This a collection of handouts from 5 class lectures at MIT in Fall 1994. These lectures summarized material that was developed in a much longer set of lectures the previous semester, and extended the material somewhat in the direction of explaining pronunciation patterns under movement (specifically V-to-I). The notes from those lectures have proved comprehensible to some people who were not at these classes. Hopefully, these more recent handouts will also be of some interest to devotees, at least until I can write the material up in a more permanent form. Questions or comments are welcome at pesetsk@mit.edu.

The earlier lectures included some commentary on Grimshaw's work concerning optimality and syntax, as will the future write-up of these notes. This discussion did not form part of the Fall lectures, for reasons of time -- but also because Grimshaw's paper is currently being revised for publication.

The Hebrew examples include some characters from the font SILDoulosIPA-Regular.
Optimality Principles of Sentence Pronunciation
Fall handouts 1994 (D. Pesetsky)

0. Milestones of Syntax

A. Grammatical Relations
B. Consituency
C. Definition of A. in terms of B.

D: Unpronounced elements (zero morphemes, zero words)
E. Phrases bearing Multiple Grammatical Relations/Multiple Locations in Constituent-structure.

A million-dollar question:
How is the pronunciation of phrases bearing Multiple Grammatical Relations determined?

"Snapshot theories"

--- Farewell picture: Last position occupied in a derivation (movement), if at all (deletion).

This demands a theory in which some ordering is established among members of a chain of positions occupied by a phrase:

a. 1960s syntax: ordering defined by sequential steps of a derivation, the derivation a product of successive application of rules (e.g. derivation of There was a linguist believed to have been given a book).

b. 1970s "Trace theory": Much the same, except that the target of movement c-commands the source whenever the source cannot be filled by a later rule (cf. analysis of passive in NP; there/it construction)

c. Advanced trace theory: Target always c-commands the source.

Covert movement throws a monkey wrench in to this clean picture.

Pronunciation as a snapshot of most recent chain positions at an intermediate stage in the derivation of LF.

a. S-structure: A snapshot theory, but a snapshot of an intermediate stage in the derivation. The stage is defined as the point at which processes labeled "S-structure" have occurred, and processes labeled "LF" have not occurred.

b. Minimalist: A snapshot theory, minimally differing from S-structure theories. The derivation is constructed so that as few movements as possible are performed ("Procrastinate") before the snapshot ("Spellout") is taken. The only movements that are performed before the snapshot is taken are those such that if they were not taken, they would spoil the film.

c. Other possibilities: Derivation to PF is distinct from derivation to LF. Similarities arise from the existence of features that need to be checked to avoid crash at both PF and LF.
Are there reasons to suspect that non-snapshot factors enter into sentence pronunciation?

1. Pronunciation targetting multiple chain positions. (The question already arises under the copy theory of movement.)

 a. WH-copying (Afrikaans; Guasti, Thornton, Wexler [?] et al.)

 (from du Plessis 1977, LI 8.4:723-726, cited by Nunes on LINGUIST):

 a. Waaroor dink jy waaroor dink die bure waaroor stry ons die meeste?
 'What do you think the neighbors think we are arguing about the most?'

 b. Met wie het jy nou weer gese met wie het Sarie gedog met wie gaan Jan trou?
 'Whom did you say (again) did Sarie think Jan is going to marry?'

 b. I-to-C: Did John didn't buy the book. (Guasti, Wexler, Thornton 1994)

2. Partial pronunciations:

 a. Resumptive pronouns:

 this the-guy that-I-informed ACC the-idiot that-the teacher will flunk him
 [strong Crossover if ’oto and ha-‘idiot bound by the relative operator;
 Shlonsky 1992]

 b. Sin an fear ar dhúirt an bastard go maródh sé muid.
 That the man COMP said the bastard COMP would-kill he us.
 [thusly, McCloskey 1990]

 b. do support

3. Technical problems with particular versions of snapshot theories:

 Bobaljik (1995): Object shift before spellout unless impossible (Procrastinate vs. Earliness)

 Pesetsky (1989): Distribution of auxiliaries and main verbs outnumber factual inversion poses problems for the featural accounts of the positioning of Spellout.

Since we need additional conditions governing what in a chain is pronounced where over and above what is given by the positioning of the snapshot, we need to reexamine whether medial positioning of a snapshot is at all correct

A recasting of the achievements of intermediate snapshot theories:

a. PF is a pronunciation of LF (cf. Brody 1994)

b. A principle governing pronunciation is "Silent trace" (cf. Earliness).

 c. Factors can limit the ability of Silent trace to be satisfied. We see:
1. minimal violation (resumptive pronoun, *do* + uninflected verb) when silent trace cannot be satisfied

2. greater freedom of pronunciation position when Silent trace cannot be satisfied

Pronunciation may not correspond to "last position moved to" even at some intermediate stage in the derivation.

do-deletion: principles of pronunciation that govern which members of a chain receive what pronunciation may be of a piece with principles that govern how elements are pronounced independent of movement.

First: a theory of how certain elements are pronounced independent of movement.

Next: how some of these same principles do work to solve the problem of pronunciation in case of movement.

1. Contradictions and Worries at the Boundaries of Linguistics

Gap between:

a. the pieces of language revealed by *linguistic theory*, and

b. the pieces of language that are selectively impaired in conditions that affect brain activity and function -- for example: after brain injury or in early childhood

Early language acquisition

(1) Go nursery...Lucy go nursery. (Stevie, 25 months)

(2) Where girl go? (Claire, 24 months)

"[T]he striking fact about the utterances of the younger children, when they are approached from the vantage point of adult grammar, is that they are almost all classifiable as grammatical sentences from which certain morphemes have been omitted" (Brown and Fraser (1963))

Telegraphic Speech in agrammatic aphasia

(3) a. That about right, 10 a day. (J.F.)
 b. Thank you very much for allow me see you. (K.C.)
 c. She also, I would like to think, when makes a friend is probably a friend for life. (J.A.)
The grammar of telegraphic speech

Category absent? The functional categories that are unpronounced in telegraphic utterances are truly absent from the structures assigned to these utterances.

\[
\begin{array}{l}
\text{[NP Lucy] [VP [V go] [NP nursery]]} \\
\text{[Brown (1973); Lebeaux (1988); Guilfoyle & Noonan (1988); Radford (1990); Platzack (1989)]}
\end{array}
\]

Category present but not pronounced?

