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1. Introduction∗

Optimality Theory (Prince and Smolensky 1993) has offered a novel unifying perspective
on different branches of linguistic research. It was originally conceived as a form of
synchronic grammatical description in the tradition of generative grammar, and the first
domain of application was phonology. In the meantime optimality theoretic concepts
have been used for all modules of grammar, ranging from phonology over morphology
and syntax to semantics and pragmatics. The idea that a grammar is basically a ranking
of a small set of universal soft constraints lends itself easily to an explanatory approach to
typological variation. Furthermore, Optimality Theory (OT henceforth) has been used as
a guideline in recent research on learnability (Tesar and Smolensky 2001, Boersma and
Hayes 2001), language acquisition (Hayes 1999), and diachronic change (Haspelmath
1999).

In its standard form, OT is an abstract model of language production. The grammar
generates a (possibly large) set of potential surface realizations of a given underlying
form, and the evaluation algorithm picks out the optimal candidate(s) from this set. Sev-
eral researchers have argued though that the notion of optimization also plays a role
in language comprehension, and that expressive and interpretative optimization actually
work in tandem. Bidirectional versions of OT have been considered for synchronic de-
scription of morphological (Wunderlich 2001a,b) and syntactic phenomena (by Wilson
2001 for binding and by Lee 1999 for word order freezing effects) as well as in the
realm of semantics and pragmatics (see for instance Egg 1999, Jäger and Blutner 2000,
von Stechow 2000 on German adverbials, Beaver 2000 on anaphora resolution, and Zee-
vat 1999 on presuppositions). The recent work of Reinhard Blutner (especially Blutner
2001) represents the presumably best worked out version of Bidirectional OT.

One might argue that theories like OT that assume a competition between potentially
large different linguistic entities to determine the grammaticality of one single linguistic
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object are computationally too costly to be psychologically realistic models of linguistic
competence. This criticism is certainly valid. OT as such places no upper bound on
the computational complexity of natural languages. It is an easy exercise to design OT
grammars that are undecidable. This is in stark contrast with the fact that the generative
complexity of natural languages is known to be quite limited. According to the available
evidence, syntax does not go beyond the class of mildly context sensitive languages
(see Joshi et al. 1990), while most of phonology and morphology can even be described
by means of finite state techniques (as pointed out by Kaplan and Kay 1981). Ideally,
a plausible grammatical formalism should exceed the necessary generative capacity as
little as possible. The success of the research paradigm of OT thus crucially depends on
the issue whether it is possible to impose constraints on possible OT systems in such a
way that the resulting grammars are computationally tractable (and thus psychologically
plausible).

The computational complexity of OT is currently an area of active research, and sev-
eral results have been obtained in the literature. Most importantly, Frank and Satta 1998
show that under certain general restrictions, (unidirectional) optimization is a finite state
technique. This means that an OT system can be implemented as a finite state transducer
provided the generator can be modeled by means of finite state techniques and all con-
straints are regular languages. In other words, if all components of an OT-system are
finite state objects, the system as a whole is so too. In Jäger 2001 it is shown that this
result directly carries over to bidirectional OT.

These results are confined to OT systems that only use binary constraints. Many em-
pirical works in OT assume gradient constraints though, i.e. constraints that can be vio-
lated arbitrarily many times. Frank and Satta 1998 also prove that the relation of optimal
input-output pairings may exceed the power of finite state techniques even if all compo-
nents of the OT system in question are finite state implementable if gradient constraints
are involved. This negative result is countered by a positive result in Gerdemann and van
Noord 2000. These authors present a finite state implementation of a certain OT system
involving gradient constraints.

The present paper contains two main results. After reviewing the work of Frank and
Satta and of Gerdemann and van Noord on the complexity of unidirectional OT as well
as the results from Jäger 2001 on bidirectional OT, I will propose a generalization of
Gerdemann and van Noord’s construction for the unidirectional case, i.e. I will give
general sufficient (though not necessary) conditions when an OT system using gradi-
ent constraints can be implemented as a finite state automaton. Furthermore, it will be
shown that this result does not carry over to the bidirectional case. An OT system will be
presented that remains within the limits of finite state techniques if unidirectional opti-
mization is used but which exceeds this complexity class if bidirectional optimization is
applied. The latter result thus shows that bidirectional OT is intrinsically more complex
than unidirectional OT.
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2. Basic concepts of finite state OT

Let me first make precise what is meant by the term “OT-systems.” In the general case,
an OT-system consists of a relationGEN and a finite set of constraints that are linearly
ordered by some constraint ranking.1 Constraints may be violated several times. So a
constraint should be construed as a function fromGEN into the natural numbers. Thus
an OT-system assigns every pair inGEN a finite sequence of natural numbers. The
ordering of the elements ofGEN that is induced by the OT-system is according to the
lexicographic ordering of these sequences. This leads to the following definition:

Definition 1 (OT-System)

1. An OT-system is a pairO = 〈GEN, C〉, whereGEN is a relation, andC =
〈c1, . . . , cp〉, p ∈ N is a linearly ordered sequence of functions fromGEN toN.

2. Leta, b ∈ GEN. a <O b iff there is ani with 1 ≤ i ≤ p such thatci(a) < ci(b)
and for allj < i : cj(a) = cj(b).

The following lemma states a property of the ranking of candidates induced by OT-
system that will be important later on. We call a binary relationR “weakly linear” iff R
is well-founded, and for allx, y : xRy or yRx or x ≡R y, wherex ≡R y iff for all z:
zRx iff zRy.

