consider now what these results have to say about the various search problems associated

with the KIMMO system. First, note the following relationships between

KIM-Encode and KIM-Decode and their associated search problems:

� Any instance of KIM-Encode can be solved by a single call to ENCKIM; moreover,

any instance of ENCKIM can be solved by the FPT algorithms given in the previous

section for KIM-Encode.

� Any instance of KIM-Decode can be solved by a single call to DECKIM; moreover,
any instance of DECKIM can be solved by the FPT algorithms given in the previous

section for KIM-Decode.

Hence, modulo various conjectures, ENCKIM and DECKIM do not have polynomial-time

algorithms and have the same sources of polynomial-time intractability as their correspond-
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ing decision problems. The case of problem CHKKIM is more interesting because it is

solvable in polynomial time (just run the given string-pair u=s against all FST in A).

The situation here, in which checking is easy but encoding is hard, is the opposite of

that for simpli�ed segmental grammars. It is tempting to suggest that it is a property of

constraint-based phonological systems; however, as is shown in Section 4.5.3 and 4.6.3, it is

not. This somewhat odd state of a�airs will be discussed further in Section 4.7.

The results derived above are relevant to the KIMMO system to the extent that they

both put previous speculation about the sources of polynomial-time intractability in this

system on a �rm formal footing and suggest (albeit relative to a small set of aspects) what

these sources may and may not be. These results are also relevant within the investigation

proposed in Section 4.1.3 of the sources of polynomial-time intractability in Kaplan and

Kay's FST calculus, in that they comprise the �rst systematic parameterized complexity

analysis of the �-free FST intersection problem.

The above suggests many directions for future research. Several of the more intriguing

directions are:

1. Formalize the notion of context-size for FST and re-do the analyses given here to take
this new aspect into account.

2. Characterize the e�ect of the lexicon on the computational complexity

of KIM-Decode.

3. Characterize the computational complexity of KIM-Encode and KIM-Decode in

terms of trade-o�s between various aspects of the individual rule FST, e.g., type of
(non)determinism, structure of the relation encoded by the FST.

4. Perform a systematic parameterized complexity analysis of the KIMMO system

relative to the original rewriting-rule formalism instead of FST.

The research in (1) is actually fairly important in light of the role context-size seems to
play in the computational complexity of other constraint-based phonological theories like
Declarative Phonology and Optimality Theory (see discussion in Section 4.5.3). One goal

of (3) should be to see if there are classes of FST that are not �-free but are closed under
intersection and can encode the outer two null-manipulating layers of the KIMMO system.

If so, the KIMMO system could �nally become a true two-level system.
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Table 4.8: The Parameterized Complexity of the KIM-Encode Problem.

Alphabet Sizes (j�uj,j�sj)
Parameter (Unb,Unb) (Unb,Prm) (Prm,Unb) (Prm,Prm)

{ NP -hard 62 XP 62 XP 62 XP

jAj W [t]-hard W [t]-hard W [t]-hard W [t]-hard

juj W [2]-hard FPT W [2]-hard FPT

jQj 62 XP 62 XP 62 XP ???

jAj; juj W [1]-hard FPT W [1]-hard FPT

jAj; jQj FPT FPT FPT FPT

juj; jQj W [2]-hard FPT W [2]-hard FPT

jAj; juj; jQj FPT FPT FPT FPT

Table 4.9: The Parameterized Complexity of the KIM-Decode Problem.

Alphabet Sizes (j�uj,j�sj)
Parameter (Unb,Unb) (Unb,Prm) (Prm,Unb) (Prm,Prm)

{ NP -hard 62 XP 62 XP 62 XP

jAj W [t]-hard W [t]-hard W [t]-hard W [t]-hard

jsj W [2]-hard W [2]-hard FPT FPT

jQj 62 XP 62 XP 62 XP ???

jAj; jsj W [1]-hard W [1]-hard FPT FPT

jAj; jQj FPT FPT FPT FPT

jsj; jQj W [2]-hard W [2]-hard FPT FPT

jAj; jsj; jQj FPT FPT FPT FPT
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4.5 Declarative Phonology

4.5.1 Background

Over the last thirty years, constraints have played larger and larger roles in phonologi-

cal theories (see [LP93, Bir95] for a review). Though originally used in the SPE model

to specify well-formedness of lexical forms, the role of constraints in subsequent theories

has expanded to ensuring the well-formedness of intermediate, surface, and full forms.

Some theories even incorporate explicit interaction between constraints and rules, e.g.,

in the Theory of Constraints and Repair Strategies (TCRS) [LP93], a violated constraint

can trigger rules that repair the structure which caused the original violation. Such theories

have had to invoke progressively more complex formal machinery to specify the interaction

of constraints and rules.

Declarative Phonology avoids the need for such machinery by stipulating that all phono-

logical representations and mechanisms | from traditional constraints to rewriting rules to
lexicons and lexical, surface, and full forms | be formulated as constraints, each of which
encodes some information about the structure of valid full forms.

Full forms are created by the logical conjunction of the appropriate set of constraints.
In this framework, there are no separate levels of representation or order in which mech-

anisms apply to representations | there are only full forms whose structure is as speci�c
as the information encoded in their associated sets of constraints. The name Declarative
Phonology derives from the declarative/procedural distinction in programming styles

[Bir95, Section 1.4.1], and is appropriate because Declarative Phonology focuses on
declarative speci�cations for de�ning well-formed phonological objects rather than
procedural speci�cations for computing those objects, e.g., the SSG model in Section 4.1.

A Declarative Phonology system S = hP;Di is a pair of constraint-sets P and D encoding

the phonological mechanisms and lexicon of a language, respectively. The only operation
within such a system is logical constraint conjunction. By combining P and D with lex-
ical and surface forms in the appropriate ways, constraint conjunction can account for all

language operations of interest, e.g.,

� Speech Generation: The conjunction of a given lexical form and P yields a set of full

forms that are consistent with P and the partial hidden and visible structure speci�ed
by the lexical form.

� Speech Comprehension: The conjunction of a given surface form, P , and D yields the

set of full forms that are consistent with P , D, and the visible structure speci�ed by

the surface form.

Note that the goal of any constraint conjunction is a full form which is interpreted

accordingly. In the case of speech generation, the visible component within the full form is

pronounced; in the case of speech comprehension, the full form is processed in conjunction

with the lexicon to identify the lexical elements underlying that form. In order to ensure
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that information can always be combined to produce a valid full form that satis�es all con-

straints in a given set, Declarative Phonology requires that constraint-systems be structured

such that there is no constraint conict3, i.e., two constraints cannot both apply to the same

unspeci�ed portion of a form and require di�erent speci�cations for that portion, and also

that the order in which constraints are conjuncted does not matter, i.e., no constraint can

add structure that is required for the application of another constraint.

Though there have been software implementations of Declarative Phonology for

particular tasks, e.g., text-to-speech conversion (YorkTalk [Col95]) and linguistic theory

testing [Bir95], and there has been a great deal of work on implementations and the compu-

tational complexity of constraint-satisfaction systems in general [Mac92], the only previous

complexity-theoretic (as opposed to purely algorithmic [BE94, Bir95]) work on Declarative

Phonology is that done by myself in [War96a]. This section contains the �rst complete

presentation of my results; as such, it replaces the partial analyses given without proofs

in [War96a], and extends the framework described in that reference both to use a more

complex representation incorporating hidden and visible components and to give a

formulation and analysis of the decoding problem for Declarative Phonology systems.

The problems examined below formalize Declarative Phonology in terms of �nite-state
automata which encode languages over the string-encodings of the simpli�ed autosegmental
representation described in Section 2.2.2. The formalization of individual components of a

Declarative Phonology system is as follows:

� Lexical, surface, and full forms will be speci�ed in one of two ways:

1. As strings of the form v1h1v2h2 : : : vnhn with visible and hidden component strings

v1v2 : : : vn and h1h2 : : : hn, respectively, in which underspeci�ed elements are
encoded by the subsets �vU and �hU of the visible- and hidden-component
alphabets (see Figures 2.7 and 2.8).

2. As DFA on 2n + 2 states that encode strings of the form v1h1v2h2 : : : vnhn with
visible and hidden component strings v1v2 : : : vn and h1h2 : : : hn, respectively,

in which underspeci�ed elements are encoded by allowing multiple transitions

between the appropriate states. In order to ensure that these DFA are total, each

such DFA incorporates a Fail state and the appropriate transitions as described
in Section 2.2.3.

A full form is consistent with a lexical or surface form if all fully speci�ed elements

of the two forms are the same and all underspeci�ed elements in the surface or lexi-

cal form are legally speci�ed in the full form relative to the types of underspeci�ca-
tion encoded in those elements. Regardless of the amount of underspeci�ed material,

the length of a surface, lexical, or full form is 2n; this is made clear by reference to

3This is not strictly true. A very limited form of conict is sometimes allowed in which a constraint and a
special case of that constraint both apply to some portion of the form and produce di�erent results, and the
conict is resolved in favor of the special-case constraint. This preference for the more speci�c alternative is
known as the Elsewhere Condition. See [Sco93, SCB96] for discussions of the role of the Elsewhere Condition
in Declarative Phonology.
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Figures 2.7 and 2.8. Note that forms will be stated in problems as strings;

however, their DFA equivalents will be used in many constructions in the proofs in the

following section.

� Constraints in P will be speci�ed as CDFA, and constraint conjunction will correspond

to CDFA intersection. Several di�erent ways for computing CDFA intersections are

described in the proofs given in the following section.

� The lexicon D � (�v�h)
+ will be speci�ed as a DFA DFA(D) =

hQD;�h [ �v; ÆD; sD; FDi on jQDj states which recognizes the language D+.

Some constructions given in the next section will use the modi�ed lexicon DFA

DFAFF (D) = hQD; (�h � �hU) [ (�v � �vU ); Æ
0
D; sD; FDi such that Æ0D is identical

to ÆD except that each transition-entry of the form (q; x; q0), x 2 �hU [ �vU , in ÆD is

replaced by the set of transitions f(q; y; q0) j y is valid speci�cation of xg in Æ0D. Note

thatDFAFF (D) accepts a string x if and only if x is a full form string that is consistent

with some lexical form string that is accepted by DFA(D).

Note that in the Declarative Phonology systems de�ned above, constraints are restricted to

specifying underspeci�ed elements in the given form rather than adding arbitrary amounts
of structure to this form. This was done not only to focus the analysis on the simplest case
of structure-altering constraints within such systems, but also to make the results derived

here compatible with those derived in this thesis for the other phonological theories, which
are similarly restricted such that they cannot add structure to or delete structure from the

given form.

The only other �nite-state formulation of Declarative Phonology to date is that given

in [BE94]. In this formulation, given forms and constraints are represented as state-labeled
�nite-state automata (SFA), a variant of the FSA de�ned in Section 2.2.3 in which states

are labeled with subsets of the automaton's associated alphabet, and the conjunction of
the given form and the constraints corresponds to the intersection of the SFA for that
form and those constraints. Though the �nite-state machinery invoked in this formula-

tion is very di�erent from that used in this section, both formulations ultimately represent
autosegmental structures as symbol strings in which each symbol encodes the set of

features in all autosegments that are are linked to a particular slot on the timing tier

(that is, each formulation essentially uses the second of the encodings of autosegmental struc-
tures into symbol strings given on page 40 in Section 2.2.3). Hence, it should be possible

to adapt the reductions and algorithms given in the following section to produce a system-
atic parameterized analysis for the formulation of Declarative Phonology given in [BE94].

As the details of SFA computation and intersection are somewhat involved, such an anal-

ysis is left as a topic for future research. For the purposes of this thesis, the formulation
de�ned in this section is more appropriate than that given in [BE94] because the formulation

de�ned here allows derived results both to be compared with results derived for the other
�nite-state phonological theories examined in this thesis and to better reect the computa-

tional complexity of the mechanisms underlying Declarative Phonology rather than e�ects

induced by arbitrarily complex autosegmental representations (see Section 2.2.2).
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My analysis will focus on the following problems:

DP-Encode

Instance: A Declarative Phonology system hP;Di in which the maximum context-size of

any CDFA in P is c and a lexical form string u.

Question: Is there a full form string that is consistent with u and is accepted by each CDFA

in P ?

DP-Decode

Instance: A Declarative Phonology system hP;Di in which the maximum context-size of

any CDFA in P is c and a surface form string s.

Question: Is there a full form string that is consistent with both s and some lexical form

u generated by D and that is accepted by each CDFA in P ?

At �rst glance, these problems do not seem to correctly formalize Declarative Phonology

because they allow invalid systems of constraints, e.g., individual constraints may conict
and/or the system of constraints may not have a solution. However, as will be discussed in
Section 4.5.3, results derived relative to these problems are still relevant to problems that

are restricted to operate on valid systems of constraints within Declarative Phonology.

4.5.2 Analysis

The systematic parameterized analysis given in this section will focus on the following
aspects:

� The number of CDFA in P (jP j).

� The maximum context-size of any CDFA in P (c).

� The length of the given lexical / surface form (juj / jsj).

� The maximum number of states in any CDFA in P (jQj).

� The sizes of the hidden- and visible-component alphabets (j�hj, j�vj).

Consider the following reductions.

Lemma 4.5.1 BDFAI �m DP-Encode such that j�vj = 1.

Proof: Given an instance hA;�; ki of BDFAI, construct the following instance

hP 0; c0; D0;�0
h;�

0
hU ;�

0
v;�

0
vU ; u

0i of DP-Encode: Let �0
v = f�g for some symbol � 62 �,

�vU = �, �0
h = � [ f2g for some symbol 2 62 �, �0

hU = f2g such that 2 may be speci�ed

as any symbol in �, u0 be the lexical form string whose visible component string is �k and

whose hidden component string is 2k, and D0 = f�2g. Given a DFA a = hQ;�; Æ; s; F i,
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let CDFA(a) = hQ;� [ f�g; Æ0; s; F; ci such that c = 2k and Æ0 = Æ [ f(q;�; q) j q 2 Qg.
Note that CDFA(a) accepts a string x 2 (��)k if and only if a accepts the length-k version

of x from which all �-symbols have been deleted. Let P 0 be the set consisting of all CDFA

CDFA(a) corresponding to DFA a 2 A. This construction can be done in time polynomial

in the size of the given instance of BDFAI.

To see that this construction is a many-one reduction, note that any solution to the

constructed instance of DP-Encode is a full form string that is consistent with u0 and is

accepted by each CDFA in P 0, and that the hidden component string of this full form string

corresponds to a string in �k that is accepted by each DFA in A. Moreover each solution to

the given instance of BDFAI is a string s 2 �k that is accepted by every DFA in A, and that

this string corresponds to the hidden component string of a full form that is consistent with

u0 and is accepted by every CDFA in P 0. Thus, the given instance of BDFAI has a solution

if and only if the constructed instance of DP-Encode has a solution.

Note that in the constructed instance of DP-Encode, jP 0j = jAj, c0 = ju0j = 2k,

jQ0j = jQj, j�0
hj = j�j+ 1, and j�0

vj = 1.

The following lemma takes advantage of the observation that the speci�ed portion of the
lexical form can be in the hidden component instead of the visible component. This is
possible because DP-Encode does not require that given lexical forms have any partic-

ular speci�ed hidden or visible elements. In the absence of further restrictions on lexical
forms, there is thus a certain symmetry about the roles of hidden and visible components in

DP-Encode that is explicit in the results stated in parts (9) and (10) of Theorem 4.5.4.

Lemma 4.5.2 BDFAI �m DP-Encode such that j�hj = 1.

Proof: Given an instance hA;�; ki of BDFAI, construct the following instance

hP 0; c0; D0;�0
h;�

0
hU ;�

0
v;�

0
vU ; u

0i of DP-Encode: Let �0
v = � [ f2g for some symbol 2 62 �,

�0
vU = f2g such that 2 may be speci�ed as any symbol in �, �0

h = f�g for some symbol
� 62 �, �hU = �, u0 be the lexical form string whose visible component string is 2k and

whose hidden component string is �k, and D0 = f2�g. Given a DFA a = hQ;�; Æ; s; F i,
let CDFA(a) = hQ;� [ f�g; Æ0; s; F; ci such that c = 2k and Æ0 = Æ [ f(q;�; q) j q 2 Qg.
Note that CDFA(a) accepts a string x 2 (��)k if and only if a accepts the length-k version
of x from which all �-symbols have been deleted. Let P 0 be the set consisting of all CDFA

CDFA(a) corresponding to DFA a 2 A. This construction can be done in time polynomial

in the size of the given instance of BDFAI.

To see that this construction is a many-one reduction, note that any solution to the

constructed instance of DP-Encode is a full form string that is consistent with u0 and is
accepted by each CDFA in P 0, and that the visible component string of this full form string

corresponds to a string in �k that is accepted by each DFA in A. Moreover each solution to
the given instance of BDFAI is a string s 2 �k that is accepted by every DFA in A, and that

this string corresponds to the visible component string of a full form that is consistent with

u0 and is accepted by every CDFA in P 0. Thus, the given instance of BDFAI has a solution
if and only if the constructed instance of DP-Encode has a solution.
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Note that in the constructed instance of DP-Encode, jP 0j = jAj, c0 = ju0j = 2k,

jQ0j = jQj, j�0
hj = 1, and j�0

vj = j�j+ 1.

Unfortunately, it is not so easy to derive reductions in which the constructed instances

of DP-Encode have j�hj = 1 because DP-Decode requires that the given surface form

consist only of a fully-speci�ed visible component.

Lemma 4.5.3 BDFAI �m DP-Decode such that j�vj = 1.

Proof: Given an instance hA;�; ki of BDFAI, construct the following instance

hP 0; c0; D0;�0
h;�

0
hU ;�

0
v;�

0
vU ; s

0i of DP-Decode: Let �0
v, �

0
vU , �

0
h, �

0
hU , P

0, c0, and D0 be

constructed as in Lemma 4.5.1 above, and s0 be the surface form string whose visible com-

ponent string is �k and whose hidden form string is 2k. This construction can be done in

time polynomial in the size of the given instance of BDFAI. Note that as the surface form

string for s0 is equivalent to the lexical form string for u0 in Lemma 4.5.1, any full forms that
are consistent with s0 will also be consistent with the lexical form string u0. Hence, the given
instance of BDFAI has a solution if and only if the constructed instance of DP-Decode has

a solution by the same argument as in Lemma 4.5.1.

Note that in the constructed instance of DP-Decode, jP 0j = jAj, c0 = js0j = 2k,
jQ0j = jQj, j�0

hj = j�j+ 1, and j�0
vj = 1.

The observant reader will have noticed that the reductions above are very similar to those
for the KIMMO system in Section 4.4.2. However, the use of CDFA to model constraints

and the inclusion of context-size in the list of examined aspects makes for some interesting
di�erences in the proofs given below, particularly those for the FPT algorithms.

Theorem 4.5.4

1. DP-Encode is NP -hard when jQj = 2 and j�vj = 1.

2. DP-Encode is NP -hard when jQj = 2 and j�hj = 1.

3. DP-Encode is NP -hard when j�vj = 1 and j�hj = 2.

4. DP-Encode is NP -hard when j�vj = 2 and j�1j = 1.

5. hc; j�hj; j�vji-DP-Encode is in FPT .

6. hjuj; j�hj; j�vji-DP-Encode is in FPT .

7. hjP j; c; jQji-DP-Encode is in FPT .

8. hjP j; juj; jQji-DP-Encode is in FPT .

9. hjP j; c; juj; j�vj1i-DP-Encode and hjP j; c; juj; j�hj1i-DP-Encode are W [1]-hard.