The functional categories that are unpronounced in telegraphic utterances are present in the structures assigned to these utterances. The lexical items that fill these categories are simply unpronounced: marked [+silent].

\[
\begin{array}{l}
\text{[IP [NP Lucy] [INFL [VP [V go] [P to [DP the [NP nursery]]]]]]}
\end{array}
\]

Gerken (passim.): Young children who omit functional categories in speech nonetheless distinguish utterances with and without functional categories, utterances with inappropriate functional categories, utterances with phonologically matched non-words substituting for functional categories.

Wexler and Poeppel (1992):

The use of infinitival instead of finite verbs in main clauses of German by a 25-month old child correlates with non-movement vs. movement to C (second-position placement of the verb) -- just as in older children and adults. As this result is replicated, we may conclude that German-speaking children at this age know about the finite/non-finite distinction and the correlation with verb-movement to C. (Likewise for I-to-C in English-speaking children with Specific Language Impairment, and somewhat telegraphic speech. [work in progress by Wexler and Rice])

Lonzi and Luzati (1993): Verb-movement to INFL in French and in Italian is appropriate in the linguistic knowledge and behavior of agrammatic aphasics. Infinitival verbs may precede or follow a certain class of adverbs (correlating with optional movement to INFL). Finite verbs always precede these adverbs. The Agrammatic studied reveal this knowledge, for example, through a word arrangement task, and in patterns of spontaneous speech.

(4)a. Giovanni *mangia* sempre [\(t_V\) pesce]
 b. *Giovanni sempre [mangia pesce]*

(5)a. PRO *mangiare* sempre [\(t_V\) pesce]
 b. PRO sempre [mangiare pesce]
(6) **A telegraphic speech constraint:**

Telegraph: Do not pronounce function words.

(7) Mark $\alpha [+\text{silent}].$ [= "deletion"]

(8) Telegraphic Grammar \approx Normal adult grammar + (6)

Where is Telegraph in normal adult English (Italian, Russian, etc.)?

Optional omission of certain function words in adult normal speech

(9) **English**

a. John believes that it is snowing.

b. John believes ____ it is snowing.

(10) **Western Dialects of Japanese**

 `John to-Kobe went that said`
 `John said that he was going to Kobe`

 [Saito (1986)]

If Telegraph belongs to a system of absolute constraints, simultaneously satisfied...

then Telegraph clearly plays no role in normal adult grammar for English, Italian etc.

If Telegraph belongs to a system of ranked constraints, such that low-ranked constraints may be violated when this is necessary in order to satisfy more highly-ranked constraints ("Optimality Theory"* [Prince & Smolensky (1994)])...*

then Telegraph may play a role after all in normal adult grammars.

We look for cases where functional categories are obligatorily suppressed in certain circumstances -- or for effects that might be attributable indirectly to obligatory suppression of a functional category.
2. Puzzles in the Standard French/Italian C-system

Puzzle #1:

French complementizers in embedded finite declarative clauses must be pronounced, except when SPEC,CP is filled by overt material, in which case they may be unpronounced.

(11) a. Je crois que Pierre a faim.
 I believe that Pierre is hungry.

b. *Je crois que Pierre a faim.

Puzzle #2:

In Standard French, complementizers in embedded finite clauses must be unpronounced when SPEC,CP is filled by overt material ("Doubly Filled COMP Filter" (Keyser (1975); Chomsky & Lasnik "Filters and Control")

(12) a. *Je me demande quand que Pierre arrivera. (Standard French)
 I wonder when that Pierre will come

b. Je me demande quand que Pierre arrivera.

Chomsky ("On WH Movement"), Chomsky and Lasnik:

(13) **Free Deletion in C (updated)**
 Delete SPEC,CP or C, when this does not violate recoverability (loss of overtly expressed information):

(14) Excluded by recoverability(13):
 a. *Je me demande quand que Pierre arrivera.
 b. *Je me demande quand que Pierre arrivera.

(15) **Doubly Filled COMP Filter (updated)**
 *α β, where α occupies SPEC,CP and β is a C, and α and β are overt.

Puzzle #3:

In French WH constructions (relatives and interrogatives [presumably]), the contents of SPEC,CP must be deleted "up to recoverability" (Kayne (1976)).

Puzzle #4:

When the contents of SPEC,CP are deleted (Puzzle #3), the complementizer must be pronounced (c f. puzzle #1) [and not otherwise, by the Doubly Filled COMP Filter].

(16)a. *l'homme qui que je connais (DFC) `the man who that I know`
 b. *l'homme qui que je connais (Puzzle #3)
 c. l'homme qui que je connais
d. *l'homme qui que je connais (Puzzle #4; cf. Puzzle #1)

(17) a. *l'homme avec qui que j'ai dansé (DFC) `the man with whom that I danced`
b. l'homme avec qui que j'ai dansé (Recoverability)
c. *l'homme avec qui que j'ai dansé (Recoverability and Puzzle #4)
d. *l'homme avec qui que j'ai dansé (Recoverability and Puzzle #4)

(18) **What is going on (informally):**
Look at everything you can delete in the C-system. If there is a pattern of recoverable deletion that allows the complementizer to be pronounced at the Left Edge of CP, choose that pattern over all others. If there is no such pattern, choose a pattern in which the complementizer is not pronounced at all.

(19) **Principles of Optimality Theory**
(Prince and Smolensky (1993);
text below from Prince and McCarthy (1993) "Generalized Alignment")

a. **Violability:** Constraints are violable, but violation is minimal.

b. **Ranking:** Constraints are ranked [on a language-particular basis]; the notion of minimal violation is defined in terms of this ranking.

c. **Inclusiveness:** The constraint hierarchy evaluates a set of candidate analyses that are admitted by very general considerations of structural well-formedness.

(20) "To best-satisfy a system of ranked well-formedness constraints means the following. Except for ties, the candidate that passes the highest-ranked constraint is the output form. A tie occurs either when more than one candidate passes the highest-ranked constraint or when all candidates fail the highest-ranked constraint...(Constraint violation is therefore not necessarily the end of a candidate's chances: failure on a constraint can be fatal only when there are other competitors that pass it.) In case of ties, all surviving candidates are tested recursively against the rest of the hierarchy. Once a victor emerges, the remaining, lower-ranked constraints are irrelevant; whether the sole surviving candidate obeys them or not does not affect its grammaticality. Likewise, the evaluation of failed candidates by lower-ranked constraints is also irrelevant; no inferences about degree of deviation from grammaticality can be drawn from further inspection of the failed candidates." (*ibid.*; for applications to syntax cf. Grimshaw (1993); Legendre and Smolensky (1993)).