Lemma 1 LetO be an OT-system. Then<O is weakly linear.

Proof: We assign every element ofGEN an ordinal number by the functionf that is
defined by

f(x) =
p∑
i=1

ωp−i · ci(x)

It is easy to see thatx <O y iff f(x) < f(y). Since the ordering of the ordinal numbers
is well-founded, so is<O. Furthermore,x ≡<O y iff f(x) = f(y). So if x 6< y and
y 6< x, it must be the case thatf(x) = f(y), hencex ≡ y. a

Intuitively, an outputo is an (unidirectionally) optimal output for some inputi iff GEN
relatesi ando, ando is optimal among the possible outputs fori. This is expressed by
the following definition:

Definition 2 (Unidirectional optimality) Let O = 〈GEN, C〉 be an OT-system.
Then〈i, o〉 is unidirectionally optimal with respect toO iff

1 Some authors only require the constraints to be partially ordered. Since a given candidate is optimal
according to some partial ordering iff it is optimal according to all total extensions of this partial
ordering, the results obtained in this paper can easily be extended to this more general setup.
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1. 〈i, o〉 ∈ GEN

2. there is noo′ such that〈i, o′〉 ∈ GEN and〈i, o′〉 <O 〈i, o〉

In most research papers on OT, the candidate sets that are taken under consideration are
finite and even fairly small, and the search for the optimal candidate is done manually
by comparing the patterns of constraint violations. It has frequently been observed that
in realistic applications, candidate sets might be very large, which would render this
kind of naive brute force algorithm computationally very expensive. Even worse, if the
candidate set is infinite, there is no guarantee that this kind of algorithm terminates. Thus
the success of the OT research program crucially hinges on the issue whether there are
computationally tractable evaluation algorithms.

It is obvious that the complexity of the task of finding the optimal candidates for a
given OT-system depends on the complexities of the generator and of the constraints. In
the general case, these will provide a lower bound for the complexity of the OT-system
as a whole, both in terms of automata theoretic complexity and in terms of resource
complexity. The crucial question is whether an OT-system as a whole may have a higher
complexity than the most complex of its components. Furthermore, this issue may de-
pend on the mode of evaluation that is chosen. For instance, unidirectional OT might be
less complex than bidirectional OT.

While these issues are still open in the general case, the literature contains some
promising results about the complexity of OT in cases where all components of the
OT-system are finite state objects. These insights are of great practical importance in
phonology and morphology, where finite state techniques are usually sufficiently expres-
sive. In syntax and semantics, this kind of result cannot be employed immediately since
it is well-known that more automata-theoretic power is needed here. Nevertheless the
finite state case is interesting since it indicates that the OT mechanism as such is not all
that powerful after all.

In this section I will briefly review some basic properties of finite state objects, and
I will discuss the most impressive piece of work on the complexity of OT, Frank and
Satta’s (1998) construction. This will pave the ground for the extrapolation of Frank and
Satta’s result to the bidirectional case that is to be presented later on.

In the subsequent discussion of finite state automata, finite state transducers, regular
languages and rational relations, I will make heavy use of Roche and Schabes 1997. The
interested reader is referred there for further information and references.

We assume that the reader is familiar with the basic concepts of a finite state automaton
and a regular language and give the definition here for reference.

Definition 3 (FSA) A finite-state automatonA is a 5-tuple〈Σ, Q, i, F,E〉, whereΣ
is a finite set called thealphabet, Q is a finite set ofstates, i ∈ Q is the initial state,
F ⊆ Q is the set of final states, andE ⊆ Q× (Σ ∪ {ε})×Q is the set ofedges.

Following standard practice, I useΣ∗ to refer to the set of strings over the alphabetΣ,
including the empty string. The letterε symbolizes the empty string.

Definition 4 Theextended set of edgeŝE ⊆ Q× Σ∗ ×Q is the smallest set such that
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1. ∀q ∈ Q : 〈q, ε, q〉 ∈ Ê

2. ∀w ∈ Σ∗ and∀a ∈ Σ ∪ {ε}: if 〈q1, w, q2〉 ∈ Ê and 〈q2, a, q3〉 ∈ E, then
〈q1, wa, q3〉 ∈ Ê.

A finite-state automatonA defines the following languageL(A):

L(A) = {w ∈ Σ∗|∃q ∈ F : 〈i, w, q〉 ∈ Ê}

If L = L(A), it is said that the FSAA recognizesthe languageL. The class ofregular
languagesis the class of languages that are recognized by some FSA.

A finite state transducer (FST) is a FSA that produces an output. Every edge of the
automaton is labeled with an input and an output, where both input and output are strings
over the input alphabet and the output alphabet respectively. An FST does not just rec-
ognize strings but transforms inputs strings in output strings.

Definition 5 (FST) A Finite-State Transduceris a tuple〈Σ1,Σ2, Q, i, F,E〉 such that

• Σ1 is a finite alphabet, namely theinput alphabet

• Σ2 is a finite alphabet, namely theoutput alphabet

• Q is a finite set ofstates

• i ∈ Q is theinitial state

• F ⊆ Q is the set offinal states

• E ⊆ Q× Σ∗1 × Σ∗2 ×Q is the set ofedges.

The notion of an extended edge of a FST is analogous to the corresponding concept for
FSA.