10. hc; juj; jQj2; j�vj1i-DP-Encode and hc; juj; jQj2; j�hj1i-DP-Encode are W [2]-hard.
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11. hjP j; j�hj2; j�vj1i-DP-Encode is W [t]-hard for all t � 1.

12. hjQj2; j�vj1i-DP-Encode 62 XP unless P = NP .

13. hjQj2; j�hj1i-DP-Encode 62 XP unless P = NP .

14. hj�hj2; j�vj1i-DP-Encode 62 XP unless P = NP .

15. hj�hj1; j�vj2i-DP-Encode 62 XP unless P = NP .

Proof:

Proof of (1): Follows from the NP -hardness of BDFAI when jQj = 2 as established in

part (1) of Theorem 4.2.4 and the reduction in Lemma 4.5.1 from BDFAI to DP-Encode

in which jQ0j = jQj and j�0
vj = 1.

Proof of (2): Follows from the NP -hardness of BDFAI when jQj = 2 as established in

part (1) of Theorem 4.2.4 and the reduction in Lemma 4.5.2 from BDFAI to DP-Encode
in which jQ0j = jQj and j�0

hj = 1.

Proof of (3): Follows from the NP -hardness of BDFAI when j�j = 2 as established in
part (2) of Theorem 4.2.4 and the reduction in Lemma 4.5.1 from BDFAI to DP-Encode

in which j�0
vj = 1 and j�0

hj = j�j+ 1.

Proof of (4): Follows from the NP -hardness of BDFAI when j�j = 2 as established in
part (2) of Theorem 4.2.4 and the reduction in Lemma 4.5.2 from BDFAI to DP-Encode
in which j�0

vj = j�j+ 1 and j�0
hj = 1.

Proof of (5): The following algorithm is based on an implicit form of CDFA intersection

in which the constraint CDFA in P and the given lexical form string u are encoded into
a directed graph such that full form strings that are accepted by all CDFA in P and are
consistent with u correspond to special paths in this graph. This construction will be done

in two stages: the graph encoding all possible full forms for u will be created and then this
graph will be \pruned" to delete all paths that correspond to full forms that are not accepted
by the CDFA in P .

Consider �rst the construction of the full form graph associated with the given lexical

form string u. For the sake of generality, this given form string will be referred to as g
below. Let c be the largest context-size of any CDFA in P . Each full form string consistent

with g can be decomposed into (jgj � c) + 1 overlapping substrings of length c. Given the

c-decomposition Sg;c of g (see De�nition 2.2.25 in Section 2.2.3), let gi be the ith string in
this decomposition. Note that each such gi may contain underspeci�ed elements from �vU

and �hU ; hence, let C(gi) be the set of all strings that are consistent with gi. The full form
graph for g is constructed by the following algorithm.

Algorithm Construct Full Form Graph (CFFG)

Input: A form string g.

Output: The arc-labeled full form graph for g.
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1. De�ne the vertex set for the full form graph relative to the set of strings that are

consistent with the substrings of g of length c.

Let this vertex set be V = fsg [ (
SjC(g1)j
i=1 V P (i)) [ (

S(jgj�c)+1
i=1 V C(gi)), where V C(gi)

is the set of vertices associated with C(gi) such that each string in C(gi) has its own

unique vertex in V C(gi) and V P (j) = fvpj;1; vpj;2; : : : ; vpj;(c�1)g is a set of \private"

vertices associated with each vertex j in V C(g1). Let vertV C(i; j), 1 � j � jV C(gi)j,
be the jth vertex in V C(gi) under some ordering of the vertices of V C(gi). Given a

vertex v 2 V C(gi), let vsV C(i; v) be its associated string in C(gi); conversely, given a

string x 2 C(gi), let svV C(i; x) be its associated vertex in V C(gi).

2. Create the CDFA intersection graph by imposing the appropriate arcs on the

vertex-set created in (1).

De�ne the directed graph G = (V;A) such that A = A1 [ A2 such that A1 and A2 are

the following two sets of arcs:

A1: Arcs connecting s to V C(g1) via V P , i.e.,
SjV C(g1)j
i=1 (f(s; vpi;1)g [Sc�2

j=1f(vpi;j; vpi;(j+1))g [ f(vpi;(c�1); vertV C(1; i))g).
A2: Arcs connecting V C(gi) to V C(gi+1), i.e., f(u; v) j 1 � i � jgj � c, u 2 V C(gi),

v 2 V C(gi+1), and vsV C(i; u) and vsV C(i+1; v) have a length-(c�1) overlap, i.e.,
the length-(c�1) suÆx of vsV C(i; u) equals the length-(c�1) pre�x of vsV C(i+1; v)
g.

This graph can be visualized as an ordered set of (jgj�c)+2 columns, with special vertex
s being the only vertex in the �rst column and the ith column, 2 � i � (jgj � c) + 2,

corresponding to the vertices in V C(g(i�1)). Within this graph, vertex s is connected
to each vertex vertV C(1; j) in the second column corresponding to V C(g1) by a path

made up of the vertices in V P (j), and vertices in subsequent adjacent columns are
connected by arcs corresponding to length-(c � 1) overlaps in the strings associated
with the vertex-endpoints of those arcs.

3. Label the arcs in sets A1 and A2 with symbols from (�h��hU )[ (�v��vU ) as follows.
Given an arc (u; v), let lab(u; v) be the symbol-label associated with that arc.

A1: For all i and j, 1 � i � jV C(g1)j and 1 � j � (c � 2), set lab(s; vpi;1) to

the �rst symbol in vsV C(1; vertV C(1; i)), lab(vpi;j; vpi;(j+1) to the (j + 1)-st sym-

bol in vsV C(1; vertV C(1; i)), and lab(vpi;(c�1); vertV C(1; i)) to the �nal symbol in

vsV C(1; vertV C(1; i)).

A2: For all i, u, and v such that 1 � i � jgj � c, u 2 V C(gi), v 2 V C(gi+1), and

(u; v) 2 A, set lab(u; v) to the �nal symbol in vsV C((i+ 1); v).

Observe that by the construction of this graph, the string formed by concatenating the
edge-labels on any path from s to a vertex in V C(g(jgj�c)+1) is a full form string consis-

tent with g. Moreover, each full form string f consistent with g has a corresponding path

from s to some vertex in V C(g(jgj�c)+1) whose vertex-sequence is s; vpi;1; vpi;2; : : : ; vpi;(c�1);
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vertV C(1; i) = svV C(1; f1); svV C(2; f2); : : : ; svV C((jf j � c) + 1; f(jf j�c)+1), where fj, 1 � j �
(jf j � c) + 1, is the jth string in the c-decomposition of f . Hence, the graph constructed

above encodes all of the full form strings consistent with a given form g. Several examples

of full form graphs are given in Figures 4.7 and 4.8.

Algorithm CFFG and the graph it constructs can be usefully characterized in terms of

c, jgj, and the following quantities:

� max(V C) = max
(jgj�c)+1
i=1 jC(gi)j.

� max(arc) = the maximum number of arcs originating from any vertex v in any set

V C(gi), 1 � i � jgj � c.

Given the above, the number of vertices in the constructed full form graph is

jV j � 1 + max(V C)(c � 1) + max(V C)(jgj � c) � max(V C)jgj and the number of arcs

is jAj � max(V C)c + max(V C)max(arc)(jgj � c) � max(V C)max(arc)jgj. Consider now
the running times of the individual steps in the algorithm above:

� As step (1) essentially enumerates the elements of V and their associated strings, step
(1) can be done in O(jV jc) = O(max(V C)jgjc) time.

� If the graph is represented as an adjacency matrix, this matrix can be initialized in
O(jV j2) = O((max(V C)jgj)2) time, the arcs in A1 can be entered into the matrix in
O(jA1j) = O(max(V C)jgj) time, and the arcs in set A2 can be entered into the matrix

in O(jV j2c) = O((max(V C)jgj)2c) time (compare each element of C(ui) with each
element of C(ui+1) for length-c� 1 overlap for all i, 1 � i � jgj � c). Hence, step (2)

can be done in O((max(V C)jgj)2c) time.

� Step (3) involves looking at the strings associated with the endpoints of every arc in
the graph, and can thus be done in O(jAjc) = O(max(V C)max(arc)jgjc) time.

Thus, the algorithm CFFG runs in O((max(V C)jgj)2max(arc)c) time.
Consider now how the full form graph constructed above can be modi�ed to delete all

paths that correspond to full forms that are consistent with g but are not accepted by all

CDFA in P . Observe that any string in C(gi) that is not accepted by all CDFA in P cannot

be part of any full form string that is accepted by all CDFA in P , and hence cannot appear

on any path that corresponds to such a full form string. Hence, such vertices and their
adjacent arcs can be removed without disturbing the ability of the full form graph to encode

such full form strings. Moreover, no full form string that is accepted by all CDFA in P

can be deleted from the set of such full form strings encoded by the graph by deleting such

vertices (as all of the vertices corresponding to substrings of length c in such a full form are

accepted by all CDFA in P and hence will be removed from the graph). This suggests the

following algorithm.
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Figure 4.7: Full Form Graphs. This diagram shows various full form graphs constructed

relative to an alphabet fa; b;2g such that symbol 2 can be speci�ed as either a or b, a form

string g of length 4, and a context-size c = 2. The vertices in the columns labeled 1, 2, and

3 are the vertices in the sets V C(g1), V C(g2), and V C(g3), and the sets of strings labeling

the vertices in these sets are the sets C(g1), C(g2), and C(g3), respectively. For the sake of

readability, the edge-labelings have been omitted. a) The full form graph for g = 2222.

b) The full form graph for g = b2a2.

138



AB AB

AA AA

AB

AA

BBBBBB

A

B

s

1 2 3

(c)

Figure 4.8: Full Form Graphs (Cont'd). c) The full form graph for g = 2222 that has
been pruned relative to a CDFA with contexts-size 2 that does not allow the substring ba in

g. See part (5) of Theorem 4.5.4 for an explanation of terms.

Algorithm Prune Full Form Graph (PFFG)

Input: The arc-labeled full form graph for form string g and a set P of CDFA.

Output: The pruned arc-labeled full form graph for g relative to P .

1. Initialize a set bad over V to �.

2. For all i, 1 � i � (jgj � c) + 1, examine every vertex v 2 V C(gi) and determine if

str(v) is accepted by every CDFA in P ; if not, add v to bad.

3. Remove all vertices in bad and their adjacent arcs from the full form graph.

Observe that the pruned full form graph produced by this algorithm encodes the set of full

form strings that are consistent with g and accepted by all of the CDFA in P . The pruned

full form graph will probably be much smaller than the original full form graph, but the
bounds on jV j and jAj derived above will still be applicable. Consider now the running

times of the individual steps in the algorithm above:

� If the set bad is stored as bit-vector of length jV j such that elements in the set have

their corresponding bits set to 1, step (1) can be done in O(jV j) = O(max(V C)jgj)
time.

� Some CDFA may have context sizes that are less than c and hence may have to check

several substrings of each string. However, note that the number of such strings
is bounded by c; hence, each CDFA can check a string of length c in O(c2) time.

As there are jP j constraints and the string corresponding to each vertex in V C =S(jgj�c)+1
i=1 V C(gi) must be checked, step (2) can be done in (OjV jjP jc2) = O(max(V C)

jgjjP jc2) time.
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� In the worst case, bad can contain all vertices in V C. Removing all edges adjacent to

a vertex in bad involves zeroing the row and column vectors in the adjacency matrix

for the graph that correspond to arcs originating from and going to that vertex in the

graph. Hence, step (3) can be done in O(jV j2) = O((max(V C)jgj)2) time.

Thus, the algorithm PFFG runs in O((max(V C)jgj)2jP jc2) time.
The algorithm for solving DP-Encode can now be stated as follows:

1. Construct the full form graph for u by applying algorithm CFFG.

2. Prune the full form graph constructed in (1) relative to P by applying the algorithm

PFFG.

3. Apply depth-�rst search to the graph created in (2) to determine if there is a path in

that graph from s to any vertex in V C(u(juj�c)+1). If so, by the manner in which this
graph has been constructed, the labels in the arcs on this path can be concatenated to
create a full form string that is consistent with u and is accepted by all CDFA in P .

If not, there is no such full form string (as any such string could be decomposed into a
sequence of overlapping contexts which would correspond to a path in the graph above

from s to some vertex in V C(u(juj�c)+1)).

Consider �rst the values of max(V C) and max(arc) in this algorithm:

� Each substring of length c in u contains either d c
2
e hidden and visible elements (if c is

even) or either d c
2
e and d c

2
e � 1 or d c

2
e � 1 and d c

2
e hidden and visible elements (if c is

odd), and any of these elements can be underspeci�ed. Hence, there can be at most
j�hjd

c
2
ej�vjd

c
2
e � (j�hjj�vj)c strings in any C(ui). Hence, max(V C) � (j�hjj�vj)c.

� The label on any arc (x; y) in the full form graph such that x 2 V C(ui) and
y 2 V C(ui+1) for any i, 1 � i � juj � c, can be either from the hidden alphabet

or the visible alphabet. Hence, max(arc) = max(j�hj; j�vj).

Consider now the running times of the individual steps in this algorithm:

� As algorithm CFFG runs in O((max(V C)jgj)2max(arc)c) time, step (1) can be done

in O(((j�hjj�vj)cjuj)2max(j�hj; j�vj)c) = O((j�hjj�vj)2cjuj2cmax(j�hj; j�vj)) time.

� As algorithm PFFG runs in O((max(V C)jgj)2jP jc2) time, step (2) can be done in
O(((j�hjj�vj)cjuj)2jP jc2) = O((j�hjj�vj)2cjuj2jP jc2) time.

� As depth-�rst search runs in O(jV j+jAj) time, step (3) of this algorithm can be done in

O(max(V C)jgj+max(V C)max(arc)jgj) = O(max(V C)max(arc)jgj) = O((j�hjj�vj)c
jujmax(j�hj; j�vj)) time.
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Hence the algorithm for DP-Encode described above runs in O((j�hjj�vj)2cjuj2jP jc2
max(j�hj; j�vj)) time, which is �xed-parameter tractable relative to c, j�hj, and j�vj.
Proof of (6): As it is always the case that c � juj, the result follows from (5) and

Lemma 2.1.33.

Proof of (7): Unlike the algorithm given in (5), the following algorithm is based on an

explicit form of CDFA intersection in which CDFA are transformed into a special kind of

DFA that are subsequently intersected in the conventional manner with the lexical form DFA

associated with the given lexical form string. This transformation takes advantage of the

following observation: given a string x being evaluated by a CDFA a of context-size c, every

symbol of x can be part of at most c contexts, and hence at most c contexts are active, i.e.,

being processed by a, at any given time. Hence, the state of a CDFA can be encoded as a

c-component vector of states of its underlying DFA that represents the intermediate results

of each of the up to c active contexts, and a transition relation on these vector-states can be

con�gured to form a \pipeline" for the parallel processing of up to c simultaneously active

contexts on a given string. These pipelines are reminiscent of systolic array architectures used
in high-performance computing; hence, the DFA that implement these pipelines are called

systolic DFA. In the following, let a vector-state in a systolic DFA with state-components
q1; : : : ; qk be denoted by [q1; : : : ; qk].

Given a CDFA a = hQ;�; Æ; s; F; ci, the systolic DFA corresponding to a is the DFA
SDFA(a) = hQ0;�0; Æ0; s0; F 0i such that Q0 = fFailg [ Sc

i=1Qi where

Qi = f[s; q1; q2; : : : ; qi�1] j fq1; q2; : : : ; qi�1g 2 Qg, �0 = �, s0 = [s], F 0 = Q0 � fFailg,
and Æ0 = Æ1 [ Æ2 [ Æ3, where Æ1, Æ2, and Æ3 are speci�ed as follows:

Æ1: Map states in Qi to Qi+1 relative to Æ for 1 � i � (c � 1), i.e., Æ1 = (q; x; q0) j
q = [s; q1; : : : ; qi�1] 2 Qi; q0 = [s; Æ(s; x); Æ(q1; x); : : : ; Æ(qi�1; x)] 2 Qi+1; and

1 � i � (c� 1)g.

Æ2: Map states in Qc to Qc [ fFailg relative to Æ, i.e., Æ2 = f(q; x; q0) j
q = [s; q1; : : : ; qc] 2 Qc; q0 = [s; Æ(s; x); Æ(q1; x); : : : ; Æ(qc�1; x)] 2 Qc; and

Æ(qc; x) 2 Fg [ f(q; x; Fail) j
q = [s; q1; : : : ; qc] 2 Qc and Æ(qc; x) 62 Fg.

Æ3: Direct all remaining possible transitions to Fail, i.e., Æ3 = f(q; x; Fail) j q 2 Q0;

x 2 �; and 6 9q0 2 Q0 such that (q; x; q0) 2 Æ1 or (q; x; q
0) 2 Æ2g.

Note that the creation of the appropriate transitions for the vector states in Æ1 and Æ2
requires that the transition relation for the underlying DFA of the given CDFA be complete,

i.e., the underlying DFA for the given CDFA is a total DFA. An example systolic DFA is

given in Figure 4.9. Note that relative to its associated CDFA, a systolic DFA has jQ0j =
1+

Pc�1
i=0 jQji = 1+(jQjc�1=(jQj�1)) � jQjc states and at most jQ0jj�j � jQjcj�j transitions,

and can be constructed from that CDFA in O(jQ0jj�j) = O(jQjcj�j) time.
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Figure 4.9: A Systolic Deterministic Finite-State Acceptor. a) A DFA of the type constructed

in the reduction from Dominating set to BDFAI in Lemma 4.2.2. b) The systolic DFA
whose associated CDFA has the underlying DFA in (a) and context-size c = 3.
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Claim: A string x is accepted by a CDFA if and only if x is accepted by the systolic DFA

created from that CDFA by the above construction.

Proof of Claim: Let the yield-path of a string x relative to a (systolic) DFA be the se-

quence of states s; q1; q2; : : : ; qjxj encountered by the (systolic) DFA in processing x.

Given a state q = [q1; q2; : : : ; qn] of a systolic DFA, let st(q; i) = qi, 1 � i � n, i.e.,

st(q; i) is the i-th state-component of vector-state q. Given a yield path q1; q2; : : : ; qjxj+1
of a systolic DFA on a string x such that x is accepted by that systolic DFA, i.e., qjxj+1 2 F ,

let the i-th trace of this yield-path, 1 � i � ((jxj � c) + 1), be the sequence of states

st(qi; 1); st(qi+1; 2); : : : ; st(qi+c). Note that the i-th trace corresponds to the yield-path for

the underlying DFA of the CDFA on which the systolic DFA is based relative to the i-th

substring of length c in x.

()) If a string x is accepted by the CDFA with context-size c, then all substrings of x of

length c are accepted by the underlying DFA for that CDFA | that is, for each of the

(jxj � c) + 1 substrings of x, the yield-path for each substring relative to the underlying

DFA ends in a �nal state of that DFA. This set of yield-paths can be interpreted as a set
of traces, and be used to reconstruct a yield-path for the systolic DFA associated with the

CDFA (note that several partial yield-paths will be necessary to �ll in state-components of
the �nal (c � 1) states in the systolic DFA yield-path that correspond to partial traces for
the substrings of x starting from the last c�1 symbols of x). As each of the DFA yield-paths

ended in a �nal state, the constructed yield-path for the systolic DFA must end in a �nal
state. Hence, x is accepted by the systolic DFA.

(() If a string x is accepted by the systolic DFA, then all traces in the yield-path for x of
the systolic DFA end in states that are �nal relative to the underlying DFA of the CDFA

(else, at some point, the systolic DFA would have entered state Fail and x could not have
been accepted). As each trace corresponds to a yield-path of the underlying DFA on a

substring of x of length c, this means that all substrings of x of length c must be accepted
by the underlying DFA, i.e., the CDFA accepts x.

