
IFA Proceedings 23, 1999 17

Institute of Phonetic Sciences,
University of Amsterdam,
Proceedings 23 (1999), 17–35

OPTIMALITY-THEORETIC LEARNING
IN THE PRAAT PROGRAM *

Paul Boersma

Abstract

This tutorial yields a step-by-step introduction to stochastic OT grammars and about how
you can use the Gradual Learning Algorithm available in the Praat program to help you
rank Optimality-Theoretic constraints in ordinal and stochastic grammars.

This tutorial describes how you can draw Optimality-Theoretic tableaus and simulate
Optimality-Theoretic learning with the Praat program (Boersma & Weenink 1992-2000).

1. Kinds of OT grammars

According to Prince & Smolensky (1993), an Optimality-Theoretic (OT) grammar
consists of a number of ranked constraints. For every possible input (underlying form),
GEN generates a (possibly very large) number of output candidates, and the ranking
order of the constraints determines the winning candidate, which becomes the single
optimal output.

In OT, ranking is strict, i.e., if a constraint A is ranked higher than the constraints B,
C, and D, a candidate that violates only constraint A will always be beaten by any
candidate that respects A (and any higher constraints), even if it violates B, C, and D.

— Ordinal OT grammars. Because only the ranking order of the constraints plays a
role in evaluating the output candidates, the grammar was taken to contain no absolute
ranking values, i.e., there was only an ordinal relation between the constraint rankings.
For such a grammar, Tesar & Smolensky (1998) devised a learning algorithm (Error-
Driven Constraint Demotion, EDCD) that changes the complete ranking order with
every learning step, i.e. whenever the form produced by the learner is different from the
adult form.

— Stochastic OT grammars. The EDCD algorithm is extremely sensitive to errors in
the learning data, it cannot deal with language variation, and it does not show realistic
gradual learning curves. For these reasons, Boersma (to appear; 1997; 1998: chs.14–15)
proposed stochastic constraint grammars in which every constraint has a ranking value
along a continuous ranking scale, and a small amount of noise is added to this ranking
value at evaluation time. The associated error-driven learning algorithm (Gradual
Learning Algorithm, GLA) effects small changes in the ranking values of the constraints
with every learning step.

* The text of this paper is virtually identical to the OT learning tutorial and the OTGrammar manual
page as available from the Help menus in the Praat program (version December 1998).

18 IFA Proceedings 23, 1999

Ordinal OT grammars form a special case of the more general stochastic OT
grammars: they have integer ranking values (strata) and zero evaluation noise. In the
Praat program, therefore, every constraint is taken to have a ranking value, so that you
can do stochastic as well as ordinal OT.

An OT grammar is implemented as an OTGrammar or OTAnyGrammar object.
In an OTGrammar object, you specify all the constraints, all the possible inputs and all
their possible outputs. This makes the OTGrammar object the simplest of the two for
most problems. In this tutorial, we will only discuss OTGrammar objects.

2. The grammar

We can ask the grammar to produce an output form for any input form that is in its list
of tableaus.

2.1. Viewing a grammar

Consider a language where the underlying form /pat/ leads to the surface [pa],
presumably because the structural constraint NOCODA outranks the faithfulness
constraint PARSE.

To create such a grammar in Praat, choose Create NoCoda grammar from the
Optimality Theory submenu of the New menu. An OTGrammar object will then
appear in the list of objects. If you click Edit, an OTGrammarEditor will show up,
containing:

1. The constraint list, sorted by disharmony (= ranking value + noise):

ranking value disharmony

NOCODA 100.000 100.000

PARSE 90.000 90.000

2. The tableaus for the two possible inputs /pat/ and /pa/:

/pat/ NOCODA PARSE

☞ pa *

pat * !

/pa/ NOCODA PARSE

☞ pa *

From the first tableau, we see that the underlying form /pat/ will surface as [pa], because
the alternative [pat] violates a constraint (namely, NOCODA) with a higher disharmony
than does [pa], which only violates PARSE, which has a lower disharmony.

Note the standard OT tableau layout: asterisks (*) showing violations, exclamation
marks (!) showing crucial violations, greying of cells that do not contribute to
determining the winning candidate, and a finger (☞) pointing to the winner (this may
look like a plus sign (+) if you don't have the Zapf Dingbats font installed on your
computer or printer).

IFA Proceedings 23, 1999 19

The second tableau shows that /pa/ always surfaces as [pa], which is no wonder
since this is the only candidate. All cells are grey because none of them contributes to
the determination of the winner.