Definition 6 Theextended set of edgeŝE ⊆ Q×Σ∗1×Σ∗2×Q is the smallest set such
that

1. ∀q ∈ Q : 〈q, ε, ε, q〉 ∈ Ê

2. ∀v1, w1 ∈ Σ∗1 and∀v2, w2 ∈ Σ∗2: if 〈q1, v1, v2, q2〉 ∈ Ê and〈q2, w1, w2, q3〉 ∈
E, then〈q1, v1w1, v2w2, q3〉 ∈ Ê.

A finite-state transducerT defines the following relation betweenΣ∗1 andΣ∗2:

R(A) = {〈v, w〉 ∈ Σ∗1 × Σ∗2|∃q ∈ F : 〈i, v, w, q〉 ∈ Ê}

The class of relations that is defined by some FST is called the class ofrational relations.
A simple FST that implements the rational relation{〈an, bnc∗〉|n ∈ N} is given in
figure 1 on the following page for illustration.
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Figure 1: FST implementing the rational relation{〈an, bnc∗〉|n ∈ N}

The classes of regular languages and of rational relations are subject to certainclosure
properties. (R1 ◦R2 is the relation composition ofR1 andR2, i.e.{〈v, w〉|∃x(vR1x ∧
xR2w)}. R∪ is the inverse of the relationR, i.e.{〈w, v〉|vRw}. L1L2 is the concate-
nation ofL1 andL2, i.e. the set of strings{uv|u ∈ L1 ∧ v ∈ L2}. Likewise,R1R2 is
the concatenation of the relationsR1 andR2, i.e. the relation{〈u1v1, u2v2〉|〈u1, u2〉 ∈
R1 ∧ 〈v1, v2〉 ∈ R2}. IL is the identity relation onL, i.e. {〈v, v〉|v ∈ L}. L∗, the
Kleene closure of the languageL, is the set of strings{w1 · · ·wn|wi ∈ L for all 1 ≤
i ≤ n, n ≥ 0}. Likewise,R∗, the Kleene closure of the relationR, is the relation
{〈u1 · · ·un, v1 · · · vn〉|〈ui, vi〉 ∈ R for all 1 ≤ i ≤ n, n ≥ 0}).

• Every finite language is regular.

• If L1 andL2 are regular languages, thenL1 ∩ L2, L1 ∪ L2, L1 − L2, L1L2, and
L∗1 are also regular languages.

• If R1 andR2 are rational relations, thenR1 ∪ R2, R1 ◦ R2, R
∪
1 , R1R2, andR∗1

are also rational relations.

• If R is a rational relation, thenDom(R) andRg(R) (the domain{x|∃y : xRy}
and the range{y|∃x : xRy} of R) are regular languages.

• If L1 andL2 are regular languages, thenL1 × L2 andIL1 are rational relations.

Note that the rational relations are not closed under intersection and complement. Frank
and Satta use these closure properties to show that for a significant class of OT-systems,
unidirectional optimization is a rational relation provided all building blocks are rational.

3. Frank and Satta (1998)

Now let us turn our attention to Frank and Satta’s construction. They restrict the class
of OT-systems in two ways. First, OT constraints in general “count”, a given constraint
may be violated arbitrarily many times. Frank and Satta restrict attention to binary con-
straints, i.e. constraintsc with the propertyRg(c) = {0, 1}. OT-systems which are not
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binary but have an upper limit for the number of constraint violations are implicitly cov-
ered; a constraintc that can be violated at mostn times can be represented byn binary
constraints of the form “Violatec less thani times” for1 ≤ i ≤ n. The ranking of these
new constraints is inessential for the induced ordering relation.

Second, one may distinguish constraints that evaluate solely the output and constraints
that properly evaluate an input-output pair. The former type of constraint is called
markedness constraintsin the literature (see for instance Kager 1999), while the lat-
ter are covered under the termfaithfulness constraint. Let us make this precise. We use
the term “Output Markedness Constraint” since markedness constraints may also evalu-
ate solely the input. Such input constraints have no effect for unidirectional OT, but they
become important later when bidirectionality will be discussed.

Definition 7 ((Output) Markedness Constraint) Let O = 〈GEN, C〉 be an OT-
system. Constraintci is anoutput markedness constraintiff

〈i, o〉 ∈ GEN ∧ 〈i′, o〉 ∈ GEN→ ci(〈i, o〉) = ci(〈i′, o〉))

Frank and Satta restrict attention to binary output markedness constraints. Obviously,
these can be represented as languages over the output alphabet, namely as the set of
outputs that obey them.

The central part of their construction is an operation calledconditional intersection
that combines a relation with a language. Karttunen 1998 calls this operationlenient
composition, and I will follow this terminology.

Definition 8 (Lenient composition) LetR be a relation andL ⊆ Rg(R). Thelenient
compositionR ↑ L of R with L is defined as

R ↑ L .= (R ◦ IL) ∪ (IDom(R)−Dom(R ◦ IL) ◦R)

By applying the definitions, it is easy to see that〈x, y〉 ∈ R ↑ L iff xRy and either
y ∈ L or there is noz ∈ L such thatxRz. In other words,{y|〈x, y〉 ∈ R ↑ L} is the
set ofys that are related tox byR, and that are optimal with respect to the constraintL.
Furthermore, it follows from the closure properties given above thatR ↑ L is a rational
relation providedR is rational andL is a regular language.