(21) **'Deletion'** = Mark a category [+silent] (e.g. as traces are marked under the copy theory of movement (Chomsky 1992)

(22) **Candidate set:** Maximal set of otherwise identical phrase-markers (S-structure) to which different patterns of deletion have applied.

Free deletion subject to:
a. **Recoverability**

b. **Left Edge(C):** A complementizer must be pronounced, and must be pronounced at the left edge of CP.

c. **Telegraph:** A function morpheme (e.g. C) must be unpronounced.

(23) **Ranking:** Recoverability >> LE(C) >> Telegraph

Graphic conventions for displaying constraint interaction in Optimality phonology:
1. constraints are written in their domination order;
2. violations are marked by "*";
3. fatal violations are also signalled by "!";
4. shading emphasizes the irrelevance of a constraint to the fate of a candidate; a loser's cells are shaded after a fatal violation; the winner's, when there are no more competitors.

Re: Puzzle #1 (Obligatory Declarative que)

(24) RCV LE TEL

<table>
<thead>
<tr>
<th></th>
<th>RCV</th>
<th>LE (C)</th>
<th>TEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Je crois que Pierre a faim.</td>
<td>✱</td>
<td></td>
<td>✱</td>
</tr>
<tr>
<td>*Je crois que Pierre a faim.</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Re: Puzzle #2 (Doubly Filled COMP Filter)

(25) RCV LE TEL

<table>
<thead>
<tr>
<th></th>
<th>RCV</th>
<th>LE (C)</th>
<th>TEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Je me demande quand que Pierre arrivera.</td>
<td>*</td>
<td></td>
<td>✱</td>
</tr>
<tr>
<td>Je me demande quand que Pierre arrivera.</td>
<td>✱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Je me demande quand que Pierre arrivera.</td>
<td>✱!</td>
<td></td>
<td>✱</td>
</tr>
<tr>
<td>*Je me demande quand que Pierre arrivera.</td>
<td>✱!</td>
<td></td>
<td>✱</td>
</tr>
</tbody>
</table>

Doubly-Filled COMP effect "emerges" from the interaction of LE(C) and TEL.
Re: Puzzles #3 and #4 (WH in relative deleted up to recoverability, and complementizer must be pronounced)

[WH deletes precisely because deletion enables the complementizer to be pronounced -- and pronounced at the Left Edge of CP to boot!]

(26) RCV	LE	TEL
*l'homme qui que je connais | *! | *
*l'homme qui que je connais | *! |
*l'homme qui que je connais | | *
*l'homme qui que je connais | *! |

Recoverability:

(27) RCV	LE	TEL
*Avec qui as-que tu dansé? | * | *

Where's the explanation?
1. A place for Telegraphic speech in the grammar of normal adults.
2. LE(C) is "reasonable": marking the beginning of CP with its head.
3. High-ranked LE(C) by itself yields both obligatory deletion of recoverable SPEC,CP and the obligatory pronunciation of que in declaratives.
4. LE(C) >> TEL yields Doubly Filled COMP Filter in all contexts -- plus solves a problem from Rizzi (Rel. Min.):

(28) RCV	LE	TEL
*Avec qui as-que tu dansé? | * | *

Avec qui as-que tu dansé? | | *
Assume inflected V left-adjoins to C or substitutes for C. Questions answered (by the system already proposed):

1. Why do we not find forms like *as-que* under I-to-C?
2. Why do we not see overt C raising to a higher head?
3. Why is there no Doubly-Filled COMP interaction between SPEC,CP and V-in-C?

Right-adjunction of I to C would not motivate deletion of the complementizer (if right-adjunction is entertainable, contra Kayne's LCA): Irish

3. The Modern English C-system

Unlike French:
- Optional deletion of *that* in embedded declaratives
- Free deletion of *wh, that*, or both in relative clauses

Like French:
- Doubly-Filled COMP effects with movement to SPEC,CP
 - */as-que//has-that* in C
 - No Doubly-Filled COMP effect in I-to-C constructions

LE(C) and Telegraph are tied (equally ranked). Otherwise, as in French.

Modern English: RCV >> LE(C) <> TEL

A< >B>>C = submit the winners of A>>B and the winners of B>>A to C.

English Puzzle #1: Optional *that*-deletion

(29)
<table>
<thead>
<tr>
<th></th>
<th>RCV</th>
<th>LE (C)</th>
<th>TEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>I believe that Peter is hungry.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>I believe that Peter is hungry.</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

The explanation for optional *that*-deletion dovetails with the explanation for the absence of obligatory deletion "up to recoverability" in finite relative clauses, i.e. the difference in obligatoriness of *that* and the absence of the French pattern for relative clauses correlate.
English Puzzle #2: Doubly-Filled COMP Effects

Doubly-Filled COMP Filter still follows as in French, since violating both LE(C) and TEL will lose to a violation of one but not the other.

English Puzzle #3: Contrast with French Relative Clauses

The tie allows free deletion of *that* even in relative clauses, in addition to deletion of WH found in French:

(30)

<table>
<thead>
<tr>
<th>RCV</th>
<th>LE (C)</th>
<th>TEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>every book which that I read</td>
<td>*</td>
<td>*!</td>
</tr>
<tr>
<td>every book which that I read</td>
<td>!</td>
<td>*</td>
</tr>
<tr>
<td>every book which that I read</td>
<td>!</td>
<td>*</td>
</tr>
<tr>
<td>every book which that I read</td>
<td>!</td>
<td>*</td>
</tr>
</tbody>
</table>

(31)

<table>
<thead>
<tr>
<th>RCV</th>
<th>LE (C)</th>
<th>TEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>every book about which that I spoke</td>
<td>*</td>
<td>*!</td>
</tr>
<tr>
<td>every book about which that I spoke</td>
<td>!</td>
<td>*</td>
</tr>
<tr>
<td>every book about which that I spoke</td>
<td>!</td>
<td>*</td>
</tr>
<tr>
<td>every book about which that I spoke</td>
<td>!</td>
<td>*</td>
</tr>
</tbody>
</table>

I-to-C behaves as in French:

(32)

<table>
<thead>
<tr>
<th>RCV</th>
<th>LE (C)</th>
<th>TEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>What did-that Sue read</td>
<td>*</td>
<td>*!</td>
</tr>
<tr>
<td>What did-that Sue read?</td>
<td>!</td>
<td>*</td>
</tr>
</tbody>
</table>
4. Low Ranking for the ECP

ECP Effects on Deleted complementizers (Stowell 1981; Kayne "ECP Extensions")

(33)a. Sue believes [that the world is round].
 b. Sue believes [that the world is round].
 c. [That the world is round] is believed by everyone).
 d. *[That the world is round] is believed by everyone].