2.2. Inside the grammar

You can write an OTGrammar grammar into a text file by choosing Write to text file...
from the Write menu of the Objects window. For the NOCODA example, the contents of
the file will look like:

File type = “ooTextFile”
Object class = “OTGrammar”

2 constraints
constraint [1]: “N\s{O}C\s{ODA}” 100 100 ! NOCODA
constraint [2]: “P\s{ARSE}” 90 90 ! PARSE

0 fixed rankings

2 tableaus
input [1]: “pat” 2

candidate [1]: “pa” 0 1
candidate [2]: “pat” 1 0

input [2]: “pa” 1
candidate [1]: “pa” 0 0

To understand more about this data structure, consult the OTGrammar class
description (Appendix A) or click Inspect after selecting the OTGrammar object. The
“\s{...}” braces ensure that the constraint names show up with their traditional
small capitals (see Praat’s manual page on Text styles).

You can read this text file into Praat again with Read from file... from the Read
menu in the Objects window.

2.3. Defining your own grammar

By editing a text file created from an example in the New menu, you can define your
own OT grammars.

As explained in Praat’s manual page Write to text file..., Praat is quite resilient
about its text file formats. As long as the strings and numbers appear in the correct
order, you can redistribute the data across the lines, add all kinds of comments, or leave
the comments out. For the NOCODA example, the text file could also have looked like:

“ooTextFile”
“OTGrammar”
2
“N\s{O}C\s{ODA}” 100 100
“P\s{ARSE}” 90 90
0 ! number of fixed rankings
2 ! number of accepted inputs
“pat” 2 ! input form with number of output candidates

“pa” 0 1 ! first candidate with violations
“pat” 1 0 ! second candidate with violations

“pa” 1 ! input form with number of candidates
“pa” 0 0

To define your own grammar, you just provide a number of constraints and their
rankings, and all the possible input forms with all their output candidates, and all the
constraint violations for each candidate. The order in which you specify the constraints
is free (you don't have to specify the highest-ranked first), as long as the violations are in

20 IFA Proceedings 23, 1999

the same order; you could also have reversed the order of the two input forms, as long as
the corresponding candidates follow them; and, you could also have reversed the order
of the candidates within the /pat/ tableau, as long as the violations follow the output
forms. Thus, you could just as well have written:

“ooTextFile”
“OTGrammar”
2
“P\s{ARSE}” 90 90
“N\s{O}C\s{ODA}” 100 100
0
2
“pa” 1

“pa” 0 0
“pat” 2

“pat” 0 1
“pa” 1 0

2.4. Evaluation

In an Optimality-Theoretic model of grammar, evaluation refers to the determination of
the winning candidate on the basis of the constraint ranking.

In an ordinal OT model of grammar, repeated evaluations will yield the same winner
again and again. We can simulate this behaviour with our NOCODA example. In the
editor, you can choose Evaluate (zero noise) or use its keyboard shortcut Command-0
(= Command-zero). Repeated evaluations (keep Command-0 pressed) will always yield
the following grammar:

ranking value disharmony

NOCODA 100.000 100.000

PARSE 90.000 90.000

In a stochastic OT model of grammar, repeated evaluations will yield different
disharmonies each time. To see this, choose Evaluate (noise 2.0) or use its keyboard
shortcut Command-2. Repeated evaluations will yield grammars like the following:

ranking value disharmony

NOCODA 100.000 100.427

PARSE 90.000 87.502

and

ranking value disharmony

NOCODA 100.000 101.041

PARSE 90.000 90.930

and

ranking value disharmony

NOCODA 100.000 96.398

PARSE 90.000 89.482

The disharmonies vary around the ranking values, according to a Gaussian distribution
with a standard deviation of 2.0. The winner will still be [pa] in almost all cases, because
the probability of bridging the gap between the two ranking values is very low, namely
0.02 per cent (Boersma 1998: 332).

IFA Proceedings 23, 1999 21

With a noise much higher than 2.0, the chances of PARSE outranking NOCODA will
rise. To see this, choose Evaluate... and supply 5.0 for the noise. Typical outcomes are:

ranking value disharmony

NOCODA 100.000 92.634

PARSE 90.000 86.931

and

ranking value disharmony

NOCODA 100.000 101.162

PARSE 90.000 85.311

and

ranking value disharmony

PARSE 90.000 99.778

NOCODA 100.000 98.711

In the last case, the order of the constraints has been reversed. You will see that [pat] has
become the winning candidate:

/pat/ PARSE NOCODA

pa * !

☞ pat *

However, in the remaining part of this tutorial, we wil stick with a noise with a standard
deviation of 2.0. This specific number ensures that we can model fairly rigid rankings by
giving the constraints a ranking difference of 10. Also, the learning algorithm will
separate many constraints in such a way that the differences between their ranking
values are in the vicinity of 10.

2.5. Editing a grammar

In the NOCODA example, the winning candidate for the input /pat/ was always [pa].
To make [pat] the winner instead, NOCODA should be ranked lower than PARSE. To

achieve this even with zero noise, go to the editor and select the NOCODA constraint by
clicking on it (a spade symbol ♠ will mark the selected constraint), and choose Edit
ranking... from the Edit menu, or use the keyboard shortcut Command-E.

In the resulting dialog, we lower the ranking of the constraint from 100 to 80, and
click OK. This is what you will see in the editor:

ranking value disharmony

♠ NOCODA 80.000 103.429

PARSE 90.000 88.083

/pat/ NOCODA PARSE

☞ pa *

pat * !