Let us illustrate the working of lenient composition with an example. LetR be a
relation{〈a, x〉, 〈a, y〉, 〈b, z〉, 〈b, w〉, 〈c, u〉, 〈d, v〉}. Suppose there is a constraintc that
is obeyed byy, z andu, while x,w andv violate it. This constraint can be represented
by the languageL = {y, z, u}. Figure 2 on the next page illustrates this scenario.

Which input-output pairs are optimal in this setup? For the inputa, the only optimal
output isy because it is the only output fora that obeys the constraint. Likewise, the
only optimal outputs forb andc arez andu respectively. There is no output ford that
obeys the constraint. Hencev is an optimal output ford.

Lenient composition gives exactly this result.R ◦ IL = {〈a, y〉, 〈b, z〉, 〈c, u〉}, i.e.
the range ofR is restricted toL. Next the domain of this relation is formed:Dom(R ◦
IL) = {a, b, c}. This is the set of inputs that has a constraint obeying output. The
complement of this set, the set of inputs that do not have a constraint obeying output,
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Figure 2:

is given byDom(R) − Dom(R ◦ IL) = {d}. RestrictingR to this input yields
IDom(R)−Dom(R◦IL)◦R = {〈d, v〉}. The set of optimal input-output pairs is given by the
union of this relation with the relationR ◦ IL (the set of pairs that obey the constraint):

R ↑ L = {〈a, y〉, 〈b, z〉, 〈c, u〉, 〈d, v〉}

Unidirectional optimality can now be implemented in a straightforward way, namely by
successively leniently composing the (binary markedness) constraints of an OT-system
with GEN.

Theorem 1 (Frank and Satta) Let O = 〈GEN, C〉 with C = 〈c1, . . . , cp〉 be an
OT-system such thatC solely consists of binary output markedness constraints. Then
〈i, o〉 is unidirectionally optimal iff〈i, o〉 ∈GEN ↑ c1 · · · ↑ cp.

The proof of this theorem is obvious from the definitions. Crucially, it follows that uni-
directional optimality is a rational relation providedGEN is rational and all constraints
are regular languages.

4. Gradient constraints in unidirectional OT

Despite the theoretical importance of Frank and Satta’s result, the restriction to binary
constraints limits its practical use in quite a significant way. This shortcoming is some-
what alleviated by the observation (also due to Frank and Satta) that their result readily
extends to gradient constraints which impose an upper limit on the number of violations.
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Nevertheless, in the general case gradient constraints extend the generative power of an
OT-system beyond the limits of finite state techniques. Frank and Satta illustrate this
fact by means of an example construction which is based on an idea by Markus Hiller.
Consider the following simple OT-system which has just one constraint,c. (Here and
throughout the rest of the paper, the discussion is confined to markedness constraints.
Thus constraints are construed as functions that operate solely either on the input or on
the output.)

GEN = {〈anbm, anbm〉|n,m ∈ N} ∪ {〈anbm, bnam〉|n,m ∈ N}
c(w) = #a(w)

So the generator is a non-deterministic transducer that takes strings as input that consist
of a sequence ofas, followed by a sequence ofbs. It either returns the input string
unchanged, or it replaces theas bybs and vice versa. This relation can be constructed
as follows (for better readability, I writea instead of{a} where no confusion is likely to
arise):

Ia∗b∗ ∪ ((a× b) ∪ (b× a))∗

The constraintc can informally be stated as “Avoida”, i.e. everya in the output violates
c once. Thusc can also easily be implemented as a finite state automaton. We could for
instance identify it with the relation:

((b× ε) ∪ (a× c))∗

This relation erases allbs and replaces everya by c. Applied to some outputw of GEN,
its output is thus a sequence ofcs of lengthc(w).

The relation of optimal input-output pairs induced by this OT-system is the relation
{〈anbm, anbm〉|n ≤ m} ∪ {〈anbm, bnam〉|m ≤ n}. Intersecting the range of this
relation with the regular languagea∗b∗ yields the language{anbm|n ≤ m}, which is
easily shown to be non-regular.2 It thus follows from the closure properties of regular
languages and rational relations that the relation defined by this OT-system is not rational,
even though bothGEN andc can be implemented by means of finite state techniques.
More generally, this example shows that gradient constraints transcend the bounds of
finite state techniques.

Gerdemann and van Noord 2000 show though that it is nevertheless possible to im-
plement certain linguistically useful OT-systems using gradient constraints. To bring this
point home, they implement the constraint “Parse!” from Prince and Smolensky 1993 as
a regular expression, even though “Parse!” can be violated arbitrarily many times. Their
approach is based on the insight that the ordering on outputs that is induced by this con-
straint is itself a rational relation. In other words, there is a finite state transducerT such

2 If it were regular, the language(a∗b∗−{anbm|n ≤ m})b = {anbm|0 < m ≤ n} would be regular
too, since the regular languages are closed under complement and concatenation. The intersection of
this language with the language in question is{anbn|n > 0}, which is know to be non-regular.



10 Gerhard J̈ager

that every suboptimal candidate (with respect to “Parse!”) can be obtained by applying
T to some other candidate.

For the purpose of illustration, a very simplified version of their implementation is
presented here. The candidates to be compared by “Parse!” are different possible syl-
labifications of a given sequence of phonemes. Syllabification is expressed by means
of indexed brackets around each phoneme. There are four kinds of brackets (φ is used
as metavariable over phonemes, and the index of the bracket is placed in front of the
opening bracket):

• O[φ] – onset

• N [φ] – nucleus

• D[φ] – coda

• X[φ] – unparsed

The number of violations of “Parse!” equals the number of “unparsed” phonemes in the
input string, i.e. the number of occurrences of “X[φ]”.