The construction above is part of the following algorithm for DP-Encode:

1. Construct the set P 0 of systolic DFA corresponding to the CDFA in P .

2. Intersect the systolic DFA in P 0 with the given lexical form DFA.

3. Apply depth-�rst search to the transition diagram associated with the intersection DFA

created in (2) to determine if there is a path from the start state to any
�nal state in this DFA. Any such path corresponds to a full form string that is both

consistent with the given lexical form string and accepted by all constraint CDFA

in P .

Note each systolic DFA encodes all full forms that have no violations relative to that sys-
tolic DFA's associated CDFA { hence, in order to encode all full form strings that have no

violations relative to any of the CDFA in P and are also consistent with u, it is necessary to
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add the lexical form DFA for u to the intersection. This should be compared with the con-

struction in part (5) of this theorem, in which such u-consistency restrictions are explicitly

encoded into the full form graph.

Consider the time complexity of each step in the algorithm described above:

� As the systolic DFA for each CDFA in P can be created in O(jQjc(j�hj+ j�vj)) time,
step (1) runs in O(jQjcjP j(j�hj+ j�vj)) time.

� As each systolic DFA has � jQjc states and the given lexical form DFA has

juj + 1 � 2juj states, step (2) can be done in O(jQjcjP jjuj(j�hj + j�vj)2) time

(see Table 2.3).

� As the graph associated with the transition diagram for the intersection DFA

constructed in (2) has jV j � (jQjc)jP j(juj+ 1) � 2jQjcjP jjuj vertices and jAj � (jQjc)jP j
(juj + 1)(j�hj + j�vj) � 2jQjcjP jjuj(j�hj + j�vj) arcs and depth-�rst search runs in

O(jV j+ jAj) time, step (3) runs in O(jQjcjP jjuj(j�hj+ j�vj)) time.

Given the above, the algorithm thus runs in O(jQjcjP jjP jjuj(j�hj + j�vj)2) time, which is
�xed-parameter tractable relative to jP j, c, and jQj.

Proof of (8): As it is always the case that c � juj, the result follows from (7) and

Lemma 2.1.33.

Proofs of (9 { 11): The �rst parts of (9) and (10) and all of (11) follow from the

W -hardness results for BDFAI established in parts (5 { 7) of Theorem 4.2.4, the reduc-
tion in Lemma 4.5.1 from BDFAI to DP-Encode in which jP 0j = jAj, c0 = ju0j = 2k,

jQ0j = jQj, j�0
hj = j�j+1, and j�0

vj = 1, and Lemma 2.1.25. The second parts of (9) and (10)
follow from the W -hardness results established in parts (5) and (6) of Theorem 4.2.4, the
reduction in Lemma 4.5.2 from BDFAI to DP-Encode in which jP 0j = jAj, c0 = ju0j = 2k,

jQ0j = jQj, j�0
hj = 1, and j�0

vj = j�j+ 1, and Lemma 2.1.25.

Proofs of (12 { 15): Follow from (1 { 4) and Lemma 2.1.35.

Theorem 4.5.5

1. DP-Decode is NP -hard when jQj = 2 and j�vj = 1.

2. DP-Decode is NP -hard when j�hj = 2 and j�vj = 1.

3. hc; j�hji-DP-Decode is in FPT .

4. hjsj; j�hji-DP-Decode is in FPT .

5. hjP j; c; jQji-DP-Decode is in FPT .

6. hjP j; jsj; jQji-DP-Decode is in FPT .

144



7. hjP j; c; jsj; j�vj1i-DP-Decode is W [1]-hard.

8. hc; jsj; jQj2; j�vj1i-DP-Decode is W [2]-hard.

9. hjP j; j�hj2; j�vj1i-DP-Decode is W [t]-hard for all t � 1.

10. hjQj2; j�vj1i-DP-Decode 62 XP unless P = NP .

11. hj�hj2; j�vj1i-DP-Decode 62 XP unless P = NP .

Proof:

Proof of (1): Follows from the NP -hardness of BDFAI when jQj = 2 as established in

part (1) of Theorem 4.2.4 and the reduction in Lemma 4.5.3 from BDFAI to DP-Decode

in which jQ0j = jQj and j�0
vj = 1.

Proof of (2): Follows from the NP -hardness of BDFAI when j�j = 2 as established in

part (2) of Theorem 4.2.4 and the reduction in Lemma 4.5.3 from BDFAI to DP-Decode
in which j�0

hj = j�j and j�0
vj = 1.

Proof of (3): The following algorithm is is a modi�cation of the implicit CDFA intersection
algorithm given in part (5) of Theorem 4.5.4 which takes into account the constraints on

the full form that are implicit in the lexicon. As the algorithm description given below
will draw heavily on various terms and quantities de�ned in part (5) of Theorem 4.5.4,

the reader should perhaps review that notation before reading the rest of this proof.

The steps in this algorithm for DP-Decode are as follows:

1. Construct the full form graph for the given surface form s by applying algorithm CFFG

from part (5) of Theorem 4.5.4.

2. Prune the full form graph constructed in (1) relative to P by applying algorithm PFFG
from part (5) of Theorem 4.5.4.

3. Interpret the pruned full form graph constructed in (2) as the transition diagram of a
DFA A = hQ; (�h ��hU ) [ (�v � �vU ); Æ; s; F i in which Q = V , Æ is constructed from

the graph and its labels, the start state is vertex s in the graph, and the �nal states
are the vertices in V C(s(jsj�c)+1).

4. Intersect the DFA constructed in (3) with the lexicon DFA DFAFF (D).

5. Apply depth-�rst search to the transition diagram for the intersection DFA constructed
in (4) to determine if any of its �nal states are reachable from its start state. If so,

by the manner in which this DFA has been constructed, the labels on the arcs in this

path can be concatenated to create a full form string that is both consistent with s

and accepted by all CDFA in P and the lexicon DFA DFAFF (D). If not, there is no

such full form string by reasoning similar to that given in part (5) of Theorem 4.5.4.

145



Consider �rst the values of max(V C) and max(arc) in this algorithm:

� As all visible elements in s are fully speci�ed, the only elements that can be

underspeci�ed in a c-length substring of s are hidden elements. Such a substring

can contain either d c
2
e hidden elements (if c is even) or d c

2
e or d c

2
e� 1 hidden elements

(if c is odd), and as any of these elements can be underspeci�ed, there can be at most

j�hjd
c
2
e � j�hjc strings in any C(si). Hence, max(V C) � j�hjc

� The label on any arc (x; y) in the full form graph such that x 2 V C(si) and

y 2 V C(si+1) for any i, 1 � i � jsj � c, can be either from the hidden alphabet

or the visible alphabet but only the hidden elements are underspeci�ed in s. Hence,

max(arc) = max(j�hj; 1) = j�hj.

Thus, the pruned full form graph created in (2) has jV j � max(V C)jgj � j�hjcjsj vertices
and jAj � max(V C)max(arc)jgj � j�hjcj�hjjsj � j�hjc+1jsj arcs. Consider now the running

times of the individual steps in this algorithm:

� As algorithm CFFG runs in O((max(V C)jgj)2max(arc)c) time, step (1) can be done

in O(((j�hjcjsj)2j�hj)c) = O(j�hj2c+1jsj2c) time.

� As algorithm PFFG runs in O((max(V C)jgj)2jP jc2) time, step (2) can be done in
O((j�hj)cjsj)2jP jc2) = O(j�hj2cjsj2jP jc2) time.

� As step (3) e�ectively examines each arc and vertex in the pruned full form graph, step
(3) can be done in O(jV j+ jAj) = O(j�hjcjsj+ j�hjc+1jsj) = O(j�hjc+1jsj) time.

� As the lexicon DFADFAFF (D) has jQDj states and the DFA created in step (4) has jV j
states, step (4) can be done in O(jV jjQDj) = O(j�hjcjsjjQDj) time
(see Table 2.3). Note that though each state in the lexicon DFA is the source of

at most (j�hj + j�vj) transitions, each state in the DFA created in step (3) is the
source of at most j�hj transitions; hence, each vertex in the graph associated with

the transition diagram of the intersection DFA of these two DFA can be the source
of at most j�hj arcs. Thus, the graph associated with the transition diagram has

jV 0j � jV jjQDj = max(V C)jgjjQDj = j�hjcjsjjQDj vertices and jA0j � jV 0jj�hj =
j�hjcjsjjQDjj�hj = j�hjc+1jsjjQDj arcs.

� As depth-�rst search runs in O(jV j+ jAj) time, step (5) of this algorithm can be done

in O(jV 0j+ jA0j) = O(j�hjcjsjjQDj+ j�hjc+1jsjjQDj) = O(j�hjc+1jsjjQDj) time.

Hence the algorithm forDP-Decode described above runs in O(j�hj2c+1jsj2jP jc2jQDj) time,
which is �xed-parameter tractable relative to c and j�hj.

Proof of (4): As it is always the case that c � jsj, the result follows from (3) and

Lemma 2.1.33.

Proof of (5): The required algorithm is a modi�cation of the algorithm given in

part (7) of Theorem 4.5.4 in which step (2) is modi�ed such that in the set of DFA to
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be intersected, the surface form DFA for surface form string s replaces the lexical form DFA

and DFAFF (D) is added. Step (2) now runs in in O(jQjcjP jjsjjQDj(j�hj + j�vj)2) time.
As the graph associated with the transition diagram for this modi�ed intersection DFA

has jV j � (jQjc)jP j(juj + 1)jQDj � 2jQjcjP jjujjQDj vertices and jAj � (jQjc)jP j(juj + 1)jQDj
(j�hj + j�vj) � 2jQjcjP jjujjQDj(j�hj + j�vj) arcs, step (3) now runs in O(jQjcjP jjujjQDj
(j�hj + j�vj)) time. Thus, the algorithm for DP-Decode runs in O(jQjcjP jjP jjujjQDj
(j�hj+ j�vj)2) time, which is �xed-parameter tractable relative to jP j, c, and jQj.
Proof of (6): As it is always the case that c � jsj, the result follows from (5) and

Lemma 2.1.33.

Proofs of (7 { 9): Follow from the W -hardness results for BDFAI established in

parts (5 { 7) of Theorem 4.2.4, the reduction in Lemma 4.5.3 from BDFAI to DP-Decode

in which jP 0j = jAj, c0 = js0j = 2k jQ0j = jQj, j�0
vj = j�j + 1, and j�0

hj = 1, and

Lemma 2.1.25.

Proofs of (10) and (11): Follow from (1) and (2) and Lemma 2.1.35.

4.5.3 Implications

All parameterized complexity results for problems DP-Encode and DP-Decode that are
either stated or implicit in the lemmas and theorems given in the previous section are shown
in Tables 4.10 and 4.11. Consider the implications of these results for each problem in turn:

� DP-Encode: The sources of polynomial-time intractability are fjP j; c; jQjg and

fc; j�hj; j�vjg. The mechanisms associated with these sources are the constraint set
(speci�cally the intersection DFA formed from the systolic DFA associated with all
constraint CDFA) and the set of possible context-size strings. All of the aspects in

these sources are de�ning properties of a Declarative Phonology system, and hence
none of them can be eliminated to reduce the complexity of the problem. However,
as context-sizes are typically very small and alphabets are of constant size, the FPT

algorithm underlying the latter source should be eÆcient in practice (that is, assum-

ing that the simpli�ed representation and associated notion of context-size used here

translate via reductions to a version of Declarative Phonology that is actually used).
A closer inspection of the algorithm in part (5) of Theorem 4.5.4 shows that the size of

each set C(ui) is actually j�hjUh(ui)j�vjUv(ui), where Uh(ui) and Uv(ui) are the numbers

of underspeci�ed visible and hidden elements in ui. Though Uh(ui) = Uv(ui) = d c
2
e

in the worst case, they will typically be smaller; thus, jC(ui)j (and jV C(ui)j) will be
less than j�hjd

c
2
ej�vjd

c
2
e, and the algorithm will run much faster than the original anal-

ysis suggests. This also shows that the latter source of polynomial-time intractability
above is actually a generalization (in the sense of Lemma 2.1.30) of another source of

polynomial-time intractability that is based on the number of underspeci�ed hidden

and visible elements in the given form.

147



� DP-Decode: The sources of polynomial-time intractability are fjP j; c; jQjg and

fc; j�hjg. The mechanisms associated with these sources are the constraint set

(speci�cally the intersection DFA formed from the systolic DFA associated with all con-

straint CDFA) and the set of possible context-size strings with respect to a

fully-speci�ed visible component. As in DP-Encode, all of the aspects in these

sources are de�ning properties of a Declarative Phonology system, and hence none

of them can be eliminated to reduce the complexity of the problem; however, for the

same reasons given above, the FPT algorithm underlying the latter source should be

eÆcient in practice (though, as the whole hidden component is unspeci�ed and the

whole visible component is speci�ed in every given surface form, the original analy-

sis may not be bettered by considering the numbers of unspeci�ed visible and hidden

elements in the given surface form as aspects). As is the case for FST-based rule sys-

tems that operate by FST composition and the KIMMO system, part (5) of

Theorem 4.5.5 shows that the lexicon can be treated as just another constraint.

Further analyses of the role of the lexicon in the NP -hardness of DP-Decode may
pro�t from techniques that characterize the sets encoded in constraints (see discussion
in Section 4.2).

The latter sources of polynomial-intractability in both problems above are particularly
intriguing because they suggest that what may be important to the computational
complexity of constraint-based systems is not the length of the given form (as was suggested

by the sources of polynomial-intractability fjuj; j�sjg and fjsj; j�ujg for KIM-Encode and
KIM-Decode, respectively) but rather the length of the longest context-size of any
constraint that evaluates this form. This sheds an interesting light on the discussion of

the sources of polynomial-intractability for the KIMMO system, in that it seems that what is
important is not so much the number of harmony-like processes (as was

suggested in [KC88]) but rather the extent in the representation over which such
processes can operate, i.e., how \long-range" such processes are. This makes more urgent the
derivation of a notion of context for FST, so that this conjecture can be formally tested

against constraint-based systems like KIMMO that are based on FST rather than DFA.
Though context-size does not seem so important in simpli�ed segmental grammars

(recall that SSG-Encode and SSG-Decode are NP -hard when the context-size is 2),
it would be interesting to know if it is important in more general FST-based rule systems
such as those examined in Section 4.3.

As noted in Section 4.5.1, the problems considered here do not seem to correctly

formalize Declarative Phonology; hence, one might argue, results derived for these

problems are irrelevant and discussion of the implications of these results is a waste of time.

Several such objections to the problems analyzed here are as follows:

1. The problems analyzed here cannot model arbitrarily complex autosegmental

representations.

2. The problems analyzed here allow Declarative Phonology systems in which
constraints conict; moreover, this conict is not mediated by the Elsewhere Condition

(see Footnote 3).
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3. The problems analyzed here allow Declarative Phonology systems that do not have

solutions, i.e., systems of constraints that cannot be satis�ed by any possible full form.

Consider each of these objections in turn.

1. The discussions in Section 2.2.2 and Chapter 3 stressed that the simpli�ed representa-

tions used here are not intended to directly model arbitrarily complex autosegmental

representations, but are rather broad and abstract characterizations of such represen-

tations. The results derived here are useful to the extent that the representations

examined here are special cases of, and hence can be translated into, representa-

tions used in practice. If this is in fact the case, hardness results (and, to a lesser

extent, algorithms) derived relative to the simpli�ed representations considered here

will automatically propagate to and hold relative to representations used in practice.

2. Some of the reductions given here for DP-Encode and DP-Decode show that
the encoding and decoding problems associated with Declarative Phonology systems

are NP -hard when instances are restricted such that there is no pairwise constraint
conict and the Elsewhere condition does not apply. This is the case with the

reductions ultimately originating from Dominating set in part (10) of
Theorem 4.5.4 and part (8) of Theorem 4.5.5. In the instances constructed by these
reductions, each created constraint CDFA requires only that one of a particular set

of symbols occurs somewhere in the requested form, and thus any pair of constraints
can always avoid conict by setting symbols in di�erent parts of the requested form;
moreover, as each constraint CDFA operates over the whole form, no constraint CDFA

is more speci�c than any other and the Elsewhere Condition does not apply.
While the reductions ultimately originating from Longest common subsequence

sidestep the Elsewhere Condition for the same reason, they cannot in general avoid
pairwise constraint conict as the strings corresponding to two constraints may not
share a common subsequence. Thus, while all proofs given here do not seem to hold

in the case of Declarative Phonology systems that do not allow pairwise conict or
allow limited pairwise conict resolved by the Elsewhere condition, enough proofs

(namely, those ultimately originating from Dominating set) still work to establish
the NP -hardness of and W -hardness relative to certain sets of aspects for such
systems. Moreover, as the FPT algorithms given here work as described regardless

of constraint conict or the application of the Elsewhere Condition, all sources of

polynomial-time intractability derived here also hold for these systems (modulo the
representation-translations in (1)).

3. This is intuitively the most problematic of the objections raised. However, it is

ultimately the least problematic, as it can be shown that for an NP -hard decision

problem �, if there is a polynomial-time algorithm that solves the subproblem �0 of �

de�ned such that each instance of �0 is guaranteed to have a solution then P = NP

[JoD85, page 291]. To see this, suppose such an algorithm exists and p(n) is the

polynomial bounding the running time of this algorithm. We can use such an algo-

rithm to solve the general problem � in the following manner: Given any instance
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I of �, run that algorithm on I and keep track of the number of steps used. If the

instance has a solution, it will be found in polynomial time; if the instance does not

have a solution, this will be detectable as soon as the algorithm executes p(jIj) + 1

steps and thus can be veri�ed in polynomial time. Thus, this algorithm solves � in

polynomial time, which implies that P = NP . Note that this argument can just

as easily be rephrased in terms of W -hardness, FPT algorithms, and partial col-

lapses of the W -hierarchy. Hence, all hardness results derived relative to the problems

analyzed here also hold for Declarative Phonology systems that are guaranteed to have

solutions. Moreover, as the FPT algorithms given here work as described regardless

of where or not the given Declarative Phonology system has a solution, all sources of

polynomial-time intractability derived here also hold for these systems (modulo the

representation-translations in (1)).

Thus, the results of the analyses done in this thesis are relevant to Declarative

Phonology systems.

In Declarative Phonology systems, constraints can only add material to a given
surface or lexical form to create a full form that is consistent with that given form; hence,
though there can be insertion, there cannot be deletion. As DP-Encode and DP-Decode

are special cases of encoding and decoding problems in Declarative Phonology that
allow insertion, all NP - and W -hardness results derived above still hold for these problems.

To say anything more requires a more explicit model of how such insertion might take place
in the simpli�ed representation used here. Consider one such model in which hidden-visible
symbol pairs may be inserted within or around given lexical or surface forms and that these

given forms specify where such insertion can occur. In the case of lexical or surface form
strings, this can be done by special symbols, and in the case of lexical or surface form

DFA, this can be done by the addition of appropriate states and transitions. Using tech-
niques described in Section 4.4.3, if insertions are allowed, certain W -hardness results hold
in more restricted cases or relative to higher levels of theW -hierarchy. It is also possible that

certain parameterized problems that were previously known to have FPT algorithms may
be shown W -hard. The full extent of these changes will not be addressed here. For now,
simply observe that the FPT algorithms based on DFA intersection will still work relative

to the new given form DFA, and the FPT algorithms based on the graph-construction can
be modi�ed to accommodate insertion (sketch of proof: add additional columns of vertices

before V C(u1), between V C(ui) and V C(ui+1), and after V C(u(juj�c)+1) such that these new
columns encode the contexts that surround and comprise arbitrary-length insertions).