 John [to-Kobe went that] said
 'John said that he was going to Kobe'

Why no effect when SPEC,CP is filled?

(35) a. *[When that Peter will come] is unknown.
 b. [When that Peter will come] is unknown.

Proposal for English: RCV >> LE(C) < > TEL >> ECP

ECP now irrelevant in subject questions.

A doubly-filled COMP violation is always worse than an ECP violation, since it arises from more highly ranked constraints:

(36)

<table>
<thead>
<tr>
<th></th>
<th>RCV</th>
<th>LE(C)</th>
<th>TEL</th>
<th>ECP</th>
</tr>
</thead>
<tbody>
<tr>
<td>*[When that Peter will come] is unknown.</td>
<td>*</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[When that Peter will come] is unknown.</td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

irrelevant!

(37)

<table>
<thead>
<tr>
<th></th>
<th>RCV</th>
<th>LE(C)</th>
<th>TEL</th>
<th>ECP</th>
</tr>
</thead>
<tbody>
<tr>
<td>*[Quand que Pierre viendra] est inconnu.</td>
<td>*</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%[Quand que Pierre viendra] est inconnu.</td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>
But: the ECP decides the tie for finite declaratives, where there is no issue of a doubly-filled COMP violation. The key is that "deletion" makes a category subject to the ECP:

(38)

<table>
<thead>
<tr>
<th></th>
<th>RCV</th>
<th>LE (C)</th>
<th>TEL</th>
<th>ECP</th>
</tr>
</thead>
<tbody>
<tr>
<td>[That the world is round] is believed by everyone]</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*[That the world is round] is believed by everyone]</td>
<td>*</td>
<td></td>
<td>*!</td>
<td></td>
</tr>
</tbody>
</table>

very relevant!

5. **English Infinitival Relatives**

Puzzle #1:

Like French finite (and non-finite) relatives:
deletion of wh up to recoverability
Doubly-Filled COMP effect.

Puzzle #2:

*for to (Chomsky and Lasnik "Filters and Control")

(39) a. *a book which for PRO to read t
b. *a book which for PRO to read t
c. *a book which for PRO to read t
d. a book which for PRO to read t

(40) a. *a topic on which for PRO to work t
b. a topic on which for PRO to work t
c. *a topic on which for PRO to work t
d. *a topic on which for PRO to work t

Modern English: RCV >> LE(to) >> LE(C) \(\lor\) TEL >> ECP

(41)

<table>
<thead>
<tr>
<th></th>
<th>RCV</th>
<th>LE (to)</th>
<th>LE (C)</th>
<th>TEL</th>
<th>ECP</th>
</tr>
</thead>
<tbody>
<tr>
<td>*a book which for PRO to read t</td>
<td></td>
<td>*!</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>*a book which for PRO to read t</td>
<td></td>
<td>*!</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*a book which for PRO to read t</td>
<td></td>
<td>*!</td>
<td></td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>a book which for PRO to read t</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6. Stacked Relatives: ECP effects on SPEC,CP

Relative clauses as in (30) should show a pattern of ECP effects deciding the tie in favor of every book that I read if such relative clauses are not head-governed and if C is the only category in the C-system to generate ECP effects.

Assume: relative clauses as in (9) are head-governed. But stacked relatives are not head-governed, and show ECP effects for C and SPEC,CP:

Verbal description: Obligatory deletion of either who or that. Each leaves one non-head-governed empty position in the CP-system (SPEC or head), and each satisfies one of LE(C) and TEL. So both are options. On the other hand, deleting both yields 2 head-government violations, and thus loses.

(43)

<table>
<thead>
<tr>
<th>RCV</th>
<th>LE (C)</th>
<th>TEL</th>
<th>ECP</th>
</tr>
</thead>
<tbody>
<tr>
<td>*the person who you invited who that we know</td>
<td>*</td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>the person who you invited who that we know</td>
<td>*</td>
<td></td>
<td>C *</td>
</tr>
<tr>
<td>the person who you invited who that we know</td>
<td>*</td>
<td></td>
<td>SPEC,CP *</td>
</tr>
<tr>
<td>*the person who you invited who that we know</td>
<td>*</td>
<td></td>
<td>C *</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SPEC,CP *!</td>
</tr>
</tbody>
</table>

(44) if LE(to)>>LE(C) and LE(C)>>ECP, then no stacked relative effects for infinitival relatives:

a. *One possible book [that I own] [which that you might work on t for the exam] is War and Peace.

b. One possible book [that I own] [which for PRO to work on t for the exam] is War and Peace.

[Possible extension to incompatibility of ø-ø relatives with RC-internal topicalization.]

Absence of subject-object effects with for-deletion
7. Sentence Grammar is not just one thing: how to CRASH

(45)

<table>
<thead>
<tr>
<th></th>
<th>RCV</th>
<th>LE (to)</th>
<th>LE (C)</th>
<th>TEL</th>
<th>ECP</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. *a book which for Mary to read t</td>
<td>*</td>
<td>*</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. *a book which for Mary to read t</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. a book which for Mary to read t</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. *a book which for Mary to read t</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OK b, d: erroneous conclusions that can be pared down by Case
Case could be high or low in non-pied-piped infin relatives to pare down the output:

Ineffability and pied piping:

(46)

<table>
<thead>
<tr>
<th></th>
<th>RCV</th>
<th>LE (to)</th>
<th>LE (C)</th>
<th>TEL</th>
<th>ECP</th>
</tr>
</thead>
<tbody>
<tr>
<td>*a topic on which for Mary to work t</td>
<td>*</td>
<td>*</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*a topic on which for Mary to work t</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*a topic on which for Mary to work t</td>
<td>*!</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*a topic on which for Mary to work t</td>
<td>*!</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CRASH!

The facts: There is no acceptable output from a topic on which for Mary to work.

Conclusion: We need the Case Filter to stand outside the Optimality System. We need it to crash derivations that otherwise exit the Optimality System successfully.
8. Telegraph beyond the complementizer

More on LE(to)?

(47)a. *Sue wagered [Bill to be a fool].
 b. Bill was wagered [t to be a fool].
 c. Bill, who Sue wagered [t to be a fool]...
 d. Sue wagered [t to be a fool] every student who had taken the exam.
 (Postal, On Raising)

(48)a. *Sue claimed [Bill to be a fool].
 b. Bill was claimed [t to be a fool].
 c. Bill, who Sue claimed [t to be a fool]...
 d. Sue claimed [t to be fools] every student who had taken the exam.
 e. Sue claimed [PRO to be a fool]

Why are (3Ca) and (4Ca) bad?