Consider the input stringBEBOP. Suppose we have to evaluate three possible syllabi-
fications of this string with respect to “Parse!”, namely

• O[B]N [E]X[B]X[O]X[P]

• O[B]N [E]O[B]N [O]X[P]

• O[B]X[E]O[B]N [O]X[P]

Obviously the second candidate is optimal with respect to “Parse!” since it violates this
constraint only once while the first and the third candidate violate it twice and three times
respectively. Furthermore we can observe that we can obtain both suboptimal candidates
from the optimal candidate if we replace at least one, and optionally several, parsed
indices (O,N , orD) byX. This kind of replacement is easy to implement by means of
a finite state transducer.3 In other words, the relation that holds between two candidates
α andβ iff they are comparable (i.e. they are outputs for the same input) andα violates
the constraint “Parse!” less thanβ can be represented as a rational relation.4 This fact

3 LetΣ be the alphabet of the OT-system in question, and let

R = (O ×X) ∪ (N ×X) ∪ (D ×X)

The rational relation representing this replacement operation would then be

(R ∪ IΣ)∗R(R ∪ IΣ)∗

4 Gerdemann and van Noord’s construction is somewhat more involved. They mark every constraint
violation with a special violation mark at the position where the violation occurs, and they observe
that the violation marked versions of the suboptimal candidates can be obtained from the violation
marked version of the optimal candidate by applying a finite state transducer. This difference in
implementation has no impact on the general argument though.
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can be used to construct a filter that eliminates the suboptimal candidates. LetRP be the
rational relation that maps each candidateα to each competitorβ that violates “Parse!”
more often thanα. Let us furthermore suppose for the sake of simplicity that “Parse!” is
the only constraint in our OT-system. ComposingGEN with RP is thus the relation that
maps each input to each suboptimal output, andRg(GEN◦RP ) is the set of suboptimal
outputs. Given this,GEN◦IRg(GEN)−Rg(GEN◦RP ) is hence the relation that maps each
input to its optimal outputs with respect to “Parse!”, and this is a rational relation.

Even though the mentioned authors only consider this and closely related examples,
their method can easily be generalized. Let us call a constraintc rational with respect to
a generator relationR iff there is a rational relationS such that for all candidatesx and
y it holds that

{〈x, y〉|c(x) < c(y)} ∩ (R∪ ◦R) = S ∩ (R∪ ◦R)

Note that two outputsx andy are competitors if they are both outputs of the same in-
put. This means thatx andy are competing iff〈x, y〉 ∈ (R∪ ◦ R). A constraintc is
thus rational with respect toR iff we can model the ranking thatc induces among the
competing outputs ofR by means of some rational relationS.

In the sequel I will writerelR(c) for the rational relation that represents a rational
constraintc with respect toR. (We will omit the subscript if no confusion is likely
to arise.) Following the example of Gerdemann and van Noord, this relation can be
used to construct a filter that eliminates all suboptimal candidates from a given set of
competitors.

Now supposeR is a rational relation andc a rational constraint with respect toR.
Then thegeneralized lenient compositionof R with rel(c) (written as “R � relR(c)”)
relates an inputi with an outputo iff iRo and among the possible outputs ofi underR,
o violatesc only minimally.

Definition 9 (Generalized lenient composition)

R � S
.= R ◦ IRg(R)−Rg(R◦S)

Clearly the generalized lenient composition of two rational relations is again a rational
relation.

A word of caution is in order here though. Consider the following toy OT-system.
There are just two inputs,i1 andi2, and two outputs,o1 ando2. The generator relation
GEN relatesi1 to both outputs while it mapsi2 just to o2. There is one constraintc,
which is violated byo2, but not byo1. So we have

GEN = {〈i1, o1〉, 〈i1, o2〉, 〈i2, o2〉}
c(o1) = 0
c(o2) = 1

It is easy to see that the optimal input-output pairing mapsi1 to o1 andi2 to o2. When
we consider the possible outputs ofi1, o2 is blocked because it competes witho1, and
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the latter is better according toc. When we consider the possible outputs ofi2 though,
o2 is optimal because there is no competitor that could block it. Now suppose we form
the generalized lenient composition ofGEN with rel(c). The relationrel(c) is simply
{〈o1, o2〉}. ComposingGEN with rel(c) and forming the range of the result gives us
the singleton set{o2}. So the filter that we construct fromrel(c) excludeso2 in a global
way, and we would wrongly predict that there is no optimal output fori2 at all. The
problem here is that in this scenario, competition and blocking between different outputs
depends on the input. In other words, local optimality does not entail global optimality.
Generalized lenient composition only works if this is not the case. To make this point
precise, the filter construction is possible if optimality is global in the following sense: If
some outputo is optimal with respect to some inputi, theno is also optimal with respect
to the set of all possible outputs, regardless of the input. Formally this reads as follows:

Definition 10 LetR andS be relations.Optimality is global with respect to R and
S iff

∀i, o((iRo ∧ ¬∃o′(iRo′ ∧ o′So))→ ¬∃o′(o′ ∈ Rg(R) ∧ o′So))

In Gerdemann and van Noord’s sample construction, optimality is certainly global with
respect toGEN andRP because there the inverse ofGEN is functional. It is always
possible to recover a unique input from a given output candidate, just by erasing all
brackets. Thus competition only takes place between different bracketings over the same
string, and thus local and global optimality coincide.