22 IFA Proceedings 23, 1999

Nothing has happened to the tableau, because the disharmonies still have their old
values. So choose Evaluate (noise 2.0) (Command-2) or Evaluate (zero noise)
(Command-0). The new disharmonies will centre around the new ranking values, and we
see that [pat] becomes the new winner:

ranking value disharmony

PARSE 90.000 90.743

NOCODA 80.000 81.581

/pat/ PARSE NOCODA

pa * !

☞ pat *

2.6. Variable output

Each time you press Command-2, which invokes the command Evaluate (noise 2.0)
from the Edit menu, you will see the disharmonies changing. If the distance between the
constraint rankings is 10, however, the winning candidates will very probably stay the
same.

So starting from the NOCODA example, we edit the rankings of the constraints again,
setting the ranking value of PARSE to 88 and that of NOCODA to 85. If we now press
Command-2 repeatedly, we will get [pat] in most of the cases, but we will see the finger
pointing at [pa] in 14 percent of the cases:

ranking value disharmony

PARSE 88.000 87.421

NOCODA 85.000 85.585

/pat/ PARSE NOCODA

pa * !

☞ pat *

but

ranking value disharmony

NOCODA 85.000 87.128

PARSE 88.000 85.076

/pat/ NOCODA PARSE

☞ pa *

pat * !

As a more functionally oriented example, we consider nasal place assimilation. Suppose
that the underlying sequence /an+pa/ surfaces as the assimilated [ampa] in 80 percent

IFA Proceedings 23, 1999 23

of the cases, and as the faithful [anpa] in the remaining 20 percent, while the non-nasal
stop /t/ never assimilates. This can be achieved by having the articulatory constraint
*GESTURE ranked at a short distance above *REPLACE (n, m):

“ooTextFile”
“OTGrammar”
3 constraints
“*G\s{ESTURE}” 102.7 0
“*R\s{EPLACE} (n, m)” 100.0 0
“*R\s{EPLACE} (t, p)” 112.0 0
0 fixed rankings
2 tableaus
“an+pa” 2

“anpa” 1 0 0
“ampa” 0 1 0

“at+ma” 2
“atma” 1 0 0
“apma” 0 0 1

You can create this grammar with Create place assimilation grammar from the New
menu. In the editor, it will often look like follows:

ranking value disharmony

*REPLACE (t, p) 112.000 109.806

*GESTURE 102.700 102.742

*REPLACE (n, m) 100.000 101.044

/an+pa/ *REPLACE (t, p) *GESTURE *REPLACE (n, m)

anpa * !

☞ ampa *

/at+ma/ *REPLACE (t, p) *GESTURE *REPLACE (n, m)

☞ atma *

apma * !

If you keep the Command-2 keys pressed, however, you will see that the tableaus
change into something like the following in approximately 20 percent of the cases:

ranking value disharmony

*REPLACE (t, p) 112.000 113.395

*REPLACE (n, m) 100.000 103.324

*GESTURE 102.700 101.722

/an+pa/ *REPLACE (t, p) *REPLACE (n, m) *GESTURE

☞ anpa *

ampa * !

24 IFA Proceedings 23, 1999

/at+ma/ *REPLACE (t, p) *REPLACE (n, m) *GESTURE

☞ atma *

apma * !

We see that /at+ma/ always surfaces at [atma], because *REPLACE (t, p) is ranked
much higher than the other two, and that the output of /an+pa/ is variable because of
the close rankings of *GESTURE and *REPLACE (n, m).

2.7. Tableau pictures

To show a tableau in Praat’s Picture window instead of in the editor, you select an
OTGrammar object and click Draw tableau.... After you specify the input form, a
tableau is drawn with the current font and size at the location of the current selection
(viewport) in the Picture window. The top left corner of the tableau is aligned with the
top left corner of the selection. You can draw more than one object into the Picture
window, whose menus also allow you to add a lot of graphics of your own design.

Besides printing the picture to a PostScript printer (with Print picture to
PostScript printer...), you can save a part of it to an EPS file for inclusion into your
favourite word processor (with Write picture to EPS file...). For this to succeed, make
sure that the selection includes at least your tableau; otherwise, some part of your tableau
may end up truncated.

2.8. Asking for one output

To ask the grammar to produce a single output for a specified input form, you can
choose OTGrammar: Input to output... . The dialog will ask you to provide an input
form and the strength of the noise (the default is 2.0 again). This will perform an
evaluation and write the result into Praat’s Info window.

If you are viewing the grammar in the OTGrammarEditor , you will see the
disharmonies change, and if the grammar allows variation, you will see that the winner in
the tableau in the editor varies with the winner shown in the Info window.

Since the editor shows more information than the Info window, this command is not
very useful except for purposes of scripting. See the following page for some related but
more useful commands.