Consider now what these results have to say about the various search problems associ-

ated with Declarative Phonology systems. First, note the following relationships between

DP-Encode and DP-Decode and their associated search problems:

� Any instance of DP-Encode can be solved by a single call to ENCDP; moreover, any

instance of ENCDP can be solved by the FPT algorithms given in the previous section

for DP-Encode.

150



� Any instance of DP-Decode can be solved by a single call to DECDP; moreover, any

instance of DECDP can be solved by the FPT algorithms given in the previous section

for DP-Decode.

The following relationship, however, is perhaps more surprising:

� Any instance ofDP-Encode in which the lexical form contains a fully speci�ed surface

form can be solved by a single call to CHKDP; moreover, any instance of CHKDP can

be solved by slightly modi�ed versions of the FPT algorithms given in the previous

section for DP-Encode. Problem DP-Encode is NP -hard under the restriction in

the former by the reductions given in Lemmas 4.5.1 and 4.5.2. In the case of the latter,

the FPT algorithms must be modi�ed to use the given surface form s to restrict the

depth-�rst searches in the graph and intersection DFA constructions to ensure that

derived full forms are consistent with both u and s.

Hence, modulo various conjectures, ENCDP, DECDP, and CHKDP do not have
polynomial-time algorithms and have the same sources of polynomial-time intractability as

their corresponding decision problems. This is very di�erent from the situation with either
simpli�ed segmental grammars or the KIMMO system, in that both ENCDP and CHKDP
are not solvable in polynomial time unless P = NP . However, oddly enough, this situation
is the same as that for the FST-based rule systems examined in
Section 4.3 and the automaton-based formulation of Optimality Theory examined in

Section 4.6. As will be discussed in more detail in Section 4.7, one of the key factors in
this pattern seems to be the simpli�ed autosegmental representation used by Declarative

Phonology and Optimality-Theoretic systems in this thesis.

For reasons discussed earlier in this section, the results derived above are relevant to im-

plementations of Declarative Phonology systems to the extent that they suggest
(albeit relative to a small set of aspects) what the sources of polynomial-time

intractability in these systems may and may not be. These results are also useful, in
conjunction with those derived for FST-based rule systems that operate by FST
composition, the KIMMO system, and Optimality Theory, in characterizing the

computational structure of phonological processing in general.

The above suggests many directions for future research. Several of the more intriguing
directions are:

1. Fully characterize the e�ects of constraint conict and the Elsewhere Condition on the

computational complexity of DP-Encode and DP-Decode.

2. Characterize the computational complexity ofDP-Encode andDP-Decode in terms
of trade-o�s between various aspects of the constraint CDFA, e.g., structure of the set

of strings encoded by the CDFA.

As with FST-based rule systems that operate by FST composition and the KIMMO system,

the research in (2) may pro�t by formulating the constraints implicit in the constraint CDFA

and the lexicon DFA in logic along the lines suggested in Section 4.2.
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Table 4.10: The Parameterized Complexity of the DP-Encode Problem.

Alphabet Sizes (j�hj,j�vj)
Parameter (Unb,Unb) (Unb,Prm) (Prm,Unb) (Prm,Prm)

{ NP -hard 62 XP 62 XP 62 XP

jP j W [t]-hard W [t]-hard W [t]-hard W [t]-hard

c W [2]-hard W [2]-hard W [2]-hard FPT

juj W [2]-hard W [2]-hard W [2]-hard FPT

jQj 62 XP 62 XP 62 XP ???

jP j; c W [1]-hard W [1]-hard W [1]-hard FPT

jP j; juj W [1]-hard W [1]-hard W [1]-hard FPT

jP j; jQj ??? ??? ??? ???

c; juj W [2]-hard W [2]-hard W [2]-hard FPT

c; jQj W [2]-hard W [2]-hard W [2]-hard FPT

juj; jQj W [2]-hard W [2]-hard W [2]-hard FPT

jP j; c; juj W [1]-hard W [1]-hard W [1]-hard FPT

jP j; c; jQj FPT FPT FPT FPT

jP j; juj; jQj FPT FPT FPT FPT

c; juj; jQj W [2]-hard W [2]-hard W [2]-hard FPT

jP j; c; juj; jQj FPT FPT FPT FPT

Table 4.11: The Parameterized Complexity of the DP-Decode Problem.

Alphabet Sizes (j�hj,j�vj)
Parameter (Unb,Unb) (Unb,Prm) (Prm,Unb) (Prm,Prm)

{ NP -hard 62 XP 62 XP 62 XP

jP j W [t]-hard W [t]-hard W [t]-hard W [t]-hard

c W [2]-hard W [2]-hard FPT FPT

jsj W [2]-hard W [2]-hard FPT FPT

jQj 62 XP 62 XP ??? ???

jP j; c W [1]-hard W [1]-hard FPT FPT

jP j; jsj W [1]-hard W [1]-hard FPT FPT

jP j; jQj ??? ??? ??? ???

c; jsj W [2]-hard W [2]-hard FPT FPT

c; jQj W [2]-hard W [2]-hard FPT FPT

jsj; jQj W [2]-hard W [2]-hard FPT FPT

jP j; c; jsj W [1]-hard W [1]-hard FPT FPT

jP j; c; jQj FPT FPT FPT FPT

jP j; jsj; jQj FPT FPT FPT FPT

c; jsj; jQj W [2]-hard W [2]-hard FPT FPT

jP j; c; jsj; jQj FPT FPT FPT FPT
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4.6 Optimality Theory

4.6.1 Background

Until recently, purely constraint-based linguistic theories like Declarative Phonology have

assumed that surface forms must satisfy all constraints, and hence that constraints can-

not be violated. As noted in the previous section, this requires that systems be structured

such that constraints do not conict at all, or at least always have a conict-free resolu-

tion. This often results in descriptions of linguistic phenomena in which individual con-

straints are complex and very speci�c to the phenomenon of interest [LP93, Sections 2.1

and 2.6]. An alternative approach to the structuring of constraint-based systems is taken by

Optimality Theory [MP93, PS93]. Under Optimality Theory, the surface forms associated

with a particular lexical form need not satisfy all given constraints | rather, these surface

forms can violate some constraints as long as their associated full forms violate all of the

given constraints in some minimal fashion over the space of all possible full forms that are
associated with the given lexical form. This allows descriptions of phonological phenomena

in which individual constraints are much simpler and more general; however, this simplicity
is purchased at the expense of a much more complex manner of constraint-set evaluation.

An Optimality-Theoretic system g = hGen; C;Oi consists of a generator Gen that creates
the sets of candidate full forms associated with given lexical forms, a set of constraints C, and
a total ordering O on these constraints such that C and O collaborate within a function Eval
to select the optimal subset of the candidates generated by Gen. The resulting grammar is

con�gured as follows (adapted from example (5) on page 4 of [MP93]):

Gen(u)! ff1; f2; : : :g
Eval(C;O; ff1; f2; : : :g)! ff1; f2; : : :gopt ; fs1; s2; : : :g

It is hypothesized (though by no means yet proven [Ell96]) that Gen and C are the same
across all human languages and that only O and the lexicon are language-speci�c.

Every generator Gen must satisfy the following properties:

1. Freedom of Analysis: An arbitrary amount of structure can be added to a given

lexical form to create a candidate full form.

2. Containment: No element may be removed from the given lexical form. This form is

thus always contained in every one of its associated candidate full forms.

Each constraint has an associated set of marks fm1; m2; : : :mkg, each of which denotes a

particular kind of violation of that constraint. This set is totally ordered, i.e., m1 � m2 �
: : : � mk, such that this order expresses the relative severity of each type of violation,
e.g., if m � m0, a violation denoted by mark m is more severe than that denoted by m0.

This order on marks is paralleled by the order O on the constraints, which essentially gives

a decreasing order of importance of the constraints. This order O is expressed in term
of a relation � such that for constraints c and c0, c � c0 means that c has priority over c0
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Candidate Constraint Violations
Full Forms c1 c2 c3

f1 fa1; a1; b1g fb2g �

f2 fb1g fa2g fa3g
f3 fb1g fb2g fb3g

(a)

Candidate Constraint Violations

Full Forms c1 c2 c3
f1 [ 2 1 ] [ 0 1 ] [ 0 0 ]
f2 [ 0 1 ] [ 1 0 ] [ 1 0 ]

) f3 [ 0 1 ] [ 0 1 ] [ 0 1 ]

(b)

Candidate Constraint Violations
Full Forms [ c1 c2 c3 ]

f1 [ 2 1 0 1 0 0 ]

f2 [ 0 1 1 0 1 0 ]

) f3 [ 0 1 0 1 0 1 ]

(c)

Figure 4.10: Evaluation of Candidate Full Forms in Optimality Theory. (a) Marks assigned
to candidate full forms f1, f2, and f3 by binary constraints c1, c2, and c3 which have the

associated mark-sets fa1; b1g, fa2; b2g, and fa3; b3g, respectively. (b) Evaluation of candi-
dates when c1 � c2 � c3 and ai � bi, 1 � i � 3. Note that sets of marks from (a) have
been replaced by the appropriately-ordered weight vectors. Optimal candidates are agged

by an arrow ()), mark-values that caused the elimination of candidates are underlined, e.g.,
1, and mark-values that resulted in a candidate being chosen as optimal are framed by a
box, e.g., 0 . (c) Evaluation of (b) relative to appropriately concatenated weight vectors.

This shows more clearly the lexicographic optimality ordering on weight vectors.

in O. Each candidate full form has an associated set of marks composed of the union of

the sets of marks assigned to that form by each constraint. The optimal full forms are

those such that their sets of associated marks, when sorted �rst by the priority-order O
assigned to the constraints and then by the mark order internal to each constraint, are
lexicographically least. This manner of constraint evaluation and form selection is illustrated

in Figures 4.10 and 4.11. Note that under this scheme, a constraint violation within a

candidate full form no longer has an absolute and independently-assignable importance |

rather, that violation's severity and subsequent impact on the optimality of that full form
is relative not only on what other constraint violations occur within that form, but also on

the nature of the constraint violations in all other candidate full forms.
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Candidate Constraint Violations
Full Forms c3 c1 c2

) f1 [ 0 0 ] [ 2 1 ] [ 0 1 ]

f2 [ 1 0 ] [ 0 1 ] [ 1 0 ]

f3 [ 0 1 ] [ 0 1 ] [ 0 1 ]

(d)

Candidate Constraint Violations

Full Forms c1 c2 c3
f1 [ 2 1 ] [ 1 0 ] [ 0 0 ]

) f2 [ 0 1 ] [ 0 1 ] [ 1 0 ]
f3 [ 0 1 ] [ 1 0 ] [ 0 1 ]

(e)

Figure 4.11: Evaluation of Candidate Full Forms in Optimality Theory (Cont'd).
(d) Evaluation of candidates when c3 � c1 � c2 and ai � bi, 1 � i � 3.
(e) Evaluation of candidates when c1 � c2 � c3, ai � bi for i 2 f1; 3g, and b2 � a2.

The computational work done on Optimality Theory to date has focused primarily on
algorithms for generating optimal full forms from lexical forms [Ell94, FS97, Ham97, Kar98,

Tes95, Wal96] and learning constraint orderings from full form examples [Tes96, Tes97a,
TS96] (see also [Wal96, Section 1.2] for an excellent review of various implementations of
Optimality Theory). The complexity of the encoding problem for two �nite-state formula-

tions of Optimality-Theoretic systems has been addressed in [Eis97a] and [War96a, War96b].
This section contains the �rst complete presentation of the partial results given (without

proof) in [War96a, War96b], and extends the framework described in those references both
to use a more complex representation incorporating hidden and visible components and to
give a formulation and analysis of the decoding problem for Optimality-Theoretic systems.

Following [Eis97a, Ell94, FS97], the problems examined below formalize Optimality

Theory in terms of �nite-state automata which operate on strings. As in the formaliza-

tion of Declarative Phonology in the previous section, these strings will be encodings of the
simpli�ed representation described in Section 2.2.2. In the Optimality-Theoretic systems

considered below, Gen will be restricted to specifying underspeci�ed elements in the given
lexical form rather than adding arbitrary amounts of structure to this form; as such a Gen

is implicit in the given lexical or surface form under the representation used in this thesis,

Gen will not formally be a separate part of the problem instance. This not only simpli�es
the proofs in the next section, but also focuses the analysis on the simplest type of Gen

that can alter structures within such systems and makes the results derived here compati-
ble with those derived in this thesis for the other phonological theories, which are similarly

restricted such that they cannot add structure to or delete structure from the given form.

The formalization of individual components of an Optimality-Theoretic system are as follows:
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� Lexical, surface, and full forms will be speci�ed as either strings or DFA as described

in Section 4.5.1.

� The constraints in C will be restricted to constraints that have only two kinds of marks

(binary marks). In such a system, one of these marks is an expression of no violation,

and can e�ectively be ignored. Such constraints will be speci�ed as CDFA, and the

number of violations of a constraint relative to a given candidate full form string will

be equal to the number of context-size substrings of that candidate full form string

that are not accepted by the DFA underlying the CDFA for that constraint.

� The lexicon D � (�v�h)
+ will be speci�ed as a DFA DFA(D) =

hQD;�h [ �v; ÆD; sD; FDi on jQDj states which recognizes the language D+.

The details of the operation of Eval relative to given forms and constraints in this formulation

are somewhat involved, and will be given in Section 4.6.2.

Several �nite-state formulations of Optimality Theory di�erent from that given here
have been proposed to date [Ell94, FS97, Kar98]; however, the only such formulation that

has been the subject of a complexity-theoretic analysis is that given by Eisner in [Eis97a].
In this formulation, autosegmental structures, Gen, and constraints are represented as

transition-weighted FSA, and the evaluation of a given form relative to Eval corresponds
to the intersection of the DFA for the form, Gen, and the constraints and the subsequent
derivation from the created intersection DFA of the lowest-total-weight paths from start to

�nal states, each of which corresponds to an optimal full form that is consistent with the
given form. Eisner has shown that the encoding problem for the version of this formulation
in which constraints can only examine the features on all tiers at a single moment in time

(and hence have context-size 1) is NP -hard [Eis97a, Section 4.2]. Modulo the use of DFA
rather than CDFA for modeling constraints and the use of an unrestricted autosegmental

representation rather than the simpli�ed representation used here, the �nite-state machin-
ery invoked in Eisner's formulation is identical to that used in this section. Indeed, both
formulations ultimately represent autosegmental structures as symbol strings in which each

symbol encodes the set of features in all autosegments that are are linked to a particular

slot on the timing tier (that is, each formulation essentially uses the second of the encodings
of autosegmental structures into symbol strings given on page 40 in Section 2.2.3). Hence,

it should be possible to adapt the reductions and algorithms given in the following sec-
tion to produce a systematic parameterized analysis for Eisner's formulation of Optimality

Theory. As the details of Eisner's restrictions on constraints are somewhat involved, such an

analysis is left as a topic for future research. For the purposes of this thesis, the formulation
de�ned in this section is more appropriate than that given in [Eis97a] because the formulation

de�ned here is more useful for exploring the computational complexity of the mechanisms
underlying Optimality Theory (see Section 2.2.2 and Chapter 3).
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My analysis will focus on the following problems:

OT-Encode

Instance: An Optimality-Theoretic system g = hGen; C;Oi and a lexical form string u.

Question: Do the full form strings created by Gen from u that are optimal relative to C

under O have no violations relative to any of the CDFA in C?

OT-Decode

Instance: An Optimality-Theoretic system g = hGen; C;Oi, a lexicon D, and a surface

form string s.

Question: Is there a lexical form string u such that u is generated by D and there is a full

form string f created by Gen from u that is optimal relative to C under O, has surface form

string s, and has no violations relative to any of the CDFA in C?

From a computational perspective, the optimization inherent in the constraint-evaluation

procedure underlying Optimality-Theoretic systems is very much like the that in various
NP -hard optimization problems studied in computer science and operations research, e.g.,
route planning and task scheduling, and thus gives such systems an unmistakable aura of

NP -hardness. From a linguistic perspective, giving constraints and constraint-evaluation
procedures the ability to count violations also seems to grant (perhaps unnecessary) power
[Ell95, FS97, Kar98]. What is perhaps most surprising about the results derived in the

next section is that they suggest that the NP -hardness of the encoding and decoding
problems associated with Optimality-Theoretic systems stems neither from the optimiza-

tion in constraint-evaluation or from the ability to count violations but rather (as is the case
with the other automaton-based phonological theories examined in this chapter) from the
ability of Optimality-Theoretic systems to encode and solve constraint-satisfaction problems

like BDFAI.

4.6.2 Analysis

The systematic parameterized analysis given in this section will focus on the following

aspects:

� The number of CDFA in C (jCj).

� The maximum context-size of any CDFA in C (c).

� The length of the given lexical/ surface form (juj / jsj).

� The maximum number of states in any CDFA in C (jQj).

� The sizes of the hidden and visible alphabets (j�hj, j�vj).

Consider the following reductions.

157



Lemma 4.6.1 BDFAI �m OT-Encode such that j�vj = 1.

Proof: Given an instance hA;�; ki of BDFAI, construct the following instance

hC 0; c0; O0;�0
h;�hU ;�

0
v;�vU ; u

0i of OT-Encode: Let �0
h, �hU , �

0
v, �vU , u

0, and c0 be as

de�ned in Lemma 4.5.1, C 0 be constructed in the same manner as P 0 in Lemma 4.5.1, and

O0 be an arbitrary total order over C 0. This construction can be done in time polynomial

in the given instance of BDFAI. Note that as Gen is implicit in u, the only full forms con-

sidered by OT-Encode are those that are consistent with u. Moreover, as OT-Encode is

only interested in full forms that do not violate any CDFA in C 0, OT-Encode is actually

only interested in full forms that are accepted by all CDFA in C 0. Hence, OT-Encode is

equivalent to DP-Encode, and the reduction speci�ed here works for the same reasons as

given in Lemma 4.5.1.

Note that in the constructed instance of OT-Encode, jC 0j = jAj, c0 = ju0j = 2k,

jQ0j = jQj, j�0
hj = j�j+ 1, and j�0

vj = 1.

Lemma 4.6.2 BDFAI �m OT-Encode such that j�hj = 1.

Proof: Given an instance hA;�; ki of BDFAI, construct the following instance
hC 0; c0; O0;�0

h;�hU ;�
0
v;�vU ; u

0i of OT-Encode: Let �0
h, �hU , �

0
v, �vU , u

0, and c0 be as
de�ned in Lemma 4.5.2, C 0 be constructed in the same manner as P 0 in Lemma 4.5.2, and

O0 be an arbitrary total order over C 0. This construction can be done in time polynomial
in the given instance of BDFAI. By the same reasoning as given above in Lemma 4.6.1, the

reduction speci�ed here works for the same reasons as given in Lemma 4.5.2.

Note that in the constructed instance of OT-Encode, jC 0j = jAj, c0 = ju0j = 2k,

jQ0j = jQj, j�0
hj = 1, and j�0

vj = j�j+ 1.

Lemma 4.6.3 BDFAI �m OT-Decode such that j�vj = 1.

Proof: Given an instance hA;�; ki of BDFAI, construct the following instance
hC 0; c0; O0;�0

h;�hU ;�
0
v;�vU ; D

0; s0i of OT-Decode: Let �0
h, �hU , �

0
v, �vU , D

0, s0, and c0

be as de�ned in Lemma 4.5.3, C 0 be constructed in the same manner as P 0 in Lemma 4.5.3,

and O0 be an arbitrary total order over C 0. This construction can be done in time polynomial

in the given instance of BDFAI. By the same reasoning as given above in Lemma 4.6.1, the
reduction speci�ed here works for the same reasons as given in Lemma 4.5.3.