Generally, if the precondition that optimality be global is fulfilled, generalized lenient
composition in fact provides the optimal outputs for each input:

Fact 1 LetR andS be relations such that optimality is global with respect toR andS.
Then

〈i, o〉 ∈ R � S iff iRo ∧ ¬∃o′(iRo′ ∧ o′So)

Proof: We start with the direction from left to right. Suppose〈i, o〉 ∈ R � S. By the
definition of generalized lenient composition, this means thatiRo ando ∈ Rg(R) −
Rg(R ◦ S). So the first conjunct of the right hand side is fulfilled. Now suppose the
second conjunct is false, i.e. there is ano′ such thatiRo′ ando′So. Sinceo ∈ Rg(R)−
Rg(R◦S), there is noo′′ such thato′′ ∈ Rg(R) ando′′So. o′ ∈ Rg(R) by assumption,
thus¬o′So. So we derive a contradiction.

We turn to the direction from right to left. SupposeiRo and there is noo′ with
iRo′ and o′So. We furthermore assume that optimality is global with respect toR
and S. Finally we assume that the left hand side of the biconditional is false, i.e.
〈i, o〉 6∈ R � S. By the definition of generalized lenient composition, this means that
o 6∈ Rg(R)−Rg(R◦S). Sinceo ∈ Rg(R), it follows thato ∈ Rg(R◦S). Thus there
is ano′ with o′ ∈ Rg(R) ando′So. Since optimality is global with respect toR andS,
there is thus ano′′ with iRo′′ ando′′So. This is in contradiction with the assumptions.a

Lenient composition with binary constraints is a special case of the more general no-
tion of generalized lenient composition (provided optimality is global). Suppose the
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extension of some binary constraintc is the regular languagel(c). Thenc is a rational
constraint, andrel(c) = (l(c)× (Σ∗ − l(c)). Then it follows from fact 1 that

〈i, o〉 ∈ R � (l(c)× (Σ∗ − l(c)) iff iRo ∧ ¬∃o′(iRo′ ∧ o′ ∈ l(c) ∧ o 6∈ l(c))

It furthermore follows from Frank and Satta’s theorem that

〈i, o〉 ∈ R ↑ l(c) iff iRo ∧ ¬∃o′(iRo′ ∧ o′ ∈ l(c) ∧ o 6∈ l(c))

because the right hand side of this biconditional is just the definition of unidirectional
optimality for the OT systemO = 〈R, c〉. From this one can infer the corollary that

R ↑ l(c) = R � (l(c)× (Σ∗ − l(c)))

Since neither Frank and Satta’s proof of theorem 1 nor the proof of fact 1 requires the lan-
guages and relations involved to be regular/rational, this result holds regardless whether
R andc are rational or not.

Generalized lenient composition can be used to model optimization with respect to a
system of ranked constraints in a way completely analogous to Frank and Satta’s con-
struction with ordinary lenient composition:

Theorem 2 Let O = 〈GEN, C〉 with C = 〈c1, . . . , cp〉 be an OT-system such that
C solely consists of rational output markedness constraints. Furthermore, let optimality
be global with respect toGEN � rel(c1) · · · � rel(ci−1) andrel(ci) for all i with
1 ≤ i ≤ p. Then〈i, o〉 is unidirectionally optimal iff〈i, o〉 ∈GEN � c1 · · · � cp.

Proof: Directly from fact 1 and the definition of unidirectional optimality. a

5. Bidirectional OT

In the generative tradition of syntax, phonology and morphology, transformations are
taken to be mappings from underlying abstract representations to concrete surface rep-
resentations. OT researchers usually adopt this perspective too; competition takes place
between different possible realizations of some underlying form. In other words, OT
usually takes the generation perspective. It is a theory about the optimal realization of a
given underlying form.

On a somewhat more abstract level, the OT philosophy can be described by the idea
that only the most economical candidates of a given candidate set are legitimate linguis-
tic objects; less economical competitors are blocked. Ranked constraints serve to induce
an ordering on the candidates that makes optimization possible. The idea of optimiza-
tion has a long history in semantics and pragmatics too, and it is suggestive to integrate
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this tradition into the OT framework. Some caution has to be exerted here though. The
generation perspective that is prevalent in phonology and morphology certainly has some
plausibility when applied to semantics. Here it amounts to saying that a certain verbaliza-
tion of a given meaning, though licit, might be blocked by a more economical linguistic
form expressing the same meaning. Such effects do in fact occur. A case in point is the
well-known phenomenon of “conceptual grinding”, where the name of an animal kind is
used to refer to meat of this animal:

(1) We had chicken for dinner.

However, conceptual grinding is only possible if there is no lexicalized expression for
the kind of meat in question:

(2) a. ?We had pig for dinner.

b. We had pork for dinner

Arguably, using the lexicalized expressionpork is a more economical way to refer to
meat from pigs than using the nounpig in its shifted meaning. Thus (2b) blocks (2a).