2.9. Output distributions

To ask the grammar to produce many outputs for a specified input form, and collect
them in a Strings object, you select an OTGrammar and choose Input to outputs....

For example, select the object “OTGrammar assimilation” from our place
assimilation example (§2.6), and click Input to outputs.... In the resulting dialog, you
specify 1000 trials, a noise strength of 2.0, and “an+pa” for the input form.

After you click OK, a Strings object will appear in the list. If you click Info, you will
see that it contains 1000 strings. If you click Inspect, you will see that most of the
strings are “ampa”, but some of them are “anpa”. These are the output forms
computed from 1000 evaluations for the input /an+pa/.

To count how many instances of [ampa] and [anpa] were generated, you select the
Strings object and click To Distributions . You will see a new Distributions object
appear in the list. If you draw this to the Picture window (with Draw as numbers...),
you will see something like:

IFA Proceedings 23, 1999 25

ampa 815
anpa 185

which means that our grammar, when fed with 1000 /an+pa/ inputs, produced [ampa]
815 times, and [anpa] 185 times, which is consistent with our initial guess that a ranking
difference of 2.7 would cause approximately an 80% – 20% distribution of [ampa] and
[anpa].
— Checking the distribution hypothesis. To see whether the guess of a 2.7 ranking
difference is correct, we perform 1,000,000 trials instead of 1000. The output
distribution (if you have enough memory in your computer) becomes something like
(set the Precision to 7 in the drawing dialog):

ampa 830080
anpa 169920

The expected values under the 80% – 20% distribution hypothesis are:

ampa 800000
anpa 200000

We compute (e.g. with Calculator...) a χ 2 of 300802/800000 + 300802/200000 =
5655.04, which, of course, is much too high for a distribution with a single degree of
freedom. So the ranking difference must be smaller. If it is 2.4 (change the ranking of
*GESTURE to 102.4), the numbers become something like

ampa 801974
anpa 198026

which gives a χ 2 of 24.35. By using the Calculator with the formula chiSquareQ
(24.35, 1), we find that values larger than this have a probability of 8·10–7 under the
80% – 20% distribution hypothesis, which must therefore be rejected again.

Rather than continuing this iterative procedure to find the correct ranking values for
an 80% – 20% grammar, we will use the Gradual Learning Algorithm (§5) to determine
the rankings automatically, without any memory of past events other than the memory
associated with maintaining the ranking values.

— Measuring all inputs. To measure the outcomes of all the possible inputs at once,
you select an OTGrammar and choose To output Distributions.... As an example,
try this on our place assimilation grammar. You can supply 1000000 for the number of
trials, and the usual 2.0 for the standard deviation of the noise. After you click OK, a
Distributions object will appear in the list. If you draw this to the Picture window, the
result will look like:

/an+pa/ → anpa 169855
/an+pa/ → ampa 830145
/at+ma/ → atma 999492
/at+ma/ → apma 508

We see that the number of [apma] outputs is not zero. This is due to the difference of
9.3 between the rankings of *REPLACE (t, p) and *GESTURE. If you rank *REPLACE
(t, p) at 116.0, the number of produced [apma] reduces to about one in a million, as you
can easily check with some patience.

26 IFA Proceedings 23, 1999

3. Generating language data

A learner needs two things: a grammar that she can adjust (§2), and language data.

3.1. Data from a pair distribution

If the grammar contains faithfulness constraints, the learner needs pairs of underlying
and adult surface forms. For our place assimilation example, she needs a lot of /at+ma/
- [atma] pairs, and four times as many /an+pa/ - [ampa] pairs as /an+pa/ - [anpa] pairs.
We can specify this language-data distribution in a PairDistribution object, which we
could simply write into a text file:

“ooTextFile”
“PairDistribution”
4 pairs
“at+ma” “atma” 100
“at+ma” “apma” 0
“an+pa” “anpa” 20
“an+pa” “ampa” 80

The values seem to represent percentages, but they could also have been 1.0, 0.0, 0.2,
and 0.8, or any other values with the same proportions. We could also have left out the
second pair and specified “3” instead of “4” in the third line.

We can create this pair distribution with Create place assimilation distribution
from the Optimality Theory submenu of the New menu in the Objects window. To see
that it really contains the above data, you can draw it to the Picture window. To change
the values, use Inspect (in which case you should remember to click Change after any
change).

To generate input-output pairs from the above distribution, select the
PairDistribution and click To Stringses.... If you then just click OK, there will
appear two Strings objects in the list, called “input” (underlying forms) and “output”
(surface forms). Both contain 1000 strings. If you Inspect them both, you can see that
e.g. the 377th string in “input” corresponds to the 377th string in “output”, i.e., the
two series of strings are aligned. See also the example at the manual page
PairDistribution: To Stringses....

These two Strings objects are sufficient to help an OTGrammar grammar to change
its constraint rankings in such a way that the output distributions generated by the
grammar match the output distributions in the language data. See §5.