Note that in the constructed instance of OT-Decode, jC 0j = jAj, c0 = ju0j = 2k,

jQ0j = jQj, j�0
hj = j�j+ 1, and j�0

vj = 1.

The previous lemmas show that the reductions for OT-Encode and OT-Decode are
identical to those for DP-Encode and DP-Decode in Section 4.5.2. Though the

corresponding FPT algorithms will use approximately the same techniques, there are some

major di�erences introduced by the need to be able to count constraint violations in

Optimality Theory. In particular, the ubiquitous depth-�rst searches in directed graphs that
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characterized the FPT algorithms for Declarative Phonology will be replaced by

single-source shortest-path computations in arc-weighted directed graphs in the correspond-

ing FPT algorithms for Optimality Theory. This shortest-path formulation for Optimality

Theory was proposed by Ellison in [Ell94] and has subsequently been used by Eisner [Eis97a].

As this approach underlies all FPT algorithms for Optimality Theory given in this thesis,

it is worth looking at in more detail.

The shortest-path approach to solving problems associated with Optimality Theory was

originally proposed in the context of �nite-state implementations of Optimality Theory, and

is based on the following reasoning:

1. Marks assigned by a constraint can be represented within that constraint's

associated DFA by weight vectors associated with that DFA's transitions:

Let m1; m2; : : : ; mk be the marks associated with a constraint, and let

v = [v1; v2; : : : ; vk] be a weight vector of length k where vi is the number of marks

of type mi, 1 � i � k. Each transition in a constraint DFA can be visualized as
assigning some set of marks to the representation being evaluated; let the vector

corresponding to this set be the weight vector for that transition. These weight-vectors
can be totally ordered lexicographically in decreasing order on mark index, e.g., for
a weight vector based on the binary marks m1 and m2, this ordering has the form

[0; 0] � [0; 1] � [0:2] � : : : � [1; 0] � [1; 1] � [1; 2] : : : � [2; 0] � [2; 1] � [2; 2] � : : :.
Let 0k represent the all-zero weight vector of length k. Note that this ordering
expresses the relative optimality of various mark-assignments under Optimality

Theory, with 0k being the best possible mark-assignment for any k > 0.

2. The set of marks associated by a transition-weighted constraint DFA with

a candidate full form is encoded in the vector-weight that is the sum of

all weight vectors associated with transitions invoked in processing that

candidate: This is implicit in (1).

3. Transition-weighted constraint DFA can be intersected in a manner that

preserves a given constraint ordering: Consider the following modi�cation of the

DFA intersection operation given in Section 2.2.3: Given a transition Æ(q; a) for some
state q 2 Q and symbol a 2 � in some transition-weighted DFA, let w(Æ(q; a)) be the

vector-weight associated with that transition. Given two vector-weights
w1 = [w11; w12; : : : ; w1k] and w2 = [w21; w22; : : : ; w2l], the concatenation of these vec-

tors [w1w2] is the k + l-length vector [w11; w12; : : : ; w1k; w21; w22; : : : ; w2l]. Given two

transition-weighted DFA A1 = hQ1;�; Æ1; s1; F1i and A2 = hQ2;�; Æ2; s2; F2i, let the
priority weighted intersection of A1 and A2 be de�ned by the transition-weighted
DFA A = hQ1 � Q2;�; Æ; [s1; s2]; F1 � F2i, where for all q1 2 Q1, q2 2 Q2, and a 2 �,

Æ([q1; q2]; a) = [Æ1(q1); Æ2(q2)] and w(Æ([q1; q2]; a)) = [w(Æ1(q1))w(Æ2(q2))]. By reasoning

analogous to that given for DFA intersection in Section 2.2.3, this construction can be

done in O(jQ1jjQ2jLT 2) time, where L is the sum of the lengths of the weight-vectors of
A1 and A2, and T = j�j, and the intersection DFA that it produces has jQ1jjQ2j states
and jQ1jjQ2jT transitions. This type of intersection operation is no longer symmetric

as the transition-weights associated with the priority weighted intersection of A1 and
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A2 are not the same as those associated with the priority weighted intersection of A2

and A1. However, that is exactly what is necessary here. As the weights produced

under this operation assign priority to the �rst operand DFA under the lexicographic

vector-weight ordering given in (1), one can combine constraint DFA and preserve a

given constraint ordering by appropriately ordering the priority weighted intersection

of those DFA.

4. A single-source all-destination shortest-path algorithm can be applied to

extract the optimal forms from the transition-weighted intersection DFA

created in (3): Note that there is no vector weight a that can be added to another

vector-weight b such that the resulting vector-weight precedes b in the total order

given in (1); hence, the graph associated the transition diagram for the intersection

DFA created in (3) do not have negative-weight cycles, i.e., a cycle such that the

sum of the weights on the arcs in that cycle is negative and any path containing that

cycle can lower its summed arc-weight by an arbitrary amount by repeated traversals

around the cycle. By (2), the optimal forms encoded in the intersection DFA created
in (3) correspond to paths of minimum weight (relative to the total order in (1)) from
the start state to a �nal state. These minimum-weight paths can be computed from

the graph associated with the transition diagram for this intersection DFA using a
standard single-source shortest-path algorithm (see [CLR90, Chapter 25]); as there

are no negative-weight cycles in this graph, Dijkstra's algorithm (modi�ed such that
weight inequalities in this algorithm, e.g., w(eab) � w(eac) + w(ecb), are rephrased in
terms of the total order in (1) on weight vectors) can be used. Given an arc-weighted

directed graph = (V;A;W ), W : A 7! N , Dijkstra's algorithm can be implemented
such that it runs in O(jV j log jV j+ jAj) time.4

In Ellison's original proposal, a given FSA encodes the set of candidate full forms
associated by Gen with a particular lexical form, each constraint is speci�ed as a

transition-weighted i=o-deterministic FST that outputs the actual sequence of
constraint-violation marks associated with a given input form, the transition-weighted inter-

section FSA of the Gen-output DFA and the constraint FST is computed using the priority
weighted intersection operation described above to preserve the ordering on the constraints,
and the arc-weighted graph associated with the transition diagram for this intersection FST

is analyzed by a shortest-path algorithm to extract the optimal full forms. As noted by

Eisner [Eis97a], the constraint FST can be simpli�ed to FSA if the actual sequence of
marks is not important; this simpli�cation will be used in several of the FPT algorithms

described in the following theorems. Note that the reasoning above also establishes how
shortest-path computations can be used to extract optimal full forms from appropriately

constructed arc-weighted directed graphs in general; this observation will be used in several

of the other FPT algorithms given in these theorems.

4Recent work has shown that much faster algorithms are possible (see [Ram97] and references).
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Theorem 4.6.4

1. OT-Encode is NP -hard when jQj = 2 and j�vj = 1.

2. OT-Encode is NP -hard when jQj = 2 and j�hj = 1.

3. OT-Encode is NP -hard when j�hj = 2 and j�vj = 1.

4. OT-Encode is NP -hard when j�hj = 1 and j�vj = 2.

5. hc; j�hj; j�vji-OT-Encode is in FPT .

6. hjuj; j�hj; j�vji-OT-Encode is in FPT .

7. hjCj; c; jQji-OT-Encode is in FPT .

8. hjCj; juj; jQji-OT-Encode is in FPT .

9. hjCj; c; juj; j�vj1i-OT-Encode and hjCj; c; juj; j�hj1i-OT-Encode are W [1]-hard.

10. hc; juj; jQj2; j�vj1i-OT-Encode and hc; juj; jQj2; j�hj1i-OT-Encode are W [2]-hard.

11. hjCj; j�hj2; j�vj1i-OT-Encode is W [t]-hard for all t � 1.

12. hjQj2; j�vj1i-OT-Encode 62 XP unless P = NP .

13. hjQj2; j�hj1i-OT-Encode 62 XP unless P = NP .

14. hj�hj2; j�vj1i-OT-Encode 62 XP unless P = NP .

15. hj�hj1; j�vj2i-OT-Encode 62 XP unless P = NP .

Proof:

Proof of (1): Follows from the NP -hardness of BDFAI when jQj = 2 as established in
part (1) of Theorem 4.2.4 and the reduction in Lemma 4.6.1 from BDFAI to OT-Encode
in which jQ0j = jQj and j�0

vj = 1.

Proof of (2): Follows from the NP -hardness of BDFAI when jQj = 2 as established in

part (1) of Theorem 4.2.4 and the reduction in Lemma 4.6.2 from BDFAI to OT-Encode

in which jQ0j = jQj and j�0
hj = 1.

Proof of (3): Follows from the NP -hardness of BDFAI when j�j = 2 as established in

part (2) of Theorem 4.2.4 and the reduction in Lemma 4.6.1 from BDFAI to OT-Encode

in which j�0
hj = j�j and j�0

vj = 1.

Proof of (4): Follows from the NP -hardness of BDFAI when j�j = 2 as established in
part (2) of Theorem 4.2.4 and the reduction in Lemma 4.6.2 from BDFAI to OT-Encode
in which j�0

hj = 1 and j�0
vj = j�j.

Proof of (5): The following algorithm is a modi�cation of the implicit CDFA intersection

construction given in part (5) of Theorem 4.5.4 which takes into account the possibility of
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multiple violations of constraints and the evaluation of full forms that violate constraints

under Optimality Theory. This will be done by appropriately weighting the arcs of the

full form graph and looking for shortest paths in the resulting arc-weighted graph. As the

algorithm description given below will draw heavily on various terms and quantities de�ned

in part (5) of Theorem 4.5.4, the reader should perhaps review that notation before reading

the rest of this proof.

The steps in this algorithm for OT-Encode are as follows:

1. Construct the full form graph for u by applying algorithm CFFG from Theorem 4.5.4.

2. Add the appropriate arc-weights to the full form graph constructed in (1) to keep track

of the number of constraint violations in any path corresponding to a full

form string.

Each weight vector will be of length jCj such that the ith position in this vector is the

number of violations of the ith constraint in C under O. Given the division of the arcs

of the full form graph into A1 and A2 as given in step 2 of algorithm CFFG in part (5)
of Theorem 4.5.4, let the following weight vectors be assigned to the arcs in those sets:

A1: For all i and j, 1 � i � jV C(u1)j and 1 � j � c � 2, assign the weight vector to

arc (s; vpi;1) that counts the number of constraint violations of the �rst symbol
of svV C(1; vertV C(1; i)) relative to all CDFA in C with context-size 1, assign the

weight vector to arc (vpi;j; vpi;j+1) that counts, for each CDFA in C of context-
size c0 � (j + 1), the number of constraint violations of the c0-length suÆx of
the j + 1-length pre�x of vsV C(1; vertV C(1; i)), and assign the weight vector to

arc (vpi;(c�1); vertV C(1; i)) that counts, for each CDFA in C of context-size c0, the
number of constraint violations of the length-c0 suÆx of vsV C(1; vertV C(1; i)).

A2: For all i, v, and v0 such that 1 � i � juj � c, v 2 V C(ui), v 2 V C(u(i+1)), and
(v; v0) 2 A, assign the weight vector to arc (v; v0) that counts, for each CDFA in
C of context-size c0, the number of constraint violations of the length-c0 suÆx of

vsV C(i+ 1; v0).

The somewhat counterintuitive stipulation that constraint violations must be counted

relative to suÆxes of strings is to ensure that the number of constraint violations
relative to CDFA in C of context-size c0 � c are not overcounted, i.e., violations

relative to the same substring of u of size c0 are not counted multiple times.

3. Apply Dijkstra's algorithm (as modi�ed to operate relative to weight vectors) to

the arc-weighted graph constructed in (2) to determine the minimum-weight paths

between s and all vertices in V C(u(juj�c)+1) in that graph. By the reasoning given
earlier this section and the construction of the graph in (1) and (2) above, these

minimum-weight paths will correspond to the optimal full form strings for u relative

to C under O.

Note that max(V C, max(arc), jV j, and jAj have the same values as they did in part (5) of

Theorem 4.5.4:
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� max(V C) = (j�hjj�vj)c.

� max(arc) = max(j�hj; j�vj).

� jV j = max(V C)jgj = (j�hjj�vj)cjuj, where jV j is the number of vertices in the full form
graph constructed in (1).

� jAj = max(V C)max(arc)jgj = (j�hjj�vj)cjujmax(j�hj; j�vj), where jAj is the number
of arcs in the full form graph constructed in (1).

Consider now the running times of the individual steps in this algorithm:

� As algorithm CFFG runs in O((max(V C)jgj)2max(arc)c) time, step (1) can be done

in O(((j�hjj�vj)cjuj)2max(j�hj; j�vj)c) = O((j�hjj�vj)2cjuj2cmax(j�hj; j�vj)) time.

� As step (2) e�ectively examines each arc in the full form graph and can run potentially
all CDFA in C on these strings at a cost of O(c2) time each, step (2) can be done in

O(jAjjCjc2) = O((j�hjj�vj)cjCjc2jujmax(�hj; j�vj)) time.

� As Dijkstra's algorithm runs in O(jV j log jV j+ jAj) time, step (3) can be done in

O(max(V C)jgj logmax(V C)jgj+max(V C)max(arc)jgj)
= O((max(V C)jgj)2 +max(V C)max(arc)jgj)
= O((max(V C)jgj)2max(arc))
= O(((j�hjj�vj)cjuj)2max(j�hj; j�vj))
= O((j�hjj�vj)2cjuj2max(j�hj; j�vj))

time.

Hence the algorithm for OT-Encode described above runs in O((j�hjj�vj)2cjCjc2juj2
max(�hj; j�vj)) time, which is �xed-parameter tractable relative to c, j�hj, and j�vj.

Proof of (6): As it is always the case that c � juj, the result follows from (5) and

Lemma 2.1.33.

Proof of (7): The following algorithm is a modi�cation of the explicit CDFA intersection

construction given in part (7) of Theorem 4.5.4 which takes into account the possibility of
multiple violations of constraints and the evaluation of full forms that violate constraints

under Optimality Theory. This will be done by modifying the construction of the systolic
DFA such that the systolic DFA accept all full form strings instead of just those that have

no constraint violations, appropriately weighting the transitions of the systolic DFA, and

looking for shortest paths in the arc-weighted graph associated with the transition diagram
for the intersection DFA. As the algorithm description given below will draw heavily on

various terms and quantities de�ned in part (7) of Theorem 4.5.4, the reader should perhaps
review that notation before reading the rest of this proof.
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Consider the construction of systolic DFA that accept all full form strings. This can be

done by modifying the transition-set Æ2 in the speci�cation of the transition relation Æ in the

systolic DFA construction given in part (7) of Theorem 4.5.4 as follows:

Æ02. Map states in Qc to Qc relative to Æ, i.e., Æ02 = f(q; x; q0) j q = [s; q1; : : : ; qc] 2 Qc;

q0 = [s; Æ(s; x) and Æ(q1; x); : : : ; Æ(qc�1; x)] 2 Qcg.

This construction can still be done in O(jQjcj�j) time and produces a systolic DFA with at

most jQjc states and at most jQjcj�j transitions. Observe that systolic DFA created by this

modi�ed construction will accept all full form strings by a simpli�ed version of the reasoning

given in part (7) of Theorem 4.5.4.

Given this modi�ed systolic DFA construction, the steps in the algorithm are

as follows:

1. Construct the set C 0 of systolic DFA corresponding to the CDFA in C by applying the

modi�ed systolic DFA construction described above.

2. Add the appropriate transition-weights to each of the systolic DFA constructed in (1)

to keep track of the number of constraint violations in any sequence of transitions
corresponding to a computation on a full form string.

Each weight vector will be of length 1. Given the division of the transitions in the
transition relation for each systolic DFA into Æ1, Æ2, and Æ3 in the systolic DFA

construction given in part (7) of Theorem 4.5.4, let the following weight-vectors be
assigned to the transitions in each of these sets (keeping in mind that transition-set Æ2
has been replaced with the transition-set Æ02 de�ned above):

Æ1: Assign each transition in this set the weight 0.

Æ02: Assign each transition (q; x; q
0) such that q = [s; q1; : : : ; qc] 2 Qc and q

0 = [s; Æ(s; x);
Æ(q1; x); : : : ; Æ(qc�1; x)] 2 Qc the weight 0 if Æ(qc; x) 62 F and the weight 1 if
Æ(qc; x) 2 F .

Æ3: Assign each transition in this set the weight (juj � c) + 2.

Observe that the weights assigned to Æ02 indicate when a substring of length c of the

given full form string has or has been accepted by the CDFA associated with the
systolic DFA, and that the weights assigned to the transitions in Æ3 ensure that no

given string that does not correspond to a full form string can have a summed number
of constraint violations that is less than the summed number of constraint violations

for any full form string.

3. Construct the lexical form DFA corresponding to the given lexical form string u and

set the weight of each transition in this DFA to 01.
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4. Intersect the transition-weighted systolic DFA in C 0 and the transition-weighted

lexical form DFA constructed in steps (2) and (3) above using the priority weighted

intersection operation described earlier in this section to preserve the ordering O of

the constraint CDFA.

5. Apply Dijkstra's algorithm (as modi�ed to operate relative to weight vectors) to

the arc-weighted graph associated with the transition diagram for the transition-

weighted intersection DFA constructed in (4) to determine the minimum-weight paths

between the vertex corresponding to the start state and all vertices corresponding to

�nal states. By the reasoning given earlier this section and the construction of the

intersection DFA, these minimum-weight paths will correspond to the optimal full

form strings for u relative to C under O.

Consider the time complexity of each step in turn.

� As the systolic DFA for each CDFA in C can be created in O(jQjc(j�hj+ j�vj)) time,
step (1) runs in O(jQjcjCj(j�hj+ j�vj)) time.

� As step (2) operates on each transition in each systolic DFA in C 0 and are there jCj
such systolic DFA, step (2) runs in O(jQjcjCj(j�hj+ j�vj)) time.

� As the lexical form DFA corresponding to a given lexical form string u consists of juj+1
states linked by juj transitions, step (3) runs in O(juj) time.

� As each systolic DFA has at most jQjc states and the given lexical form DFA has

juj+ 1 � 2juj states, step (4) can be done in O(jQjcjCjjujjCj(j�hj+ j�vj)2) time by the
time complexity of pairwise priority weighted intersection given earlier in this section
and reasoning analogous to that for DFA intersection in Section 2.2.3 which derives

the time complexity of k-wise intersection from that for pairwise intersection. Note the
addition of the jCj term to account for the e�ect of the length of the weight vectors on

the priority weighted intersection operation.

� As the graph associated with the transition diagram for the intersection DFA con-

structed in (4) has jV j � (jQjc)jCj(juj + 1) � 2jQjcjCjjuj vertices and jAj � (jQjc)jCj
(juj + 1)(j�hj + j�vj)2jQjcjCjjuj(j�hj + j�vj) arcs and Dijkstra's algorithm runs in
O(jV j log jV j+ jAj) time, step (5) can be done in

O(jQjjCjcjuj log jQjjCjcjuj+ jQjjCjcjuj(j�hj+ j�vj))
= O((jQjjCjcjuj)2 + jQjjCjcjuj(j�hj+ j�vj))
= O(jQj2jCjcjuj2(j�hj+ j�vj))

time.

Given the above, the algorithm thus runs in O(jQj2jCjcjuj2jCj(j�hj + j�vj)2) time, which is

�xed-parameter tractable relative to jCj, c, and jQj.
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Proof of (8): As it is always the case that c � juj, the result follows from (7) and

Lemma 2.1.33.