On the other hand, there is also a considerable tradition in semantics and pragmatics
which assumes that a certain interpretation of a given linguistic form may be blocked by a
more coherent alternative interpretation of the same form. In other words, the candidate
set for optimization in semantics may also be determined by the parsing perspective,
where different interpretations of a given form are compared. A typical example is the
behavior of presupposition accommodation. Consider the following two sentences:

(3) a. If Mary becomes a politician, the president will resign

b. If Mary becomes member of [a club]i, itsi president will resign

In both examples, the consequent of the conditional contains a definite NP and thus a
presupposition trigger. In (3a) the presupposition triggered isthere is a president, and in
(b) the club in question has a president. If one assumes that both sentences are uttered out
of the blue, these presuppositions must be accommodated. In principle, there are three
ways to accommodate this presupposition in (a) (cf. Heim 1990, van der Sandt 1992):
local, intermediate and global accommodation. There is agreement in the literature that
global accommodation is preferred, thus (3a) is (correctly) predicted to be interpreted as
():

(4) There is [a president]i, and if Mary becomes a politician, hei will resign

If global accommodation is impossible as in (3b) (where it would lead to a configura-
tion where the antecedent of the pronounit is not accessible for the pronoun anymore),
intermediate accommodation pops up; (3b) comes out as

(5) If Mary becomes member of a club that has a president, this president will resign

A concise way to describe this pattern is to assume that the grammar generally admits
both kinds of accommodation, but that global accommodation is more economical than
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intermediate one (which is in turn more economical than local accommodation). So if a
construction structurally admits both readings, global accommodation wins and blocks
all competing readings.

So it seems that the mapping of linguistic forms to interpretations requires optimiza-
tion both in the parsing and in the generation direction. This insight is not new, some
form of bidirectional optimization has been assumed in the pragmatics literature for quite
some time (see for instance Horn 1984 and Levinson 1987). In a series of recent pub-
lications, Reinhard Blutner has made the interplay between generation optimization and
parsing optimization precise and integrated it into the overall framework of OT (Blutner
1998, Blutner 2001).

So to apply OT to the syntax-semantics interface, both speaker direction and hearer
direction should be taken into account. A grammatically licit form-meaning pair—or,
more generally, a licit input-output pair—〈i, o〉may be blocked both by a more econom-
ical form alternative and a more economical meaning alternative. It should be added that
a blocking expression should itself be optimal. So we arrive at the following definition
of bidirectional optimality:

Definition 11 (Bidirectional optimality) Let O = 〈GEN, C〉 be an OT-system.
Then〈i, o〉 is bidirectionally optimal iff

1. 〈i, o〉 ∈ GEN,

2. there is no bidirectionally optimal〈i′, o〉 ∈ GEN such that〈i′, o〉 <O 〈i, o〉, and

3. there is no bidirectionally optimal〈i, o′〉 ∈ GEN such that〈i, o′〉 <O 〈i, o〉.

So an OT-System induces a ranking of candidates in the usual way. Bidirectional op-
timality differs from the unidirectional case in that an input-output pair〈i, o〉 can be
blocked either by a better alternative outputo′ for i or a better alternative inputi′ for o.
In Jäger 2001 it is shown that despite its apparent circularity, bidirectional optimality is
a well-defined notion.

This bidirectional version of optimality is more than just a conjunction of interpretive
and productive economy. To illustrate this point, we sketch an application of bidirec-
tionality which is due to Krifka 2000 pertaining to the interpretation of measure phrases.
Consider the following two sentences:

(6) a. The distance between Amsterdam and Vienna is nine hundred sixty eight
kilometers.

b. The distance between Amsterdam and Vienna is one thousand kilometers.

Suppose that the distance between Amsterdam and Vienna is in fact exactly nine hundred
sixty eight kilometers. In this situation we would probably consider both sentences as
true, even though (6b) is only true in a vague interpretation ofone thousand. On the
other hand, if the distance between the two cities were precisely one thousand kilome-
ters, (6a) would definitely considered to be false. One can see from this example that
simple measure phrases likeone thousand kilometerscan be interpreted both precisely



16 Gerhard J̈ager

and vaguely, while more complex phrases likenine hundred sixty eight kilometersonly
admit a precise interpretation. (Needless to say that “precise” and “vague” are also vague
terms here; we are actually dealing with different degrees of granularity.)

Let us assume for the sake of illustration that there is a preference for simple over
complex expressions on the one hand, and a preference for vague over precise interpreta-
tions on the other hand. (We ignore the issue what constraints would induce exactly this
ranking.) If we restrict attention to the two formsone thousand kilometersandnine hun-
dred sixty eight kilometersand to the two meanings “1000 km” and “968 km,” we have
to choose from four candidate form-meaning pairs. They are given in the figure below.
The arrows between the candidates indicate preferences (this notation is borrowed from
Dekker and van Rooy 2000).

precise

vague

one thousand

kilometers

kilometerssixty eight
nine hundred

Figure 3:

The combination “vague/one thousand kilometers” is bidirectionally optimal because
there are neither better form alternatives nor better meaning alternatives. Consequently,
both the combinations “precise/one thousand kilometers” and “vague/nine hundred sixty
eight kilometers” are blocked and thus not bidirectionally optimal. In other words, there
is just one candidate which is both speaker optimal and hearer optimal. However, accord-
ing to the definition above the combination “precise/nine hundred sixty eight kilometers”
is also bidirectionally optimal because both its competing form alternative and its com-
peting meaning alternative are blocked.