3.2. Data from another grammar

Instead of generating input-output pairs directly from a PairDistribution object, you
can also generate input forms and their winning outputs from an OTGrammar
grammar. Of course, that's what the language data presented to real children comes
from. Our example will be a tongue-root harmony grammar.

Choose Create tongue-root grammar... from the Optimality Theory submenu of
the New menu. Set Constraint set to “Five”, and Ranking to “Wolof”. Click OK. An
object called “OTGrammar Wolof” will appear in the list. Click Edit . You will see the
following grammar appear in the OTGrammarEditor :

IFA Proceedings 23, 1999 27

ranking value disharmony

*[rtr / hi] 100.000 100.000

PARSE (rtr) 50.000 50.000

*GESTURE (contour) 30.000 30.000

PARSE (atr) 20.000 20.000

*[atr / lo] 10.000 10.000

This simplified Wolof grammar, with five constraints with clearly different rankings, is
equivalent to the traditional OT ranking

*[rtr / hi] >> PARSE (rtr) >> *GESTURE (contour) >> PARSE (atr) >> *[atr / lo]

These constraints are based on a description of Wolof by Archangeli & Pulleyblank
(1994: 225–239). For the meaning of these constraints, see Boersma (1998: 295), or the
Create tongue-root grammar... manual page, which is included in this paper as
Appendix B.

For each input, there are four output candidates: the vowel heights will be the same as
those in the input, but the tongue-root values of V1 and V2 are varied. For example, for
the input [ita] we will have the four candidates [ita], [it
], [�ta], and [�t
].

With this way of generating candidates, we see that the five constraints are completely
ranked. First, the absolute prohibition on surface [�] shows that *[rtr / hi] outranks RTR
faithfulness (otherwise, [�t�] would have been the winner):

/�t�/ *[rtr / hi] PARSE
(rtr)

*GESTURE
(contour)

PARSE
(atr)

*[atr / lo]

ItI * !*

itI * ! * *

Iti * ! * *

☞ iti **

Second, the faithful surfacing of the disharmonic /it�/ shows that RTR faithfulness
must outrank the harmony (anti-contour) constraint (otherwise, [ite] would have been
the winner):

/it�/ *[rtr / hi] PARSE
(rtr)

*GESTURE
(contour)

PARSE
(atr)

*[atr / lo]

☞ itE *

ItE * ! *

ite * !

Ite * ! * * *

Third, the RTR-dominant harmonicization of underlying disharmonic /et�/ shows that
harmony must outrank ATR faithfulness (otherwise, [et�] would have won):

28 IFA Proceedings 23, 1999

/et�/ *[rtr / hi] PARSE
(rtr)

*GESTURE
(contour)

PARSE
(atr)

*[atr / lo]

etE * !

☞ EtE *

ete * !

Ete * ! * *

Finally, the faithful surfacing of the low ATR vowel /
/ even if not forced by harmony,
shows that ATR faithfulness outranks *[atr / lo] (otherwise, [ata] would have been the
winning candidate):

/
t
/ *[rtr / hi] PARSE
(rtr)

*GESTURE
(contour)

PARSE
(atr)

*[atr / lo]

☞ ́ t´ **

at´ * ! * *

´ta * ! * *

ata * !*

These four ranking arguments clearly establish the crucial rankings of all five
constraints.

— Generating inputs from the grammar. According to Prince & Smolensky (1993),
the input to an OT grammar can be anything. This is the idea of richness of the base.
When doing a practical investigation, however, we are only interested in the inputs that
will illustrate the properties of our partial grammars. In the case of simplified Wolof, this
means the 36 possible V1tV2 sequences where V1 and V2 are any of the six front vowels
i, �, e, �,
, and a (see Create tongue-root grammar...).

A set of inputs can be generated from an OTGrammar object by inspecting the list
of tableaus. So select the Wolof tongue-root grammar and choose Generate inputs....
Set Number of trials to 100, and click OK. A Strings object named “Wolof_in” will
appear in the list. Click Inspect and examine the 100 input strings. You will see that they
have been randomly chosen from the 36 possible V1tV2 sequences as described at
Create tongue-root grammar...:

�ta, et�, �ti, it�, �t�, iti, �t�, it�, �ti, et�, ...

Thus, when asked to generate a random input, these grammars produce any of the 36
possible V1tV2 sequences, all with equal probability.

— Generating outputs from the grammar. To compute the outputs for the above set
of input forms, select both the OTGrammar object and the input Strings object, and
choose Inputs to outputs..., perhaps specifying zero evaluation noise. A new Strings
objects called “Wolof_out” will appear in the list. If you Inspect it, you will see that it
contains a string sequence aligned with the original input strings:

�ta, �t�, �ti, it�, �t�, iti, �ti, iti, iti, �t�, ...

IFA Proceedings 23, 1999 29

In this way, we have created two Strings objects, which together form a series of input-
output pairs needed for learning a grammar that contains faithfulness constraints.