Proofs of (9 { 11): The �rst parts of (9) and (10) and all of (11) follow from the

W -hardness results for BDFAI established in parts (5 { 7) of Theorem 4.2.4, the reduc-

tion in Lemma 4.6.1 from BDFAI to OT-Encode in which jC 0j = jAj, c0 = ju0j = 2k,

jQ0j = jQj, j�0
hj = j�j + 1, and j�0

vj = 1, and Lemma 2.1.25. The second parts of (9)

and (10) follow from the W -hardness results for BDFAI established in parts (5) and (6) of

Theorem 4.2.4, the reduction in Lemma 4.6.2 from BDFAI to OT-Encode in which

jC 0j = jAj, c0 = ju0j = 2k, jQ0j = jQj, j�0
hj = 1, and j�0

vj = j�j+ 1, and Lemma 2.1.25.

Proofs of (12 { 15): Follow from (1 { 4) and Lemma 2.1.35.

Theorem 4.6.5

1. OT-Decode is NP -hard when jQj = 2 and j�vj = 1.

2. OT-Decode is NP -hard when j�hj = 2 and j�vj = 1.

3. hc; j�hji-OT-Decode is in FPT .

4. hjsj; j�hji-OT-Decode is in FPT .

5. hjCj; c; jQji-OT-Decode is in FPT .

6. hjCj; jsj; jQji-OT-Decode is in FPT .

7. hjCj; c; jsj; j�vj1i-OT-Decode is W [1]-hard.

8. hc; jsj; jQj2; j�vj1i-OT-Decode is W [2]-hard.

9. hjCj; j�hj2; j�vj1i-OT-Decode is W [t]-hard for all t � 1.

10. hjQj2; j�vj1i-OT-Decode 62 XP unless P = NP .

11. hj�hj2; j�vj1i-OT-Decode 62 XP unless P = NP .

Proof:

Proof of (1): Follows from the NP -hardness of BDFAI when jQj = 2 as established in

part (1) of Theorem 4.2.4 and the reduction in Lemma 4.6.3 from BDFAI to OT-Decode
in which jQj = jQ0j and j�0

vj = 1.

Proof of (2): Follows from the NP -hardness of BDFAI when j�j = 2 as established in

part (2) of Theorem 4.2.4 and the reduction in Lemma 4.6.3 from BDFAI to OT-Decode
in which j�0

hj = j�j and j�0
vj = 1.

Proof of (3): The following algorithm is a modi�cation of the construction given in

part (5) of Theorem 4.5.4 which takes into account the constraints on full forms associ-

ated with the given surface form string s that are imposed by the lexicon. This will be done
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(as it was in part (3) of Theorem 4.5.5) by converting the full form graph into a DFA and

intersecting that DFA with the lexicon DFA before performing the shortest-path compu-

tations. As the algorithm description given below will draw heavily on various terms and

quantities de�ned in part (5) of Theorems 4.5.4 and 4.6.4, the reader should perhaps review

that notation before reading the rest of this proof.

The steps in this algorithm for OT-Decode are as follows:

1. Construct the full form graph for s by applying algorithm CFFG from Theorem 4.5.4.

2. Add the arc-weights described in part (5) of Theorem 4.6.4 to the full form graph

constructed in (1) to keep track of the number of constraint violations in any path

corresponding to a full form string.

3. Interpret the arc-weighted full form graph constructed in (2) as the transition diagram

of a transition-weighted DFA A = hQ; (�h��hU)[(�v��vU ); Æ; s; F i in which Q = V ,
Æ is constructed from the graph and its labels, the start state is vertex s in the graph,
and the �nal states are the vertices in V C(s(jsj�c)+1).

4. Assign the weight-vector 01 to each transition in the lexicon DFA DFAFF (D)

5. Intersect the DFA constructed in (3) with the lexicon DFA DFAFF (D) by applying

the priority weighted intersection operation described earlier in this section.

6. Apply Dijkstra's algorithm (as modi�ed to operate relative to weight vectors) to the
arc-weighted graph associated with the transition diagram for the transition-weighted

DFA constructed in (4) to determine the minimum-weight paths between the vertices
corresponding to the start and �nal states in the DFA for that graph. By the reasoning

given earlier this section and the construction of the DFA in (1) { (4) above, these
minimum-weight paths will correspond to the optimal full form strings for s relative
to C under O such that the lexical form strings associated with these full form strings

are generated by D.

Note that max(V C, max(arc), jV j, and jAj have the same values as they did in part (5) of
Theorem 4.5.5:

� max(V C) = j�hjc.

� max(arc) = j�hj.

� jV j = max(V C)jgj = j�hjcjsj, where jV j is the number of vertices in the full form

graph constructed in (1) (and hence the number of states in the DFA constructed

in (3)).

� jAj = max(V C)max(arc)jgj = j�hjcj�hjjsj = j�hjc+1jsj, where jAj is the number of

arcs in the full form graph constructed in (1) (and hence the number of transitions in

the DFA constructed in (3)).
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Consider now the running times of the individual steps in this algorithm:

� As algorithm CFFG runs in O((max(V C)jgj)2max(arc)c) time, step (1) can be done

in O((j�hjcjsj)2j�hjc) = O(j�hj2c+1jsj2c) time.

� As step (2) e�ectively examines each arc in the full form graph and can run potentially

all CDFA in C on these strings at a cost of O(c2) time each, step (2) can be done in

O(jAjjCjc2) = O(j�hjc+1jCjc2jsj) time.

� As step (3) e�ectively examines each arc and vertex in the full form graph, step (3)

can be done in O(jV j+ jAj) = O(j�hjcjsj+ j�hjc+1jsj) = O(j�hjc+1jsj) time.

� As step (4) e�ectively examines each transition in the lexicon DFA, step (3) can be

done in O(jQDj(j�hj+ j�vj)) time.

� As the lexicon DFA DFAFF (D) has jQDj states and the DFA created in step (3)

has jV j states, step (5) can be done in O(jV jjQDj(j�hj + j�vj)j�hj) = O(j�hjcjsjjQDj
(j�hj + j�vj)2) time by the time complexity of pairwise priority weighted intersection

given earlier in this section and reasoning analogous to that for DFA intersection in
Section 2.2.3 which derives the time complexity of k-wise intersection from that for

pairwise intersection. Note that though each state in the lexicon DFA is the source
of at most (j�hj + j�vj) transitions, each state in the DFA created in step (3) is the
source of at most j�hj transitions; hence, each vertex in the graph associated with

the transition diagram of the intersection DFA of these two DFA can be the source
of at most j�hj arcs. Thus, the graph associated with the transition diagram has
jV 0j � jV jjQDj = max(V C)jgjjQDj = j�hjcjsjjQDj vertices and jA0j � jV 0jj�hj =
j�hjcjsjjQDjj�hj = j�hjc+1jsjjQDj arcs.

� As Dijkstra's algorithm runs in O(jV j log jV j + jAj) time, step (6) can be done in
O(jV 0j log jV 0j + jA0j) = O(max(V C)jgj logmax(V C)jgj + max(V C)max(arc)jgj)
= O((max(V C)jgj)2 + max(V C)max(arc)jgj) = O((max(V C)jgj)2max(arc)) =
O((j�hjcjsj)2j�hj) = O(j�hj2c+1jsj2) time.

Hence the algorithm for OT-Decode described above runs in O(j�hj2c+1jCjc2jsj2jQDj
(�hj+ j�vj)2) time, which is �xed-parameter tractable relative to c and and j�hj.

Proof of (4): As it is always the case that c � jsj, the result follows from (3) and

Lemma 2.1.33.

Proof of (5): The required algorithm makes the following modi�cations to the algorithm
given in part (7) of Theorem 4.6.4:

� Change all steps to deal with the surface form string s instead of the lexical form string

u.

� Insert a step (30) between steps (3) and (4) that sets the weight of each transition in

the lexicon DFA to 01.
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� Add the transition-weighted lexicon DFA created in step (30) to the set of DFA that

are intersected in step (4).

These changes have the following e�ects on the running time of the algorithm:

� As step (30) must examine all transitions in the lexicon DFA, step (30) runs in

O(jQDj(j�hj+ j�vj)) time.

� As each systolic DFA has at most jQjc states, the given lexical form DFA has

jsj + 1 � 2jsj states, and the lexicon DFA has jQDj states, step (4) is now done in

O(jQjcjCjjsjjQDjjCj(j�hj+ j�vj)2) time.

� As the graph associated with the transition diagram for the intersection DFA

constructed in (4) has jV j � (jQjc)jCj(jsj + 1)jQDj � 2jQjcjCjjsjjQDj vertices and

jAj � (jQjc)jCj(jsj + 1)jQDj(j�hj + j�vj) � 2jQjcjCjjsjjQDj(j�hj + j�vj) arcs and

Dijkstra's algorithm runs in O(jV j log jV j + jAj) time, step (5) is now done in

O(jQjjCjcjsjjQDj log jQjjCjcjsjjQDj + jQjjCjcjsjjQDj(j�hj + j�vj)) = O(jQj2jCjcjsj2jQDj2
(j�hj+ j�vj)) time.

Given the above and the running times for steps (1) { (3) as originally derived in part (5) of

Theorem 4.6.4, the algorithm thus runs in O(jQj2jCjcjCjjsj2jQDj(j�hj + j�vj)2) time, which
is �xed-parameter tractable relative to jCj, c, and jQj.
Proof of (6): As it is always the case that c � jsj, the result follows from (5) and

Lemma 2.1.33.

Proofs of (7 { 9): Follow from the W -hardness results for BDFAI established in

parts (5 { 7) of Theorem 4.2.4, the reduction in Lemma 4.6.3 from BDFAI to OT-Decode
in which jC 0j = jAj, js0j = c0 = 2k, jQ0j = jQj, j�0

hj = 1, and j�0
vj = j�j + 1, and

Lemma 2.1.25.

Proofs of (10) and (11): Follow from (1) and (2) and Lemma 2.1.35.

4.6.3 Implications

All parameterized complexity results for problems OT-Encode and OT-Decode that are

either stated or implicit in the lemmas and theorems given in the previous section are shown
in Tables 4.12 and 4.13. Consider the implications of these results for each problem in turn:

� OT-Encode: The sources of polynomial-time intractability are fjP j; c; jQjg and
fc; j�hj; j�vjg. The mechanisms associated with these sources are the constraint set

(speci�cally the intersection DFA formed from the systolic DFA associated with all
constraint CDFA) and the set of possible context-size strings. All of the aspects in

these sources are de�ning properties of an Optimality-Theoretic system, and hence

none of them can be eliminated to reduce the complexity of the problem. However,
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by the same reasoning as given in Section 4.5.3 for problem DP-Encode, the FPT

algorithm underlying the latter source should eÆcient in practice and may run much

faster than the original analysis suggests.

� OT-Decode: The sources of polynomial-time intractability are fjCj; c; jQjg and

fc; j�hjg. The mechanisms associated with these sources are the constraint set

(speci�cally the intersection DFA formed from the systolic DFA associated with all con-

straint CDFA) and the set of possible context-size strings with respect to a

fully-speci�ed visible component. As in OT-Encode, all of the aspects in these

sources are de�ning properties of an Optimality-Theoretic system, and hence none

of them can be eliminated to reduce the complexity of the problem; however, for the

same reasons given above, the FPT algorithm underlying the latter source should be

eÆcient in practice (though, as the whole hidden component is unspeci�ed and the

whole visible component is speci�ed in every given surface form, the original

analysis may not be bettered by considering the numbers of unspeci�ed visible and

hidden elements in the given surface form as aspects). As is the case for the other
automaton-based phonological theories examined in this chapter, part (5) of
Theorem 4.6.5 shows that the lexicon can be treated as just another constraint.

Further analyses of the role of the lexicon in the polynomial-time intractability of
OT-Decode may pro�t from techniques that characterize the sets encoded in

constraints (see discussion in Section 4.2).

Under the simpli�ed autosegmental representation used here, the relationship between
Declarative Phonology and Optimality Theory is very close | the proofs of NP - and
W -hardness are essentially identical as are the algorithms modulo the substitution of

priority weighted DFA intersection for DFA intersection and shortest path computation
for depth-�rst search. This is so because Declarative Phonology is essentially a special case
of Optimality Theory in which optimal full forms violate none of the given constraints,

and are hence optimal under arbitrary constraint orderings. When the results derived in
the previous section are compared with those derived in Sections 4.3.2, 4.4.2, and 4.5.2 for

FST-based rule systems, the KIMMO system and Declarative Phonology, it becomes obvious
that the hardness proofs and the FPT algorithms are remarkably similar in all four theo-

ries and seem oblivious to the di�erences in the formulations of these theories. As will be

discussed further in Section 4.7, this suggests some interesting computational characteristics

that may be common to all theories of phonological processing.

There are three immediate consequences of the results derived above:

1. Unless FPT = W [2], there is no general algorithm for OT-Encode whose

non-polynomial time-complexity is purely a function of the maximum constraint

context-size c, cf. the polynomial-time algorithm given in [Tes95] for generating

optimal full forms from given lexical forms relative to a restricted type of represen-
tation when c = 3. This suggests that unreasonable computational power may be

encoded in constraints that have unbounded-size contexts, e.g. Align, and that the use

of such constraints may have to be severely curtailed to give eÆcient
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implementations of Optimality-Theoretic systems (possibly along the lines suggested

in [Eis97a, Eis97b]).

2. Unless P = NP , there is no general polynomial-time algorithm for OT-Encode when

the set of candidate full form strings associated with a given lexical form string is

restricted to being a regular language generated by some FSA, cf. [Ell94, Tes95].

3. Unless P = NP , there is no general polynomial-time algorithm for OT-Encode when

no insertions or deletions are allowed in the lexical form, cf. the allegedly eÆcient

algorithm given in [Ham97] for generating optimal syllabi�cations of given

unsyllabi�ed lexical forms when no insertions or deletions are allowed.

Note that these results do not preclude polynomial-time algorithms for other restricted cases

of encoding problems such as those considered by Tesar and Hammond, but it does make

the existence of such algorithms for general Optimality-Theoretic systems unlikely.

Eisner's NP -hardness result [Eis97a] implies the second consequence listed above and
may even be seen as building a very strong case for the �rst consequence when c = 1.

Technical merits aside, Eisner's work is also of interest for the manner in which his approach
to using computational complexity to analyze linguistic theories (which seems to be typical

of other such work done to date) di�ers from that used in this thesis. As such, his work
provides examples for various points made in Chapter 3 of this thesis.

The most obvious di�erence is in the way in which Eisner interprets NP -hardness results.
In particular, his NP -hardness reduction creates instances of Optimality-Theoretic systems

whose associated DFA are such that the number of states in these DFA is
lower-bounded by an exponential function in the number of tiers in these instances.
Eisner concludes from this that his problem is \ . . .NP -hard on the number of tiers . . . "

[Eis97a, page 6]. It is not clear exactly what Eisner means by this. He does not establish
that the number of tiers is crucial to the NP -hardness of his formulation of the encod-
ing problem because there may be other reductions that establish NP -hardness without

requiring an unbounded number of tiers. Neither does he establish that the number of tiers
is responsible for this NP -hardness in the sense of having an associated algorithm whose

non-polynomial time complexity time is purely a function of the number of tiers as he only
shows that the size of the DFA (let alone the time required to construct it) is lower bounded
(instead of upper bounded) relative to an exponential function in the number of tiers.

In any case, Eisner's comment is a classic example of how NP -hardness results can be misin-

terpreted, and should be viewed as yet another cautionary tale which implicitly

advocates the use of both the techniques and conceptual framework of parameterized
complexity analysis.

A much more subtle and meaningful di�erence involves the style in which computational

analyses of linguistic theories is carried out. The approach underlying [Eis97a, Eis97b]

is to start with a restricted version of Optimality Theory and establish the descriptive

adequacy and computational properties of this restricted formalism before (if ever)

considering more general versions of the theory. This is diametrically opposed to the

approach advocated in this thesis which starts with a very general and abstract version
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of a phonological theory such as Optimality Theory and establishes the computational prop-

erties of the set of possible restricted versions of this theory relative to a given set of restric-

tions of interest before (if ever) considering these restricted versions and their descriptive

adequacy in detail. Informally, Eisner's approach is \bottom up" (in that work starts

on the speci�c and progresses to the general) and systematic parameterized complexity

analysis is \top down" (in that work starts on the general and progresses to the speci�c).

Both approaches have their advantages and disadvantages. The bottom up approach has

the advantage of allowing immediate detailed investigation of a particular formulation of a

theory (at the expense of possibly missing more appropriate formulations in the rush to get

detailed investigation started); the top-down approach has the advantage of �rst

establishing the spectrum of available formulations and their computational properties to

allow the choice of most appropriate formulation before detailed investigation begins (at the

expense of possibly wasting a lot of time and energy ruling out inappropriate formulations).

Though the latter approach is advocated in this thesis on the grounds that it seems to be

a more systematic way of deriving good linguistic theories, the choice of which approach to
use when analyzing linguistic theories in practice is ultimately a function of an investigator's
resources and goals.

In the matter of insertions and deletions, Optimality Theory is like Declarative Phonology

in that, ultimately, there is no deletion; material can only be added to a given lexical and sur-
face form to create a full form that is consistent with that given form.

As OT-Encode and OT-Decode are special cases of encoding and decoding problems
in Optimality Theory that allow insertion, all NP - and W -hardness results derived above
still hold for these problems. To say anything more requires a more explicit model of how such

insertion might take place in the simpli�ed representation used here.
Consider the model given for Declarative Phonology in Section 4.5.3, in which hidden-visible
symbol pairs may be inserted within or around given lexical or surface forms and these given

forms specify where such insertion can occur. Using techniques described in Section 4.4.3,
if insertions are allowed, certain W -hardness results hold in more restricted cases or relative

to higher levels of the W -hierarchy. It is also possible that certain parameterized prob-
lems that were previously known to have FPT algorithms may be shown W -hard. The full
extent of these changes will not be addressed here. For now, simply observe that the FPT

algorithms will continue to work by the reasoning given in Section 4.5.3.

Consider now what these results have to say about the various search problems
associated with Optimality Theory systems. First, note the following relationships between

OT-Encode and OT-Decode and their associated search problems:

� Any instance of OT-Encode can be solved by a single call to ENCOT; moreover, any

instance of ENCOT can be solved by the FPT algorithms given in the previous section

for OT-Encode.

� Any instance of OT-Decode can be solved by a single call to DECOT; moreover, any

instance of DECOT can be solved by the FPT algorithms given in the previous section

for OT-Decode.
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� Any instance ofOT-Encode in which the lexical form contains a fully speci�ed surface

form can be solved by a single call to CHKOT; moreover, any instance of CHKOT can

be solved by the FPT algorithms given in the previous section for

OT-Encode. Problem OT-Encode is NP -hard under the restriction in the

former by the reductions given in Lemmas 4.6.1 and 4.6.2. Note that in the case

of the latter, the FPT algorithms must use the given surface form s to restrict the

shortest-path computations in the graph and intersection DFA constructions so that

derived full forms are consistent with both u and s.

Hence, modulo various conjectures, ENCOT, DECOT, and CHKOT do not have

polynomial-time algorithms and have the same sources of polynomial-time intractability

as their corresponding decision problems. This is the same situation as with FST-based rule

systems that operate by FST composition and Declarative Phonology; possible reasons for

why this is so will be discussed in Section 4.7.

The results derived above are relevant to implementations of Optimality-Theoretic

systems to the extent that they suggest (albeit relative to a small set of aspects) what the
sources of polynomial-time intractability in these systems may and may not be.

These results also have implications for the computational complexity of learning
constraint-rankings in Optimality-Theoretic systems from examples. Polynomial-time
algorithms are known for the case where the examples are optimal full forms [TS96].