Perhaps to deletes to satisfy TEL when LE(to) cannot be satisfied because of an overt SPEC,IP. To may play a role in checking features of VP (Fabb, diss.), in which case deletion of to may crash the derivation.

To deletion would only occur when recoverable. This explains presence of tense or modal semantics in infinitival clauses with filled SPEC,CP or SPEC,IP (e.g. infinitival questions, infinitival relatives).
9. ECM

We have just ruled out ECM when to lacks semantics. Yet ECM exists with infinitives whose semantics like like those in (56).

(51) **ECM subject must leave CP, or else to must be able to move to C**
 a. Sue believed [Bill to be a fool].
 b. Bill was believed [t to be a fool].
 c. Bill, who Sue believed [t to be a fool]

This could be movement to SPEC,VP à la Johnson "Object Positions" *(NLLT)*, with V-to-AgrO, or else movement to SPEC of some other phrase.

Cf. Postal *On Raising*:

(52)a. I believe John with all my heart to be the guilty party.
 b. We hold these truths, when we consider the matter, to be self-evident.

If the ECM subject is in search of Case, then a non-NP subject of an ECM infinitive (which does not need Case) should re-generate the properties of a wager-class verb:

(53) **Locative Inversion**
 a. *Sue believed [in this corner to have stood an antique vase of great value].
 b. This is the corner in which Sue believed [t to have stood an antique vase of great value].
10. How many LE conditions?

(54) LE(f): A functional head must be spelled out at the left edge of CP.

"This could be spelled out in the format of “Generalized Alignment” (Prince and McCarthy (1993)) as Align \((l, CP, l, \text{Func-head})\) to mean align every left edge of a CP with some left edge of a functional head. Note that (54) might be worth generalizing to (i) if we assume that CP is the relevant “extended projection” of all heads on the way from VP to CP in the sense of Grimshaw (1991).

(i) \(\text{Le}(x^0)\): At the left edge of every XP, an \(x^0\), of which the XP is an extended projection, must be spelled out."

(Fox 1994)

Assume as before:
1. deletion of \(\text{for, that}\) does not violate recoverability
2. deletion of \(\text{to}\) in infinitival relatives does violated recoverability
3. non-deletion of \(\text{for/to}\) violates TEL

LE(f) requires \(\text{for or to}\) to occupy LE of CP. This yields WH-deletion Optimality would then prefer that the other one be deleted. Recoverability prevents \(\text{to}\) (here) from being deleted. So the optimal choice involves deleting \(\text{WH and for, with to}\) at the LE of CP.

LE(f): \(\text{Left edge of CP is a pronounced functional element on the path from V to C. Align (l, CP, l, Func-head)}\]

\[
\begin{array}{|c|c|c|c|}
\hline
\text{RCV} & \text{LE} & \text{TEL} & \text{ECP} \\
\hline
\text{a book which for PRO to read t} & \mathbf{*} & \mathbf{*} & \text{X} \\
\text{a book which for PRO to read t} & \mathbf{*} & \mathbf{*} & \text{X} \\
\text{a book which for PRO to read t} & \mathbf{**} & \text{X} & \text{X} \\
a \text{book which for PRO to read t} & \mathbf{\ominus} & \mathbf{\ominus} & \text{X} \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|}
\hline
\text{RCV} & \text{LE} & \text{TEL} & \text{ECP} \\
\hline
\text{a topic on which for PRO to work t} & \mathbf{*} & \mathbf{**} & \text{X} \\
a \text{topic on which for PRO to work t} & \mathbf{\ominus} & \mathbf{\ominus} & \text{X} \\
\text{a topic on which for PRO to work t} & \mathbf{!*} & \mathbf{**} & \text{X} \\
\text{a topic on which for PRO to work t} & \mathbf{!*} & \mathbf{*} & \text{X} \\
\text{a topic on which for PRO to work t} & \mathbf{!*} & \mathbf{*} & \text{X} \\
\hline
\end{array}
\]
11. LE(tensed verb) - That-trace

that-trace pure and simple

Assume that tensed inflection cannot recoverably delete. Then LE(fin) could only have the effect of deleting deletable material to its left.

(57) Sue, who I believe (*that) t likes Mary.

This results from LE(fin) deciding the tie between LE(C) and TEL. Here it is hard to tell where LE(fin) is ranked in a language with optional that-deletion, since it will make the distinction on either side of the tie.

(58)

<table>
<thead>
<tr>
<th>LE(C)</th>
<th>TEL</th>
<th>LE(fin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>*who I believe that t likes Mary</td>
<td>*</td>
<td>!</td>
</tr>
<tr>
<td>who I believe that t likes Mary</td>
<td>❋</td>
<td></td>
</tr>
</tbody>
</table>

(59)

<table>
<thead>
<tr>
<th>LE(fin)</th>
<th>LE(C)</th>
<th>TEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>*who I believe that t likes Mary</td>
<td>*</td>
<td>!</td>
</tr>
<tr>
<td>who I believe that t likes Mary</td>
<td>❋</td>
<td></td>
</tr>
</tbody>
</table>

[For object extraction, LE(fin) makes no decision. Culicover (1992) on long adverbs.]

Low ranking for LE(fin) in a language where that does not normally delete will yield that-trace violations. [German]

High ranking for LE(fin) in such a language will yield that-deletion only when necessary to avoid a that-trace violation: are there cases of this?

Why don't we Crash whenever we have a preverbal subject in IP?

As long as LE(fin) is tensed, we have no deletion under recoverability.

Dutch: that-trace effects

If that-trace has an optimality character, we should find that it rears its head only when there is some way for finite V to be first in CP (e.g. by C-deletion).

In English, this will be the case (ignoring adverbs and negation) whenever the subject is extracted.

In an SOV language, we will need both a missing subject *and* a missing pre-verbal object to generate an effect (Bennis (1984); Marcel den Dikken, Edith Kaan, Jan-Wouter Zwart, p.c.)
Direct object/er/intransitives

(60)a. Wie denk je dat ___ er komt?
 who think you that __there comes

 b. *Wie denk je dat ___ komt?

(61) Wie denk je dat ___ het boek zag?
 the book saw

PP-over-V

(62)a. ??Wie denk je dat ___ aan het eten had gedacht?
 about the food has thought

 b. **Wie denk je dat ___ had gedacht aan het eten?