4. Learning an ordinal grammar

With the data from a tongue-root-harmony language with five completely ranked
constraints, we can have a throw at learning this language, starting with a grammar in
which all the constraints are ranked at the same height, or randomly ranked, or with
articulatory constraints outranking faithfulness constraints.

Let’s try the third of these. Create an infant tongue-root grammar by choosing
Create tongue-root grammar... and specifying “Five” for the constraint set and
“Infant” for the ranking. The result after a single evaluation will be like:

ranking value disharmony

*GESTURE (contour) 100.000 100.631

*[atr / lo] 100.000 100.244

*[rtr / hi] 100.000 97.086

PARSE (rtr) 50.000 51.736

PARSE (atr) 50.000 46.959

Such a grammar produces all kinds of non-adult results. For instance, the input /
t�/
will surface as [at�]:

/
t�/ *GESTURE
(contour)

*[atr / lo] *[rtr / hi] PARSE
(rtr)

PARSE
(atr)

´tI * ! * *

☞ atI * *

´ti * ! *

ati * ! * *

The adult form is very different: [
ti]. The cause of the discrepancy is in the order of the
constraints *[atr / lo] and *[rtr / hi], which militate against [
] and [�], respectively.
Simply reversing the rankings of these two constraints would solve the problem in this
case. More generally, Tesar & Smolensky (1998) prove that demoting all the constraints
that cause the adult form to lose into the stratum just below the highest-ranked constraint
violated in the learner’s form (here, moving *[atr / lo] just below *[rtr / hi] into the
same stratum as PARSE (rtr)), will guarantee convergence to the target grammar, if there
is no variation in the data.

But Tesar & Smolensky’s algorithm cannot be used for variable data, since all
constraints would be tumbling down, exchanging places and producing wildly different
grammars at each learning step. Since language data do tend to be variable, we need a
gradual and balanced learning algorithm, and the following algorithm is guaranteed to
converge to the target language, if that language can be described by a stochastic OT
grammar.

The reaction of the learner to hearing the mismatch between the adult [
ti] and her
own [at�] is simply:

30 IFA Proceedings 23, 1999

1. to move the constraints violated in her own form, i.e. *[rtr / hi] and PARSE (atr), up
by a small step along the ranking scale, thus decreasing the probability that her
form will be the winner at the next evaluation of the same input;

2. and to move the constraints violated in the adult form, namely *[atr / lo] and
PARSE (rtr), down along the ranking scale, thus increasing the probability that the
adult form will be the learner’s winner the next time.

If the small reranking step (the plasticity) is 0.1, the grammar will become:

ranking value disharmony

*GESTURE (contour) 100.000 100.631

*[atr / lo] 99.900 100.244

*[rtr / hi] 100.000 97.086

PARSE (rtr) 49.900 51.736

PARSE (atr) 50.000 46.959

The disharmonies, of course, will be different at the next evaluation, with a probability
slightly higher than 50% that *[rtr / hi] will outrank *[atr / lo]. Thus the relative
rankings of these two grounding constraints have moved into the direction of the adult
grammar, in which they are ranked at opposite ends of the grammar.

Note that the relative rankings of PARSE (atr) and PARSE (rtr) are now moving in a
direction opposite to where they will have to end up in this RTR-dominant language.
This does not matter: the procedure will converge nevertheless.

We are now going to simulate the infant who learns simplified Wolof. Take an adult
Wolof grammar and generate 1000 input strings and the corresponding 1000 output
strings following the procedure described in §3.2. Now select the infant OTGrammar
and both Strings objects, and choose Learn (GLA)... . After you click OK, the learner
processes each of the 1000 input-output pairs in succession, gradually changing the
constraint ranking in case of a mismatch. The resulting grammar may look like:

ranking value disharmony

*[rtr / hi] 100.800 98.644

*GESTURE (contour) 89.728 94.774

*[atr / lo] 89.544 86.442

PARSE (rtr) 66.123 65.010

PARSE (atr) 63.553 64.622

We already see some features of the target grammar, namely the top ranking of
*[rtr / hi] and RTR dominance (the mutual ranking of the PARSE constraints). The
steps have not been exactly 0.1, because we also specified a relative plasticity spreading
of 0.1, thus giving steps typically in the range of 0.7 to 1.3.

After learning once more with the same data, the result is:

ranking value disharmony

*[rtr / hi] 100.800 104.320

PARSE (rtr) 81.429 82.684

*[atr / lo] 79.966 78.764

*GESTURE (contour) 81.316 78.166

PARSE (atr) 77.991 77.875

IFA Proceedings 23, 1999 31

This grammar now sometimes produces faithful disharmonic utterances, because the
PARSE now often outrank the gestural constraints at evaluation time. But there is still a
lot of variation produced. Learning once more with the same data gives:

ranking value disharmony

*[rtr / hi] 100.800 100.835

PARSE (rtr) 86.392 82.937

*GESTURE (contour) 81.855 81.018

*[atr / lo] 78.447 78.457

PARSE (atr) 79.409 76.853

By inspecting the first column, you can see that the ranking values are already in the
same order as in the target grammar, so that the learner will produce 100 percent correct
adult utterances if her evaluation noise is zero. However, with a noise of 2.0, there will
still be variation. For instance, the disharmonies above will produce [ata] instead of [
t
]
for underlying /
t
/. Learning seven times more with the same data gives a reasonable
proficiency:

ranking value disharmony

*[rtr / hi] 100.800 99.167

PARSE (rtr) 91.580 93.388

*GESTURE (contour) 85.487 86.925

PARSE (atr) 80.369 78.290

*[atr / lo] 75.407 74.594

No input forms have error rates above 4 percent now, so the child has learned a lot with
only 10,000 data, which may be on the order of the number of input data she receives
every day.

We could have sped up the learning process appreciably by using a plasticity of 1.0
instead of 0.1. This would have given a comparable grammar after only 1000 data. After
10,000 data, we would have

ranking value disharmony

*[rtr / hi] 107.013 104.362

PARSE (rtr) 97.924 99.984

*GESTURE (contour) 89.679 89.473

PARSE (atr) 81.479 83.510

*[atr / lo] 73.067 72.633

With this grammar, all the error rates are below 0.2 percent. We see that crucially ranked
constraints will become separated after a while by a gap of about 10 along the ranking
scale.

If we have three constraints obligatorily ranked as A >> B >> C in the adult
grammar, with ranking differences of 8 between A and B and between B and C in the
learner’s grammar (giving an error rate of 0.2%), the ranking A >> C has a chance of
less than 1 in 100 million to be reversed at evaluation time. This relativity of error rates
is an empirical prediction of our stochastic grammar model.

32 IFA Proceedings 23, 1999

5. Learning a stochastic grammar

Having shown that the algorithm can learn deep obligatory rankings, we will now see
that it also performs well in replicating the variation in the language environment.

Create a place assimilation grammar as described in §2.6, and set all its rankings to
100.000:

ranking value disharmony

*GESTURE 100.000 100.000

*REPLACE (t, p) 100.000 100.000

*REPLACE (n, m) 100.000 100.000

Create a place assimilation distribution and generate 1000 string pairs (§3.1). Select the
grammar and the two Strings objects, and learn (GLA) with a plasticity of 0.1:

ranking value disharmony

*REPLACE (t, p) 104.540 103.140

*REPLACE (n, m) 96.214 99.321

*GESTURE 99.246 97.861

The output distributions are now (using OTGrammar: To output Distributions... ,
see §2.9):

/an+pa/ → anpa 14.3%
/an+pa/ → ampa 85.7%
/at+ma/ → atma 96.9%
/at+ma/ → apma 3.1%

After another 10,000 new string pairs, we have:

ranking value disharmony

*REPLACE (t, p) 106.764 107.154

*GESTURE 97.899 97.161

*REPLACE (n, m) 95.337 96.848

With the following output distributions (measured with a million draws):

/an+pa/ → anpa 18.31%
/an+pa/ → ampa 81.69%
/at+ma/ → atma 99.91%
/at+ma/ → apma 0.09%

The error rate is acceptably low, but the accuracy in reproducing the 80% – 20%
distribution could be better. This is because the relatively high plasticity of 0.1 can only
give a coarse approximation. So we lower the plasticity to 0.001, and supply 100,000
new data:

ranking value disharmony

*REPLACE (t, p) 106.810 107.184

*GESTURE 97.782 99.682

*REPLACE (n, m) 95.407 98.760

With the following output distributions:

IFA Proceedings 23, 1999 33

/an+pa/ → anpa 20.08%
/an+pa/ → ampa 79.92%
/at+ma/ → atma 99.94%
/at+ma/ → apma 0.06%

So besides learning obligatory rankings like a child does, the algorithm can also
replicate very well the probabilities of the environment. This means that a GLA learner
can learn stochastic grammars.

Appendix A. The OTGrammar class description

OTGrammar is a class of objects in the Praat program. An OTGrammar object
contains the following attributes:

struct-list constraints
a list of constraints. Each constraint contains the following attributes:
string name

the fixed name of the constraint, for instance “PARSE”.
real ranking

the continuous ranking value; will change during learning.
real disharmony

the effective ranking value during stochastic evaluation; with a non-zero
evaluation noise, this will be different from ranking.

struct-list fixedRankings
an often empty list of locally ranked pairs of constraints. Each local-ranking pair
contains the following attributes:
natural higher

the index of the universally higher-ranked of the two constraints, a number
between 1 and the number of constraints.

natural lower
the index of the universally lower-ranked of the two constraints.

struct-list tableaus
a list of tableaus. Each tableau contains the following attributes:
string input

the input string of the tableau. In generative phonology: the underlying form of
the utterance, for example /an+pa/ or /b��� + PAST/. In functional phonology:
the perceptual specification of the utterance, for example |an+pa| or the
morphological specification, for example |b��� + PAST|.

struct-list candidates
a list of output candidates. Each output candidate consists of:
string output

the output string of the tableau. In generative phonology: the surface form of
the utterance, for example [anpa] or [ampa] or [b���t] or [b�æ�]. In
functional phonology: the combination of the articulatory and the perceptual
results, for example [anpa]-/anpa/ or [ampa]-/ampa/ or [b���t]-/b���t/ or
[b�æ�]-/b�æ�/.

natural-list marks
a list of the number of violations of each constraint for this output form. If
there are 13 constraints, this list will contain 13 integer numbers for each
candidate.