An open question concerns the more realistic case where the examples are surface forms
[Tes96, Tes97a, Tes97b]. This situation is modeled by the following search problem:

� LRNOT(g; u; s): Given a surface form s and an Optimality-Theoretic system g

without an ordering C on the set of constraints C, return any ordering O of C such that

there is a surface form f generated by Gen from some lexical form u that is optimal
relative to C under O and has s as its surface form, and ? otherwise.

Note that in the instances of OT-Encode created in the reduction in Lemma 4.6.1, u = s,
u is the only possible lexical form of length jsj (and hence the only possible lexical form

for s), and either all orderings of C work or none do; as any of these instances can be solved by
a single call to LRNOT, LRNOT does not have a polynomial-time

algorithm and has the same sources of polynomial-time intractability as OT-Encode

(modulo various conjectures).

The above suggests many directions for future research. Several of the more intriguing

directions are:

1. Characterize the computational complexity ofOT-Encode andOT-Decode in terms
of trade-o�s between various aspects of the individual CDFA being intersected, e.g.,

structure of the sets of strings encoded by the CDFA.

2. Redo the analyses given in this section with an additional aspect denoting the
maximum number of violations any constraint may have on a candidate full

form string.
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3. Formalize and investigate a model of Optimality Theory with a more realistic

�nite-state model of Gen, e.g., a FST that relates lexical and full forms [FS97, Kar98].

As with the other automaton-based phonological theories examined in this thesis,

the research in (1) may bene�t from formulating the constraints implicit in the various

types of �nite-state automata used in the formulation of Optimality Theory above in logic

along the lines suggested in Section 4.2. The research in (2) would complement that given

in [FS97, Kar98] which considers the generative capacity of FST-based implementations

of Optimality Theory that allow only a �xed number of constraint violations. Finally,

the research in (3) would be part of a larger investigation of FST formulations of

Optimality Theory [FS97, Kar98].
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Table 4.12: The Parameterized Complexity of the OT-Encode Problem.

Alphabet Sizes (j�hj,j�vj)
Parameter (Unb,Unb) (Unb,Prm) (Prm,Unb) (Prm,Prm)

{ NP -hard 62 XP 62 XP 62 XP

jCj W [t]-hard W [t]-hard W [t]-hard W [t]-hard

c W [2]-hard W [2]-hard W [2]-hard FPT

juj W [2]-hard W [2]-hard W [2]-hard FPT

jQj 62 XP 62 XP 62 XP ???

jCj; c W [1]-hard W [1]-hard W [1]-hard FPT

jCj; juj W [1]-hard W [1]-hard W [1]-hard FPT

jCj; jQj ??? ??? ??? ???

c; juj W [2]-hard W [2]-hard W [2]-hard FPT

c; jQj W [2]-hard W [2]-hard W [2]-hard FPT

juj; jQj W [2]-hard W [2]-hard W [2]-hard FPT

jCj; c; juj W [1]-hard W [1]-hard W [1]-hard FPT

jCj; c; jQj FPT FPT FPT FPT

jCj; juj; jQj FPT FPT FPT FPT

c; juj; jQj W [2]-hard W [2]-hard W [2]-hard FPT

jCj; c; juj; jQj FPT FPT FPT FPT

Table 4.13: The Parameterized Complexity of the OT-Decode Problem.

Alphabet Sizes (j�hj,j�vj)
Parameter (Unb,Unb) (Unb,Prm) (Prm,Unb) (Prm,Prm)

{ NP -hard 62 XP 62 XP 62 XP

jCj W [t]-hard W [t]-hard W [t]-hard W [t]-hard

c W [2]-hard W [2]-hard FPT FPT

jsj W [2]-hard W [2]-hard FPT FPT

jQj 62 XP 62 XP ??? ???

jCj; c W [1]-hard W [1]-hard FPT FPT

jCj; jsj W [1]-hard W [1]-hard FPT FPT

jCj; jQj ??? ??? ??? ???

c; jsj W [2]-hard W [2]-hard FPT FPT

c; jQj W [2]-hard W [2]-hard FPT FPT

jsj; jQj W [2]-hard W [2]-hard FPT FPT

jCj; c; jsj W [1]-hard W [1]-hard FPT FPT

jCj; c; jQj FPT FPT FPT FPT

jCj; jsj; jQj FPT FPT FPT FPT

c; jsj; jQj W [2]-hard W [2]-hard FPT FPT

jCj; c; jsj; jQj FPT FPT FPT FPT
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4.7 Some Final Thoughts on the Computational Com-

plexity of Phonological Processing

In this chapter, a number of complexity-theoretic results have been derived for various prob-

lems associated with �ve phonological theories. To the extent that these problems have

been formulated correctly relative to the guidelines and caveats given in Chapter 3, these

results have implications for their associated theories. Some of these implications for partic-

ular theories have already been discussed. This section will focus on the implications of the

results derived in this chapter for phonological processing in general. As such, it consists

of descriptions of some patterns in the derived results and some speculations about the

factors responsible for these patterns and what they may mean for phonological processing

in general.

The most obvious pattern is the limited number of types of mechanisms underlying

observed sources of polynomial-time intractability. These sources are listed in Tables 4.14
and 4.15, and seem to fall into the following two broad categories:

1. The amount and composition of \hidden" structure in the representation proposed
by the phonological theory, i.e., structure that is not dependent on and hence can be

manipulated independently of given lexical or surface forms (Computational Space).

2. The complexity of the mapping relating lexical and surface forms as implemented by
mechanisms within the phonological theory (Complexity of Mapping).

Each of these types of sources will be discussed in more detail below.

Consider the �rst of these types of sources. The role of hidden structure has previously
been acknowledged in the discussions of all phonological theories examined in this chapter.
This hidden structure has manifested itself in these theories in di�erent ways:

� Intermediate forms in the derivation (Simpli�ed Segmental Grammars and FST-based

rule systems).

� The surface form (in the encoding problem) or the lexical form (in the decoding

problems) (the KIMMO system).

� The underspeci�ed portions of the hidden and visible components in the lexical form

(in the encoding problem) or the underspeci�ed hidden component in the surface form

(in the decoding problem) (Declarative Phonology and Optimality Theory).

What becomes obvious when all theories are considered together is that when one is inter-

ested in what aspects of this hidden structure are sources of polynomial-time intractabil-

ity, the precise manner in which the hidden structure manifests itself, e.g., the number of

intermediate forms in a rule-based derivation, is not as important as the overall amount and

composition of this structure, e.g., the number of segment-strings of a given size relative

176



Phonological Sources of Polynomial-Time Intractability

Theory Complexity of Mapping Computational Space

Simpli�ed Segmental Grammars fjRj?g fjuj; jf j; jvjg
FST-Based Rule Systems fjAj; jQjg fjuj; j�jg
The KIMMO System fjAj; jQjg fjuj; j�sjg
Declarative Phonology fjP j; c; jQjg fc; j�hj; j�vjg
Optimality Theory fjCj; c; jQjg fc; j�hj; j�vjg

Table 4.14: Sources of Polynomial-Time Intractability in the Encoding Decision Problems

AssociatedWith Phonological Theories Examined in This Thesis. See the appropriate section

in this chapter for de�nitions of the aspects in the sources given for a particular phonological

theory.

Phonological Sources of Polynomial-Time Intractability

Theory Complexity of Mapping Computational Space

Simpli�ed Segmental Grammars fjRj; jsjg fjsj; jf j; jvjg
FST-Based Rule Systems fjAj; jQjg fjsj; j�jg
The KIMMO System fjAj; jQjg fjsj; j�ujg
Declarative Phonology fjP j; c; jQjg fc; j�hjg
Optimality Theory fjCj; c; jQjg fc; j�hjg

Table 4.15: Sources of Polynomial-Time Intractability in the Decoding Decision Problems
AssociatedWith Phonological Theories Examined in This Thesis. See the appropriate section

in this chapter for de�nitions of the aspects in the sources given for a particular phonological
theory.

to a particular set of (possibly multi-valued) features. One immediate consequence of this

is that it shows that certain claims in the literature that particular linguistic theories are
better on computational grounds simply because they have fewer levels of representation are
misguided (see papers in [Gol93] and references).

All of the reductions given in this thesis exploit hidden structure for encoding

instances of NP -hard problems; hence, having a rich hidden structure is one of the keys

to NP -hardness in phonological processing. However, it is not by itself enough to guar-

antee NP -hardness; this hidden structure must also be adequately accessible to mech-

anisms within these theories. This is shown particularly well by the analyses done for

Declarative Phonology and Optimality Theory, in which the context-size of the constraints
(and hence the amount of hidden structure that any constraint can act upon) is shown to be

part of a source of polynomial-time intractability. The investigation of other aspects besides

context-size that constrain the access of mechanisms to representations in phonological

theories is an interesting topic for future research.
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Consider now the second of these types of sources. Encoding and decoding problems

associated with the phonological theories examined in this thesis are NP -hard under a num-

ber of di�erent types of mechanisms for implementing the mapping between lexical and sur-

face forms. What is surprising is that this NP -hardness does not seem to

depend on such aspects as the number or size of individual mapping-mechanisms or even the

type of mapping mechanism, e.g., rule or constraint, but rather on the size and complex-

ity of the combination of these mechanisms that actually implements the mapping between

surface and lexical forms. This suggests that a truly useful investigation of the sources of

polynomial-time intractability in phonological theories in terms of the mechanisms in those

theories should focus on the nature of the mappings between representations encoded

in individual mechanisms and the combination of these mechanisms.

A useful framework for doing this is to view all mechanisms, be they rules, constraints,

or lexicons, as relations between sets of representations and to view mappings between

lexical and surface forms as compositions of these relations [Kar98]. In this framework,

a rule is a relation between the set of all representations and the set of all representations
resulting from the application of the rule, a constraint is an identity relation on the set of
all representations accepted by the constraint, and a lexicon is an identity relation on all

representations that can be generated by the lexicon. A recasting of the phonological theories
examined in this thesis into this framework is given in Figure 4.12. One immediate

consequence of this recasting is that it graphically shows the similarity recently noted by
Karttunen [Kar98] of Optimality Theory to older constraint- and rule-based theories, and
suggests a natural progression in the computational power required by various phonological

theories, in that constraint-based systems are special cases of rule-base systems which are in
turn special cases of Optimality-Theoretic systems.

All of the reductions given in this thesis exploit mapping mechanisms to operate on the
instances of NP -hard problems that are encoded in the hidden structure in the representa-

tions; hence, having a mapping mechanism that can encode a rich variety of
relations between representations is another key to NP -hardness in phonological processing.

As noted in Section 4.1.3, there can be interesting tradeo�s between the richness of vari-
ous types of mechanisms, e.g., a rich lexicon can compensate for a constrained rule-set and
vice versa. Note that richly expressive mapping mechanisms are not in themselves enough

to guarantee NP -hardness; as was pointed out above, these mechanisms must also have

adequate access to the representations. One powerful constraint on this access is limited

context-size; another is to limit the mapping mechanism itself (rather than the representa-
tion) such that the mapping mechanism can only access a limited number of representations

(see part (3) of Theorem 4.1.18). An investigation of aspects that characterize the rich-

ness of the relations encoded in individual phonological mechanisms and their composition

as a whole (possibly by formulating these relations in logic along the lines suggested in

Section 4.2) is an interesting topic for future research.

The observations above derived relative to decision problems can also be used to explain

the observed patterns of computational complexity in the various search problems associated
with phonological theories that were examined in this thesis. These patterns are summarized

in Table 4.16. The patterns for each problem can be explained as follows:
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surface formsurface formsurface form

Arbitrary IdentityIdentity

IdentityArbitrary

IdentityArbitrary

ArbitraryArbitraryArbitrary

lexical formlexical form lexical form

lexiconlexiconlexicon

lc

lc

lc

***

Identity

Identity

(c)(b)(a)

Figure 4.12: Phonological Theories as Compositions of Representation-Relations. The above
shows various reformulations of phonological theories examined in this thesis as compositions

of representation-relations. Italicized terms x represent representation-relations of type x.
An arrow between two representation-relations indicates composition; the arrow's direction

indicates which way representations can move through the composition. a) The reformu-
lation of constraint-based theories such as Declarative Phonology and KIMMO (where the

representation in KIMMO is interpreted as a lexical-surface form pair). The starred (*)

relation generates all fully-speci�ed representations consistent with the lexical form. b) The

reformulation of rule-based theories like FST-based rule systems and Simpli�ed Segmental

Grammars. c) The reformulation of Optimality-Theoretic systems which allow a bounded
number of violations per constraint (following that described in [Kar98]). In this scheme,

relations denoting the sets of representations that violate particular constraints some �xed

number of times are combined by the lenient composition (lc) operation, which essentially

allows the composition to ignore those relations that would eliminate all candidate surface

forms. The doubly starred (**) relation corresponds to Gen.
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Phonological Search Problem

Theory ENC DEC CHK

Simpli�ed Segmental Grammars
p p

FST-Based Rule Systems
p p p

The KIMMO System
p p

Declarative Phonology
p p p

Optimality Theory
p p p

Table 4.16: The Computational Complexity of Search Problems Associated With Phonolog-

ical Theories Examined in This Thesis. For phonological theory X 2 fSSG, FST. KIM,

DP, OTg, the abbreviations ENC, DEC, and CHK above stand for the search problems

ENCX, DECX, and CHKX de�ned in the introduction to Chapter 4. A check-mark (
p
)

in the box corresponding to a particular search problem associated with some phonological

theory indicates that this search problem is not solvable in polynomial time unless P = NP .

� ENC: The computational complexity of the encoding search problem depends both on
the richness of the mapping mechanism and the computational complexity of accessing
forms produced by applying this mechanism. In the case of Simpli�ed

Segmental Grammars, the NP -hardness of SSG-Encode establishes that the map-
ping mechanism is suÆciently rich; this suggests that the polynomial-time solvability

of ENCSSG is a result of being able to access arbitrary rather than particular surface
forms
associated with a given lexical form.

� DEC: The computational complexity of the decoding search problem depends on the

combined richness of the lexicon and the mapping mechanism.

� CHK: The computational complexity of the checking search problem depends on

whether representations are the sum of lexical and surface forms, i.e., if there is
any hidden structure in the representation that is not contained in the union of

the structure in the lexical and surface forms. If there is no such hidden structure
(as is the case with the KIMMO system), then the problem can be solved in poly-

nomial time. If there is such hidden structure (as is the case in all other phonologi-

cal theories examined in this thesis), the problem is not solvable in polynomial time
unless P = NP .

An area of research of particular interest in light of the polynomial-time solvability of
ENCSSG is the formulation and analysis of search problems that access the sets of forms

produced by the application of mapping mechanisms to given forms in manners di�erent
than those examined here, e.g., enumeration of all forms vs. extraction of an arbitrary form.

A �nal caveat is perhaps in order. It is very tempting to continue extrapolating from

the formal results given here to progressively grander albeit more informal conclusions.

For instance, the observation that there are very few distinct FPT algorithms relative to the
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aspects considered for the problems examined in this thesis could be construed as suggesting

an interesting and somewhat constrained structure underlying phonological processing in

general. Evocative though such extrapolations may be, they are no substitute for (and may

indeed be a hindrance to formulating) testable hypotheses for future research. It must also

be remembered that all interpretations of results given above are tentative (both because

of the incompleteness of the intractability maps derived here and the dependence of these

interpretations on unproven conjectures about the separateness of P and NP as well as the

levels of the W hierarchy), and that it is inevitable that many of these interpretations will

have to be revised or discarded in light of future results. That being said, it does seem certain

that both the conceptual framework and techniques of systematic parameterized complexity

analysis will continue to be of use in deriving and interpreting such results.
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Chapter 5

Conclusions

In this thesis, systematic parameterized complexity analysis has been formally de�ned as the
systematic application of techniques developed within the theory of parameterized
computational complexity [DF95a, DF95b, DF99], and it has been discussed why this type

of analysis is better than classical complexity-theoretic analyses such as NP -completeness
at establishing the sources of polynomial-time intractability in computational problems.

This discussion has been illustrated by systematic parameterized analyses of the encoding
and decoding problems associated with �ve theories of phonological processing in natural
languages. A summary of the results derived for these theories is given in the introduction

to this thesis; for details, please see the appropriate Analysis and Implications sections
in Chapter 4 and the general discussion of the implications of all results derived in this thesis

given in Section 4.7.

Of all the implications discussed in this thesis, one stands out above the rest: namely,

that the NP -hardness of the encoding and decoding problems associated with a phonolog-
ical theory seems to be independent of many of the gross aspects of the processing archi-

tecture postulated by that theory. That is, it doesn't seem to matter whether phonolog-
ical mechanisms are rules or constraints, whether these mechanisms are or are not �nite-
state, whether these mechanisms are ordered or unordered, or whether the system has one,

two, or many levels of representation | to the extent that the theories examined in this
thesis are representative of the spectrum of phonological theories embodying combinations of

these alternatives, the encoding and decoding problems associated with all such

theories seem to be NP -hard in general. This will not and should not have any e�ect
on the work of linguists who use these theories to describe languages, as such computational

issues are not a consideration in creating such descriptions. However, the above should be
important to computational linguists, as it should lay to rest debates over and e�orts to

create phonological theories whose associated operations are eÆcient and focus e�orts on

the far more interesting and useful question of why phonological processing seems to be so
computationally diÆcult.

Many directions for future research have been proposed in this thesis. Future research
particular to speci�c phonological theories is described following the analyses for these
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theories in Chapter 4; some directions for future research that apply to all theories are

given below. The focus of such research should be on removing the \in general" quali�er

in the preceding paragraph. Though phonological processing may indeed be NP -hard in

general, there may be aspects latent in phonological theories whose restriction may yet make

such processing eÆcient in practice. As already discussed in Chapter 4, aspects of par-

ticular interest are those that capture the richness of the representation-relations implicit

in individual phonological mechanisms. Some other potential sources of useful aspects are

as follows:

� A very important restriction on phonological theories that has not been addressed at

all in this thesis (or for that matter in the literature on the computational analysis

of phonological theories) is the maximum number of solutions that can be associ-

ated with a given input | that is, the maximum number of surface (lexical) forms

that can be associated with a given lexical (surface) form in the search version of an

encoding (decoding) problem. Typically, this number will be very small; however,
in many instances of phonological systems created by reductions in this thesis, this

number is either zero or very large. It would be interesting to see which (if any)
NP - andW -hardness results will still hold for the theories examined in this thesis if this
number is bounded. This research may be aided by employing parameterized analogs

of various complexity classes developed to study problems with bounded numbers
of solutions, e.g., UP , FewP , SpanP (see [JoD90, Sections 4.1 and 4.2] and refer-

ences). For now, note that under fairly broad conditions, the problems examined in this
thesis for Simpli�ed Segmental Grammars, FST-based rule systems, and Optimality
Theory remain NP -hard if the number of solutions is bounded to one in both encod-

ing and decoding problems (this already holds for Simpli�ed Segmental Grammars and
FST-based rule systems by the reductions given in this thesis; the appropriate modi�-
cations to the reductions for Optimality Theory involve the addition of new constraints

to C which select the lexicographically smallest candidate full form).

� All problems examined in this thesis assume that the mapping mechanisms, e.g.,
constraints, rules, and lexicon, are part of the problem instance. However, if these

mechanisms are �xed in advance, all aspects associated with these mechanisms become

constants, and many of the FPT algorithms derived in this thesis for these problems
that are based on these aspects can be used to solve these problems in polynomial time.

This process of �xing the mapping mechanism in advance allows these mechanisms to
be \pre-compiled", which in turn allows the computational complexity associated with

these mechanisms to be removed from the problem.

The practicality of pre-compilation is discussed at length in [BBR87, Section 2.3].