(63)a. Wat denk je dat in Den Haag zetelt
 resides

 b. ??Wat denk je dat zetelt in Den Haag

(64) a. OK Wie denk je dat van Marie houdt
 Who think you that of Mary holds (`that loves Mary`)

 b. ?? Wie denk je dat houdt van Marie (same effect)

V-raising

(65)a. ??*Wie denk je dat komt?

 b.OKWie denk je dat komen zal?
 c. ?Wie denk je dat zal komen?

What's the star-generating mechanism? That-deletion in principal OK in Dutch (let's say), but this crashes without I-to-C, which itself crashes in embedded contexts.

12. Movement - towards a theory

Movement leaving a pronoun:

Certain aspects of movement theory seem to belong in the optimality system (Grimshaw 1993). But placing them in the optimality system raises so much complexity that one wonders if the move is correct -- e.g. concerning pied piping.

Suppose (for the moment) that A-bar movement always leaves behind a pronoun, which may be deleted under recoverability.

Perlmutter's "Shadow Pronoun Hypothesis":
1. Movement leaves behind a shadow pronoun.
2. Shadow pronouns are subsequently deleted.
3. The rule that deletes shadow pronouns is what obeys Ross's island constraints.
[His evidence:
quantifier float from PP trace tracks quantifier float from cliticized pronouns.]

Entails: Resumptive pronouns result from movement where shadow pro-drop is impossible.

An Optimality View:

1. Assume the Shadow Pronoun Hypothesis.
2. The candidate set includes pronounced and unpronounced pronouns.
3. Suppose island conditions are constraints on the relation between a **binder and a gap** -- i.e. a [+silent] element. Then

Satisfy island conditions >> Silent trace

is the characterization of **resumptive pronouns as a last resort** (quite close to Perlmutter's theory).

If **pro** of pro-drop may function as a resumptive (Perlmutter, Rizzi):

drop-pronoun >> satisfy island conditions >> silent trace

where "drop-pronoun" is whatever forces pro-drop (Telegraph?).

Shadow Pronoun Hypothesis conflicts with copy theory of movement (Chomsky "Minimalist Program"):

(66) [Which picture of John] did he like *which picture of John*?

Reconciliation of the Shadow Pronoun Hypothesis with the copy theory of movement:

Pronoun is a **pronunciation** of φ-features of a DP. It is a pronunciation of some, but not all features of its antecedent.

The more features of a category K that are pronounced in a trace position, the greater the violation of Minimize Trace.

Then we can maintain the copy theory of movement, and simply view resumptive pronouns as the copy in the base position **pronounced minimally**.

The model:

PF as the pronunciation of LF (cf. Brody *passim.*, Groat (Harvard ms.)).

WH-in-situ: Move WH, but something prevents pronunciation of WH in its raised position. (Cf. Watanabe.)
Note that the optimality system still does not directly regulate movement; only the clues we get to movement from PF.

13. Resumptive Pronouns in Modern Hebrew (Fox 1994)

Hebrew as French

Undeletable complementizer in declaratives:

(67) dani amar *(še) david yavo maxar.
 dani said *(that) david will-come tomarow.

Borer (1984): dropping of the complementizer in RC is licensed iff a pronoun is present pre-IP.

(68) a. ha-?iš [CP *(še) oto [IP dani mekir]]
 The man *(that) him dani knows
 'The man who Dani knows'

b. ha-?iš [CP *[še] [IP dani mekir (oto)]]
 The man *(that) dani knows (him)
 'The man who Dani knows'

(69) a. ha-?iš [CP *(še) *(alav) [IP dani diber]]
 The man *(that) *(on-him) dani spoke
 'The man about whom Dani spoke'

b. ha-?iš [CP *(še) *[IP dani diber *(alav)]]
 The man *(that) dani spoke *(on-him)
 'The man about whom Dani spoke'

Analysis:
1. še deletable as in French -- only when overt material precedes it in CP.
2. The relative operator moves to SPEC,CP and is a pronoun.
3. MinTrace excludes pronunciation of the pronoun outside of SPEC,CP.

še + pronoun is a resumptive construction

(70) From Doron (1982)

a. [ha-?iša₂ [še kol iš₁ yivxar t₂]] tišlax lo₁ tmuna
 the-woman₂ [that every man₁ will-choose t₂] will-send him₁ a picture.

b. *[ha-?iša₂ [še kol iš₁ yivxar ota₂]] tišlax lo₁ tmuna
 the-woman₂ [that every man₁ will-choose her₂] will-send him₁ a picture.

(71) a. [ha-?iša₂ [ota₂ kol iš₁ yivxar t₂]] tišlax lo₁ tmuna

b. *[ha-?iša₂ [še [ota₂ [kol iš₁ yivxar t₂]] tišlax lo₁ tmuna]
MinTrace tied with LE(C) will *not* work. This entails še-deletion in RC iff MinTrace satisfied, sure enough -- but there is a way to satisfy both: delete all occurrences of the resumptive pronoun (ha-ʔiš [CP ø φ [IP dani mekir ø]])

Fox (1994): Resumptive configurations (še pronounced) are forced by Island >> MinTrace.

Resumptive pronouns only in islands

(72) Shlonsky (1992): Resumptive pronouns OK as subject only if subject is in an island.
 a. ha-yeled še (*hu) ohev rak et dalit
 the-boy that he loves only dalit
 b. Ha-yeled še rak et dalit hu ohev

(73) ha-ʔiš še dalit šaʔala ‘im *(hu) ohevbalšanut.
The-man that Dalit asked if *(he) likes linguistics.

(74) *Fox (1994)*: Optionality of resumptive pronouns as object -- only apparent.
Stranding vs. pied-piping of the accusative preposition
 a. ha-ʔiš [PP ot-ø]i še dani ohev tī (oto = ‘et+hu)
 the-man ACC-him dani likes
 b. ha-ʔiš [NP hu]i še dani ohev [PP ot-[NP o]i]
 the man him that dani likes ACC-him
 c. ha-ʔiš [NP ot-ø]i še dani ohev tī
 the-man ACC-him dani likes

(75)a. *Vieron el hombre.
 b. Vieron al hombre (al= a+el)

(76)a. El hombre que vieron ayer es muy alto.
 the man that saw(they) yesterday is very tall.
 'The man that they saw yesterday is very tall'
 b. El hombre a quien vieron ayer es muy alto.
 The man ACC who saw(they) yesterday is very tall.
Resumptive in PP due to P-stranding:

a. ha-?iš hu še dalit xoševet [pp al-[NP av]i]
 the man him that Dalit thinks about-him

b. ha-?iš [pp alav]i še dalit xoševet ti
 the-man about-him dalit thinks

Clear when A-bar movement without deletion in SPEC.CP [Doron, Sells (via Fox)]

a. Kol gever, Ruti xoševet alav.
 Every man, Ruti thinks about-him.

b. *Al kol gever, Ruti xoševet alav.
 *About every man, Ruti thinks about him.