34 IFA Proceedings 23, 1999

Appendix B. The “Create tongue-root grammar...” manual page

“Create tongue-root grammar...” is a command in the New menu for creating an
OTGrammar object with a tongue-root-harmony grammar.

These OTGrammar grammars only accept inputs of the form V1tV2, where V1 and
V2 are chosen from the six front vowels i, �, e, �,
, and a. In a text field, these vowels
should be typed as i, \ic, e, \ep, \sw, and a, respectively (see Praat’s Special
symbols manual page).

The following phonological features are relevant:

ATR RTR

high i �
mid e �
low
 a

The resulting OTGrammar object will usually contain at least the following five
constraints:

*[rtr / hi]
“do not implement [retracted tongue root] if the vowel is high.”

*[atr / lo]
“do not implement [advanced tongue root] if the vowel is low.”

PARSE (rtr)
“make an underlying [retracted tongue root] specification surface.”

PARSE (atr)
“make an underlying [advanced tongue root] specification surface.”

*GESTURE (contour)
“do not go from advanced to retracted tongue root, nor the other way around, within
a word.”

This set of constraints thus comprises:

• two grounding conditions (Archangeli & Pulleyblank 1994), which we can see as
gestural constraints;

• two faithfulness constraints, which favour the similarity between input and output,
and can be seen as implementing the principle of maximization of perceptual contrast;

• a harmony constraint, which, if crucially ranked higher than at least one faithfulness
constraint, forces tongue-root harmony.

In addition, there may be the following four constraints:

*[rtr / mid]
“do not implement [retracted tongue root] if the vowel is mid”;
 universally ranked lower than *[rtr / hi].

*[rtr / lo]
“do not implement [retracted tongue root] if the vowel is low”;
 universally ranked lower than *[rtr / mid].

IFA Proceedings 23, 1999 35

*[atr / mid]
“do not implement [advanced tongue root] if the vowel is mid”;
 universally ranked lower than *[atr / lo].

*[atr / hi]
“do not implement [advanced tongue root] if the vowel is high”;
 universally ranked lower than *[atr / mid].

The universal rankings referred to are due to the local-ranking principle (Boersma
1998). A learning algorithm may enforce this principle, e.g., if *[rtr / hi] falls down the
ranking scale, *[rtr / mid] may be pushed along.

Appendix C. Shortcuts

Besides the quite explicit learning process presented in this tutorial, in which you have to
create Strings objects for underlying and surface forms, it is also possible (in Praat
versions from August 1999 on) to learn directly form an OTGrammar and a
PairDistribution: just select an OTGrammar object together with a PairDistribution
object and click Learn (GLA)... .

Appendix D. Further reading and more examples

Three examples have been worked out in detail in Boersma & Hayes (1999). The
OTGrammar and PairDistribution files for these examples can be downloaded from
http://www.fon.hum.uva.nl/paul/gla/. The learning regimes that we used can easily be
replicated with the procedure mentioned above in Appendix B.

References

Archangeli, Diana & Douglas Pulleyblank (1994): Grounded phonology. Cambridge: MIT Press.
Boersma, Paul (1997): “How we learn variation, optionality, and probability.” IFA Proceedings 21:

43–58. Downloadable from www.fon.hum.uva.nl/paul/. [equals ch. 15 of Boersma 1998]
Boersma, Paul (1998). Functional phonology: Formalizing the interactions between articulatory and

perceptual drives. PhD dissertation, University of Amsterdam. LOT International Series 11. The
Hague: Holland Academic Graphics. [www.fon.hum.uva.nl/paul/diss/]

Boersma, Paul (to appear). “Learning a grammar in Functional Phonology.” In Joost Dekkers, Frank
van der Leeuw & Jeroen van de Weijer (eds.) Optimality Theory: Phonology, syntax, and
acquisition. Oxford University Press. [equals most of ch. 14 of Boersma 1998]

Boersma, Paul & Bruce Hayes (1999): “Empirical tests of the Gradual Learning Algorithm.” Ms. Univ.
of Amsterdam and UCLA. [Rutgers Optimality Archive 349, ruccs.rutgers.edu/roa.html]

Boersma, Paul & David Weenink (1992–2000): Praat, a system for doing phonetics by computer. Web
site: www.praat.org.

Tesar, Bruce & Paul Smolensky (1998): “Learnability in Optimality Theory.” Linguistic Inquiry 29:
229–268.