Though pre-compilation seems like a good idea and it reects the biological reality

that people already know a language before they use it to communicate, it can be
shown that any such pre-compilation process cannot be computable in polynomial

time unless P = NP (otherwise, one could solve the NP -hard encoding and decoding

problems considered in this thesis by composing such pre-compilation processes with
the polynomial-time algorithms that use the compiled mechanisms). The big ques-

tion is, in what aspects and manners relative to those aspects can the non-polynomial
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time algorithmic behavior of the pre-compilation process be expressed? It would be

interesting to know the spectrum of options for such pre-compilation. The FPT algo-

rithms in this thesis embody several types of pre-compilation, e.g., �nite-state intersec-

tion and composition. Future research should apply techniques developed speci�cally

to create FPT algorithms to see if other less obvious types of pre-compilation exist.

This research may be aided by complexity-theoretic techniques developed within the

knowledge database literature for assessing the pre-compilability of computational

problems [CD98, CDLS96, CDLS97].

It might also be of interest to examine natural language data itself rather than phonological

theories to see if there are aspects of this data whose values are bounded in practice and

have associated FPT algorithms. A good starting point for such research would be the

surface-form data for Finnish examined in [KC88] which an implementation of the KIMMO

system analyzed into lexical forms in time almost linear in the length of the given surface

forms, cf. the NP -hardness of KIM-Decode and the W [2]-hardness of hjsji-KIM-Decode

as established in Theorem 4.4.4.

Looking back, it is interesting that many of the questions that are asked about the
computational complexity of phonological processing are most naturally formulated and

answered within the framework of parameterized complexity analysis. As discussed in
Section 2.1.3 and Chapter 3, this is perhaps not overly surprising as parameterized

computational complexity theory is arguably one of the most \realistic" theories of
computational complexity proposed to date, in the sense of acknowledging and
accommodating both the realities of problem solvability and the needs of algorithm users

and designers. It is my hope that the research described in this thesis will both encourage
systematic parameterized complexity analyses of other NP -hard problems and serve as an

example of how such analyses should be carried out and interpreted.
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Appendix B

The Parameterized Complexity of

Simpli�ed Segmental Grammars with

Segment Deletion Rules

This appendix contains the proofs of several results given in [DFK+94] concerning
problems SSG-Encode and SSG-Decode when segment deletion rules are allowed.

Let these problems be denoted by SSG(D)-Encode and SSG(D)-Decode , respectively.

The main result is derived via a reduction from the problem below. Recall that in boolean
expressions, logical AND can be represented by the product sign (�) and logical OR is
represented by the addition sign (+). A boolean expression X is said to be t-normalized,

t � 2, if X is in product-of-sums-of-products : : : -of-sums form (P1-of-S2-of-P3- : : : -of-St) if t
is even, and in product-of-sums-of-products : : : -of-products form (P1-of-S2-of-P3- : : : -of-Pt)
if t is odd. For example, boolean expressions in conjunctive normal form, e.g., (a+b)�(c+d),
are 2-normalized. Furthermore, de�ne the weight of a truth assignment to a set of boolean
variables as the number of variables assigned the value T .

Weighted t-normalized satisfiability (WtNSAT)

Input: A t-normalized boolean expression X and a positive integer k.

Question: Does X have a satisfying truth assignment of weight k?

Lemma B.1 WtNSAT �m SSG(D)-Encode

Proof: Note that in a t-normalized boolean expression, there are t levels corresponding
to evaluation of either AND or OR expressions, and that within each level, the evaluation
of individual expressions can be done independently. Both of these properties are exploited

in the reduction described below.

The following parameters of t-normalized boolean expressions will be used below.

For a t-normalized boolean expression X, let Ci;j, i � 1, be the j-th clause on level i of

X, and C0;j be the j-th variable encountered in reading X from left to right. For all C0;j,

de�ne var(C0;j) as the number of the variable C0;j under some numbering of the variables
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Ci;j Clause sub(Ci;j) #sub(Ci;j) len(Ci;j) start(Ci;j)

C0;1 a ; 0 1 1

C0;2 b ; 0 1 2
C0;3 c ; 0 1 3

C0;4 a ; 0 1 4

C0;5 c ; 0 1 5

C0;6 b ; 0 1 6

C0;7 c ; 0 1 7

C0;8 a ; 0 1 8

C0;9 b ; 0 1 9

C0;10 b ; 0 1 10

C0;11 c ; 0 1 11

C1;1 (a� b� c) C0;1; C0;2; C0;3 3 3 1
C1;2 (a� c) C0;4; C0;5 2 2 4

C1;3 (b� c) C0;6; C0;7 2 2 6
C1;4 (a� b) C0;8; C0;9 2 2 8

C1;5 (b� c) C0;10; C0;11 2 2 10

C2;1 ((a� b� c) + (a� c)+ C1;1; C1;2; C1;3 3 7 1

(b� c))
C2;2 ((a� b) + (b� c)) C1;4; C1;5 2 4 8

C3;1 Whole Formula C2;1; C2;2 2 11 1

Table B.1: Sample Values of Various Parameters De�ned in Lemma B.1. These parame-
ter values are computed relative to the 3-normalized Boolean Expression (((a � b � c) +

(a� c) + (b� c))� ((a� b) + (b� c))). See main text for explanation of abbreviations.

of X, and de�ne not(C0;j) as + (�) if this variable is (not) negated in C0;j. De�ne sub(Ci;j)
as the subclauses on level i� 1 that are joined together to make clause Ci;j, #(sub(Ci;j) as
the number of subclauses in sub(Ci;j), and len(Ci;j) as follows:

len(Ci;j) =

( P
c2sub(Ci;j) len(c) i � 1

1 i = 0
(B.1)

Finally, de�ne start(Ci;j) = 1 +
P

1�k<j len(Ci;k). The values of these parameters for the

various clauses of the 3-normalized boolean expression (((a � b � c) + (a � c) + (b � c)) �
((a� b) + (b� c))) are given in Table B.1.

Given an instance hX; ki of WtNSAT de�ned on n boolean variables, construct the fol-

lowing instance hg0 = hF 0; D0; R0; c0p; C
0; f 0Ci; u0; s0i of SSG(D)-Encode: Let F 0 consist of

the union of the sets of features in the following table, in which 1 � i � n, 1 � j � k,
0 � l � t, and 1 � m � t:

Denote a segment with feature-value pairs [f1 v1]; [f2 v2]; : : : ; [fk vk] as f[f1 v1]; [f2 v2]; : : : ;

[fk vk]g. Let u0 = u1u2u3 such that it is composed of three substrings that are distinguished

by their values for feature SEG. The makeup of each of these substrings is as follows:
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Feature Values

SEG fA; V; Eg
VAR f1; 2; : : : ; ng
NOT f+;�g
fSVig f+;�g
fSCjg f+;�g
fRlg fT; Fg
fSSmg f+;�g
fELmg f1; 2; : : : ; len(Ct;1)g

1. Substring u1 ([SEG A]: accumulator-segment) consists of a single segment that is

assigned the features f[SVi �],[SCj �]g, 1 � i � n, 1 � j � k. This substring acts

as a result-accumulator which, in conjunction with substring u2, ensures that exactly

k variables in expression X are set to T.

2. Substring u2 ([SEG V ]: variable-segments) consists of n segments that are assigned

the features f[VAR i],[R0 F ]g, 1 � i � n.

3. Substring u3 ([SEG E]: expression-segments) consists of len(Ct;1) segments, one
segment for each occurrence of a variable in X, that encode the various clauses in
X and the hierarchical relations of these clauses within X. The default features

assigned to each segment j, 1 � j � len(Ct;1), for a t-normalized boolean expression
are f[VAR var(C0;j)], [NOT not(C0;j)], [R0 F ], [SSi �],[Ri xi]g, 1 � i � t and
xi = T (xi = F ) if (t+i) is even (odd). For a particular expression X, each clause Ci;j is

encoded by an additional associated set of features in expression-segments start(Ci;j)
through start(Ci;j) + (len(Ci;j) � 1), namely [ELi j] (segments start(Ci;j) through

start(Ci;j) + (len(Ci;j)� 1)) and [SSi +] (segment start(Ci;j)).

A note is in order concerning the factor (t+ i) used to set the default values of feature
Ri. As the lowest type of clause in a t-normalized boolean expression is a product if t
is odd and a sum if t is even, the clause-type for the ith level depends on t as well as

i. The reader can verify that factor (t + i) correctly identi�es the type of clauses on
level i of a t-normalized expression expression, i.e., level i consists of product (sum)

clauses if (t+ i) is even (odd). This factor is also used in rule-set 3(a) described below

to ensure the correct application of product or sum logic during the evaluation of a

given boolean expression.

The segment string u produced by these feature assignments for the 3-normalized boolean ex-

pression (((a � b � c) + (a � c) + (b � c)) � ((a � b) + (b � c))) is given in
Figure B.1. Let D0 = fu0g, cp = max(n;maxki=1

P
Ci;j2X #sub(Ci;j) � 1), and

s0 = f[SEG A],[SV1 +],[SV2 +], . . . , [SVn +],[SC1 +],[SC2 +],. . . ,[SCk +]g
f[SEG E],[VAR 1],[R0 T ],[NOT +],[EL1 1],[SS1 +], [R1 T ],[EL2 1],[SS2 +],
[R2 T ],. . . ,[ELt 1],[SSt +],[Rt T ] g. The rule-sequence R has the following structure:

1. Choose a subset of the variables in X of cardinality k and set all occurrences of these

variables in expression X to T.
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(a) 2k m.e. rule-sets, i.e. k pairs of m.e. rule-sets, in which the �rst rule-set of pair i,

1 � i � k, consists of (n�1) optional rules that change all occurrences of features

f[VAR j],[R0 F ]g to f[VAR j], [R0 T ]g, 1 � j � (n � 1)

and an obligatory rule that changes all occurrences of features f[VAR n],

[R0 F ]g to f[VAR n], [R0 T ]g, and the second rule-set of the pair consists

of n obligatory rules that assign features f[SVj +],[SCi +]g, 1 � j � n, to the

accumulator-segment if feature SVj of the accumulator-segment has value \�"
and feature R0 of variable-segment j has value T .

(b) An obligatory rule that deletes all variable-segments.

(c) An obligatory rule that sets the value of all VAR features to 1.

(d) An obligatory rule that sets values of all features SVi, 1 � i � n, in the

accumulator-segment to +.

The �rst rule-set of each pair i in (a) non-deterministically chooses a variable v to

set to T, and the second rule-set in the pair checks that the variable has not already

been chosen, i.e. [SVv +]. Call the �rst type of rule-set the ith variable-selection
rule-set and the second type of rule-set the ith variable-check rule-set.

2. Negate variable-values appropriately.

(a) An obligatory rule that changes all occurrences of features f[R0 F ],[NOT +]g
to f[R0 T ],[NOT �]g.

(b) An obligatory rule that changes all occurrences of features f[R0 T ],[NOT +]g
to f[R0 F ],[NOT �]g.

(c) An obligatory rule that sets the values of all NOT features to +.

3. For each level of X, evaluate every AND / OR expression.

The following three rule-sets perform these computations for level i, 1 � i � t.

(a) An m.e. rule-set consisting of p = maxCi;j2X #sub(Ci;j) obligatory rules, in which

rule l, 1 � l � p, sets feature Ri of the �rst segment encoding clause Ci;j, i.e. the
leftmost segment with feature [ELi j], to F (T ) if segment l of Ci;j has feature

[R(i � 1) F ] ([R(i� 1) T ]) and (t + i) is even (odd). For example, if l = 3 and
(t + i) is odd, i.e., the clauses on level i are sums (ORs), such a rule would have

the form

2
64
ELi �

SSi +

Ri F

3
75!

2
64
ELi �

SSi +

Ri T

3
75 =

"
ELi �

SSi �

# 264
ELi �

SSi �
R(i� 1) T

3
75

Note that by simultaneous rule application, each such rule l will evaluate each

clause in level i relative to the result of its lth subclause; moreover, by the
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structuring of the feature SSi values to mark clause boundaries, no evaluation

of a clause can access the results of another clause's subclause, and the rules

will work correctly if clauses with di�erent numbers of subclauses exist on the

same level.

(b) An obligatory rule that deletes all segments with the features f[ELi �],[SSi �]g.
(c) An obligatory rule that sets the values of all features R(i� 1), ELi, and SSi to

T , 1, and +, respectively.

Rule-set (a) simulates AND or OR clause evaluations. Note that the Ri features

in segment string u were originally encoded to default values for their respective

clause-type, e.g. T for AND, F for OR. These default feature-values allow the �rst

rule-set above to perform AND and OR computations by looking only at the results

of individual subclauses in turn, i.e., change result of an AND-clause from default of

T to F if any of its subclauses evaluates to F and change result of an OR-clause from

default of F to T if any of its subclauses evaluates to T . Rule-set (b) deletes all but
the �rst of the segments of each clause at level i, leaving the remaining segment to

pass the evaluated result on to level i+ 1.

To complete this construction, let C 0 be the single control string described above and f 0C
associate this control string with every member of D0+. This construction can be done in
time polynomial in the given instance of WtNSAT.

Consider the following proof of the correctness of this construction. By the structure ofR0,
any application of R to u0 will produce a two-segment string of the form

f[SEG A],[SV1 +],[SV2 +], . . . ,[SVn +],[SC1 �1],[SC2 �2],. . . ,[SCk �k]g
f[SEG E],[VAR 1],[R0 T ],[NOT +], [EL1 1],[SS1 +],[R1 T ], [EL2 1],[SS2 +],
[R2 T ], . . . [ELt 1],[SSt +],[Rt �]g. By the structure of the variable-check rule-sets

in rule-set 1(a), feature SCi can have value + if and only if a variable was set to T by
the ith variable-selection rule-set that was not set to T by any previous variable-selection
rule-set. As each variable-selection rule-set can set exactly one variable to T , each feature

SCi, 1 � i � k, can have value + in the produced string if and only if exactly k vari-
ables in X were set to T . By the structure of rule-set 3(a), a product- (sum-) clause at

level i can only have the feature-value pair [Ri T ] in its �rst segment if all (at least one)
of its subclauses evaluated to T , i.e., had the feature-value pair [R(i � 1) T ] in their �rst
segments. Hence, feature Rt in the produced string has value T if and only if each clause

encoded in every level of the given t-normalized boolean expression was satis�ed by the

values assigned to the variables at level 0 for feature R0 { that is, if and only if the

variables of the encoded expression X have a satisfying truth assignment. Hence, g0(u0) = s0

if and only if there exists an assignment of k distinct variables to T that satis�es expression
X, and the given instance of WtNSAT has a solution if and only if the constructed instance

of SSG(D)-Encode has a solution.

Note that in the constructed instance of SSG(D)-Encode, jR0j = 2kn + 6 + 2t +P
Ci;j2X #sub(Ci;j), jR0

?j = (n � 1)k, jR0
m:e:j = 2k + 3t + 6, #(R0

m:e:) = max(n; p),

c0 = max(n + 1; p), ju0j = len(Ct;1) + n + 1, js0j = 2, jf 0j = 4t + n + 4, and

jv0j = max(n;maxki=1
P

Ci;j2X 1), where p = maxCi;j2X #sub(Ci;j).
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Lemma B.2 WtNSAT �m SSG(D)-Decode

Proof: Given an instance hX; ki of hki-WtNSAT de�ned on n boolean variables,

construct an instance hg0 = hF 0; D0; R0; c0p; C
0; f 0Ci; s0i of SSG(D)-Decode identical to that

in Lemma B.1. Note that as no rule in R can delete an accumulator segment, i.e., a seg-

ment with the feature-value pair [SEG A], then any underlying form from D0+ that can

produce s0 relative to R0 must have exactly the same number of accumulator segments

as s0. As s0 has one accumulator segment, the only member of D0+ that can possibly

produce s0 is u0. Hence, the given instance of WTNSAT has a solution if and only if and

only if g0(u0) = s0, and this reduction is correct for the same reasons as the reduction in

Lemma B.1.

Note that in the constructed instance of SSG(D)-Decode, all aspects have same values

as for the constructed instance of SSG(D)-Encode in Lemma B.1.

Theorem B.3 hjRm:e:j; jsj2i-SSG(D)-Encode and hjRm:e:j; jsj2i-SSG(D)-Decode are

W [t]-hard for all t � 2.

Proof: The results follow from the W [t]-completeness of hki-WtNSAT for t � 2
[DF92, Theorem 4.1], the reductions in Lemmas B.1 and B.2 from WtNSAT to
SSG(D)-Encode and SSG(D)-Decode, respectively, in which jRm:e:j = 2k + 3t + 6 and

jsj = 2, and Lemma 2.1.25.
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1 2 3 4

[SEG A] [SEG V ] [SEG V ] [SEG V ]

[SV1 �] [VAR 1] [VAR 2] [VAR 3]
[SV2 �] [R0 F ] [R0 F ] [R0 F ]
[SV3 �]
[SC1 �]
[SC2 �]

(((a � b � c) + (a � c) + (b � c))
5 6 7 8 9 10 11

[SEG E] [SEG E] [SEG E] [SEG E] [SEG E] [SEG E] [SEG E]

[VAR 1] [VAR 2] [VAR 3] [VAR 1] [VAR 3] [VAR 2] [VAR 3]
[R0 F ] [R0 F ] [R0 F ] [R0 F ] [R0 F ] [R0 F ] [R0 F ]
[NOT �] [NOT +] [NOT �] [NOT +] [NOT �] [NOT +] [NOT +]
[EL1 1] [EL1 1] [EL1 1] [EL1 2] [EL1 2] [EL1 3] [EL1 3]
[SS1 +] [SS1 �] [SS1 �] [SS1 +] [SS1 �] [SS1 +] [SS1 �]
[R1 T ] [R1 T ] [R1 T ] [R1 T ] [R1 T ] [R1 T ] [R1 T ]

[EL2 1] [EL2 1] [EL2 1] [EL2 1] [EL2 1] [EL2 1] [EL2 1]
[SS2 +] [SS2 �] [SS2 �] [SS2 �] [SS2 �] [SS2 �] [SS2 �]
[R2 F ] [R2 F ] [R2 F ] [R2 F ] [R2 F ] [R2 F ] [R2 F ]

[EL3 1] [EL3 1] [EL3 1] [EL3 1] [EL3 1] [EL3 1] [EL3 1]
[SS3 +] [SS3 �] [SS3 �] [SS3 �] [SS3 �] [SS3 �] [SS3 �]
[R3 T ] [R3 T ] [R3 T ] [R3 T ] [R3 T ] [R3 T ] [R3 T ]

� ((a � b) + (b � c)))
12 13 14 15

[SEG E] [SEG E] [SEG E] [SEG E]

[VAR 1] [VAR 2] [VAR 2] [VAR 3]
[R0 F ] [R0 F ] [R0 F ] [R0 F ]
[NOT �] [NOT �] [NOT �] [NOT �]
[EL1 4] [EL1 4] [EL1 5] [EL1 5]
[SS1 +] [SS1 �] [SS1 +] [SS1 �]
[R1 T ] [R1 T ] [R1 T ] [R1 T ]

[EL2 2] [EL2 2] [EL2 2] [EL2 2]
[SS2 +] [SS2 �] [SS2 �] [SS2 �]
[R2 F ] [R2 F ] [R2 F ] [R2 F ]

[EL3 1] [EL3 1] [EL3 1] [EL3 1]
[SS3 �] [SS3 �] [SS3 �] [SS3 �]
[R3 T ] [R3 T ] [R3 T ] [R3 T ]

Figure B.1: A Lexical String Produced by the Reduction in Lemma B.1. The formula

encoded above is the 3-normalized boolean expression (((a � b � c) + (a � c) + (b � c)) �
((a� b) + (b� c))) under the variable-encoding var(a) = 1, var(b) = 2, and var(c) = 3.
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