Which man Ruti thinks about-him?

Resumptive pronouns as a pronunciation of trace

Resumptive pronouns license parasitic gaps [Sells (1984)]:

a. * ha-?iša1 [še [ha-?anashim2 še šixnati t2 levaker t1] ti?aru et ha-bait.
 the-woman1 [that [the-people2 that convinced-I t2 to visit t1] described the house

b. ? ha-?iša1 [še [ha-?anashim2 še šixnati t2 levaker t1] ti?aru t1
 the-woman1 [that [the-people2 that convinced-I t2 to visit t1] described t1

c. ? ha-?iša1 [še [ha-?anashim2 ?e šixnati t2 levaker t1] ti?aru ota1
 the-woman1 [that [the-people2 that convinced-I t2 to visit t1] described her1

Strong Crossover with resumptive pronouns [Shlonsky 1992]

a. yidašti ?et ha-?idiot1 še ha more yaxšil ?oto1
 I-informed ACC the idiot that the teacher will-flunk him

b. *Ze ha baxur še yidašti ?et ha-?idiot1 še ha more yaxšil ?oto1/t1
 this (is) the guy that I-informed the idiot that the teacher will-flunk him/trace

Reconstruction with resumptive pronouns [?]

PCC argument
Infinitival relatives

(84)a. macati mišehu lehov (oto)
 found-I someone to-love (him)

b. *macati miSehu oto lehov

(85)a. macati mišehu ledaber alav
 found-I someone to-talk about-him

b. *macati mišehu alav ledaber

Hebrew: LE(\text{f}) \gg\text{MinTrace}
English: MinTrace \gg LE(\text{f}) \quad [\text{flag this!}]

14. Minimize Trace and Pronunciation Position

Note that the optimality system still does not directly regulate movement: only the clues we get to movement from PF.

An example:

V-to-I in English and French

(86) Modern English: not Main-Verb | Auxiliary not
 a. He does not speak English.
 b. He has not spoken English.

(87) Older English: Main-Verb not | Auxiliary not
 a. He speaketh not English
 b. He hath not spoken English.

(88) Wepyng and teres counforteth not dissolute laghers. [ca. 1400-1450]

(89) French finite clauses: like Older English finite clauses
 a. Il ne parle pas anglais.
 he speaks not English

b. Il n'a pas parlé anglais.
 he has not spoken English

(90) French infinitival clauses: like Modern English finite clauses
 a. [Ne pas parler anglais] est une condition pour étudier à MIT.
 not to-speak English is a condition for studying at MIT

b. [N'avoir pas parlé anglais] ...
 to-have not spoken English
(91)
 a. Être ou n’être pas...
 To-be or to-be not...

 b. *Exister ou n’exister pas...
 To-exist or exist not

(92) Pollock (1989)'s Filter: *θ-assigner [pronounced] in INFL.

Assume: Both English and French move V-to-I in the syntax (to check features)

(93) a. English: Pollock’s Filter >> Minimize Trace
 b. French: Minimize Trace >> Pollock’s Filter

15. English Verb Pronunciation

➤ Why *John not speaks English?

This violates the Syntactic Structures/LSLT requirement that INFL be ”close” to V [Revived by Bobaljik (1994)]:

INFL-support: *INFL if not adjacent to a projection of the related V.

<table>
<thead>
<tr>
<th>Do partially pronounces V -- just as a pronoun partially pronounces N.</th>
</tr>
</thead>
<tbody>
<tr>
<td>In particular, it pronounces the purely functional parts of V.</td>
</tr>
<tr>
<td>It is a "resumptive verb".</td>
</tr>
</tbody>
</table>

(94) INFL support
 a. John does_{i} not speak_{i} English.
 b. *John ___ not speaks English.

If V-in-I is pronounced do, recoverability allows V-in-VP to lack AGR and TNS pronunciation, which is a more minimal pronunciation than the full pronunciation.

➤ Why *John does not speaks English?

(95) Minimize trace
 a. John does not speak English. [*]
 b. *John does not speaks English. [**]

➤ What prevents "overuse" of do?

(96) Telegraph!
 a. *John does_{i} speak_{i} English.
 b. John ___ speaks English.
Standard Modern English

(97)

* John walked \(_i \) (recently) walked \(_i \) to school *

<table>
<thead>
<tr>
<th></th>
<th>RCV</th>
<th>Pollock</th>
<th>INFL-support</th>
<th>TEL</th>
<th>MinTrace</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varnothing)</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>walked</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>do</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>did</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>walk</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>walked</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>did</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>do</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>did</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>walk</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>did</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>walk</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>walk</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>walked</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>walked</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>walked</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
John hadi (recently) hadi walked to school

<table>
<thead>
<tr>
<th></th>
<th>RCV</th>
<th>Pollock</th>
<th>INFL-support</th>
<th>TEL</th>
<th>MinTrace</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ</td>
<td>φ</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>φ</td>
<td>do</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>φ</td>
<td>did</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>φ</td>
<td>have</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>φ</td>
<td>had</td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
</tr>
<tr>
<td>do</td>
<td>φ</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>do</td>
<td>do</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>do</td>
<td>did</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>do</td>
<td>have</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>do</td>
<td>had</td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
</tr>
<tr>
<td>did</td>
<td>φ</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>did</td>
<td>do</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>did</td>
<td>did</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>did</td>
<td>have</td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
</tr>
<tr>
<td>did</td>
<td>had</td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
</tr>
<tr>
<td>have</td>
<td>φ</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>have</td>
<td>do</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>have</td>
<td>did</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>have</td>
<td>have</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>have</td>
<td>had</td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
</tr>
<tr>
<td>had</td>
<td>φ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>had</td>
<td>do</td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
</tr>
<tr>
<td>had</td>
<td>did</td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
</tr>
<tr>
<td>had</td>
<td>have</td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
</tr>
<tr>
<td>had</td>
<td>had</td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
</tr>
</tbody>
</table>
In the above tableaux, if TEL and INFL-support are tied, you get the same result, because MinTrace will favor did not walk over all the others.

(100) Where walked-that John walked?

<table>
<thead>
<tr>
<th></th>
<th>LE(C)</th>
<th>TEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>did that John walk</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>did that John walk</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
John had\(_\) not had\(_\) walked to school

<table>
<thead>
<tr>
<th></th>
<th>RCV</th>
<th>Pollock</th>
<th>INFL-support</th>
<th>TEL</th>
<th>MinTrace</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset) not (\emptyset)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\emptyset) not do</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\emptyset) not did</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\emptyset) not have</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\emptyset) not had</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>do not (\emptyset)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>do not do</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>do not did</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>do not have</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>do not had</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>did not (\emptyset)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>did not do</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>did not did</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>did not have</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>did not had</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>have not (\emptyset)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>have not do</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>have not did</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>have not have</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>have not had</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>had not (\emptyset)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>had not do</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>had not did</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>had not have</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>had not had</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The range of alternative patterns reported in the secondary literature for 14th-17th C. English arise from rerankings and ties:
Euphuistic do (oblig)

(102)
John walked$_i$ (recently) *walked*$_i$ to school

<table>
<thead>
<tr>
<th></th>
<th>RCV</th>
<th>Pollock</th>
<th>INFL-support</th>
<th>MinTrace</th>
<th>TEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>\varnothing walked</td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>do walked</td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>did walk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>did walked</td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
<td></td>
</tr>
</tbody>
</table>

Euphuistic do (oblig)

(103)
John walked$_i$ (recently) *walked*$_i$ to school

<table>
<thead>
<tr>
<th></th>
<th>RCV</th>
<th>Pollock</th>
<th>INFL-support</th>
<th>MinTrace</th>
<th>TEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>\varnothing walked</td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>do walked</td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>did walk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>did walked</td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
<td></td>
</tr>
</tbody>
</table>

Euphuistic do (optional)

(104)
John walked$_i$ (recently) *walked*$_i$ to school

<table>
<thead>
<tr>
<th></th>
<th>RCV</th>
<th>Pollock</th>
<th>INFL-support</th>
<th>MinTrace</th>
<th>TEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>\varnothing walked</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>do walked</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>*!</td>
</tr>
<tr>
<td>did walk</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>did walked</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>*!</td>
</tr>
</tbody>
</table>

Do avoidance [oblig] [this will still favor has not over not has]

(105)
John walked$_i$ not *walked*$_i$ to school

<table>
<thead>
<tr>
<th></th>
<th>RCV</th>
<th>Pollock</th>
<th>TEL</th>
<th>INFL-support</th>
<th>MinTrace</th>
</tr>
</thead>
<tbody>
<tr>
<td>\varnothing not walked</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>do not walked</td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>did not walk</td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>did not walked</td>
<td></td>
<td></td>
<td></td>
<td>*!</td>
<td></td>
</tr>
</tbody>
</table>
Do avoidance [opt] [also euphuistic]

(106)

\[\text{John walked}_i \text{ not walked}_i \text{ to school}\]

<table>
<thead>
<tr>
<th></th>
<th>RCV</th>
<th>Pollock</th>
<th>TEL</th>
<th>INFLe</th>
<th>MinTrace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ø</td>
<td>not</td>
<td>walked</td>
<td></td>
<td>✱</td>
</tr>
<tr>
<td>2.</td>
<td>do</td>
<td>not</td>
<td>walked</td>
<td>✱</td>
<td>✱</td>
</tr>
<tr>
<td>3.</td>
<td>did</td>
<td>not</td>
<td>walk</td>
<td>✱</td>
<td>✱</td>
</tr>
<tr>
<td>4.</td>
<td>did</td>
<td>not</td>
<td>walked</td>
<td>✱</td>
<td>✱</td>
</tr>
</tbody>
</table>

General tie:

(107)

\[\text{John walked}_i \text{ not walked}_i \text{ to school}\]

<table>
<thead>
<tr>
<th></th>
<th>Pollock</th>
<th>INFLe</th>
<th>TEL</th>
<th>MinTrace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ø</td>
<td>not walked</td>
<td></td>
<td>✱</td>
</tr>
<tr>
<td>2.</td>
<td>do</td>
<td>not walked</td>
<td></td>
<td>✱</td>
</tr>
<tr>
<td>3.</td>
<td>did</td>
<td>not walk</td>
<td></td>
<td>✱</td>
</tr>
<tr>
<td>4.</td>
<td>did</td>
<td>not walked</td>
<td></td>
<td>✱</td>
</tr>
<tr>
<td>5.</td>
<td>walk</td>
<td>not did</td>
<td></td>
<td>✱</td>
</tr>
<tr>
<td>6.</td>
<td>walk</td>
<td>not walked</td>
<td></td>
<td>✱</td>
</tr>
<tr>
<td>7.</td>
<td>walked</td>
<td>not ø</td>
<td></td>
<td>✱</td>
</tr>
<tr>
<td>8.</td>
<td>walked</td>
<td>not do</td>
<td></td>
<td>✱</td>
</tr>
<tr>
<td>9.</td>
<td>walked</td>
<td>not did</td>
<td></td>
<td>✱</td>
</tr>
<tr>
<td>10.</td>
<td>walked</td>
<td>not walk</td>
<td></td>
<td>✱</td>
</tr>
<tr>
<td>11.</td>
<td>walked</td>
<td>not walked</td>
<td></td>
<td>✱</td>
</tr>
</tbody>
</table>

16. French: The Emergence of The Unmarked

Suppose infinitival INFL moves to C, and infinitival morphology counts as a \(\theta\)-marker for Pollock-style filter -- i.e. no pronunciation of V in C:

\(\text{C} \theta >> \text{Minimize trace} >> \text{Pollock}\)

Outcome: Pronunciation anywhere V has landed except C and if V is a \(\theta\)-marker, except AGRs!

(108)

French infinitival clauses: auxiliaries

a. [N'avoir pas parlé anglais] ... /avoir pronounced in I/
 to-have not spoken English

b. [Ne pas avoir parlé anglais] ... /avoir pronounced in V/
(109) **French infinitival clauses: main verbs**

 a. /*parler pronounced in I/

 *[Ne parler pas anglais] est une condition pour étudier à MIT.

 to-speak not English is a condition for studying at MIT

 b. /*parler pronounced in V/

 [Ne pas parler anglais] est une condition pour étudier à MIT.

"AGRo"-pronunciation also possible:

(110) a. [Ne pas parler souvent anglais]..

 b. John knocked often on it.

(111)

Parleri ne pas parleri souvent parleri anglais

<table>
<thead>
<tr>
<th></th>
<th>RCV</th>
<th>C₀</th>
<th>MinTrace</th>
<th>Pollock</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFL (AGRs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGRo</td>
<td>#<a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>#<a</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>