6. Finite state bidirectional OT

In Jäger 2001 it is demonstrated that Frank and Satta’s result carries over to the bidi-
rectional case. To gain an intuitive understanding of the construction, let us consider
another, slightly more complex example, which illustrates how bidirectional optimality
is evaluated in case of a finiteGEN. SupposeGEN = {1, 2, 3} × {1, 2, 3}, and we
have two constraints which both say “Be small!”. One of its instances applies to the input
and one to the output. Thus formally we have
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• O = 〈GEN, C〉

• GEN = {1, 2, 3} × {1, 2, 3}

• C = 〈c1, c2〉

• c1(〈i, o〉) = i

• c2(〈i, o〉) = o

It follows from the way constraints are evaluated that〈i1, o1〉 <O 〈i2, o2〉 iff i1 ≤ i2,
o1 ≤ o2, and 〈i1, o1〉 6= 〈i2, o2〉. Now obviously〈1, 1〉 is bidirectionally optimal
since both its input and its output obey the constraint in an optimal way. Accordingly,
〈1, 2〉, 〈1, 3〉, 〈2, 1〉 and〈3, 1〉 are blocked, since they all share a component with a bidi-
rectionally optimal candidate. Among the remaining candidates,〈2, 2〉 is certainly bidi-
rectionally optimal because all of its competitors in either dimension are known to be
blocked. This candidate in turn blocks〈2, 3〉 and〈3, 2〉. The only remaining candidate,
〈3, 3〉, is again bidirectionally optimal since all its competitors are blocked.5 This exam-
ple illustrates the general strategy for the finite case: Find the cheapest input-output pairs
in the whole ofGEN and mark them as bidirectionally optimal. Next mark all candidates
that share either the input component or the output component (but not both) with one of
these bidirectionally optimal candidates as blocked. If there are candidates left that are
neither marked as bidirectionally optimal nor as blocked, repeat the procedure untilGEN
is exhausted. This strategy can be presented semi-formally as the algorithm in figure 4
on the following page.

Fact 2 If GEN is finite and< is weakly linear,

1. the algorithm always terminates, and

2. x ∈ OPT iff x is bidirectionally optimal.

Proof: As abbreviational convention,x @ y is used ifx < y, x = 〈i, o〉 andy =
〈i′, o〉 or 〈i, o′〉 for somei′ or o′.

1. Suppose the algorithm does not terminate. SinceOPT stores a set that is never
decreased in awhile-loop, this can only happen if the value ofOPT after a reas-
signment is identical to its value before. Therefore

{x ∈ GEN− BLCKD|∀y < x : y ∈ OPT∪ BLCKD} ⊆ OPT

By simple set theoretic reasoning, this means that

5 Bidirectional optimality thus predicts iconicity: the pairing of cheap inputs with cheap outputs is
optimal, but also the pairing of expensive inputs with expensive outputs. See Blutner’s paper for
further discussion of this point.
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Algorithm

OPT= ∅;
BLCKD = ∅;

while (OPT∪ BLCKD 6= GEN) {
OPT= OPT∪ {x ∈ GEN− BLCKD|

∀y < x : y ∈ OPT∪ BLCKD};
BLCKD = BLCKD∪ {〈i, o〉 ∈ GEN−OPT|

〈i′, o〉 ∈ OPT∨ 〈i, o′〉 ∈ OPT};
}

return (OPT );

Figure 4: Bidirectional evaluation algorithm for finiteGEN

∀y < x : y ∈ OPT∪ BLCKD→ x ∈ OPT∪ BLCKD

Since “<” is well-founded, we can conclude by induction that

GEN ⊆ OPT∪ BLCKD

So the stop condition of thewhile-loop is fulfilled and the program will terminate.

2. We prove that after each run through the loop,x ∈ OPT entails thatx is optimal
andx ∈ BLCKD entails thatx is not optimal. Suppose thatx was added toOPT
after then + 1th run. Sox was neither inOPT nor in BLCKD after thenth run.
Furthermore, all its predecessors, and thus all its@-predecessors, were inOPT or
in BLCKDafter thenth run. If one of the@-predecessors had been inOPT, x had
wound up being inBLCKD, so if y @ x, y is not optimal by hypothesis. Thusx
is optimal.

Now supposex was added toBLCKD after then + 1th run. Then there is an
y ∈ OPT which shares one component withx. By weak linearity of<, we know
that y < x ∨ x < y ∨ x ≡ y. Sincex andy share one component, we can
strengthen this toy @ x ∨ x @ y ∨ x ≡ y. We can exclude the possibility that
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x @ y because we know thaty is optimal by induction hypothesis. So suppose
thatx ≡ y. y ∈ OPT ; hence all predecessors ofy were inOPT ∪ BLCKD
after thenth run of thewhile-loop. x ≡ y, thereforex andy have the same
predecessors, andx should have been added toOPT at then + 1th run as well,
against assumption. Thusy @ x. It follows from the previous paragraph thaty is
optimal, hencex is not optimal.

So if x ∈ OPT after termination of the program,x is optimal. Supposex 6∈ OPT
after termination. The stop condition of thewhile-loop requires that anyx is either
in OPT or in BLCKD. Thusx ∈ BLCKD, hencex is not optimal. a

If we apply this algorithm to the previous example, we have to go three times through
the while-loop before the algorithm terminates. The values of the two variablesOPT
(for “optimal”) andBLCKD (for “blocked”) at the different stages of the program run are
given in figure 5.

OPT BLCKD

∅ ∅
{〈1, 1〉} {〈1, 2〉, 〈1, 3〉, 〈2, 1〉, 〈3, 1〉}
{〈1, 1〉, 〈2, 2〉} {〈1, 2〉, 〈1, 3〉, 〈2, 1〉, 〈3, 1〉, 〈2, 3〉, 〈3, 2〉}
{〈1, 1〉, 〈2, 2〉, 〈3, 3〉} {〈1, 2〉, 〈1, 3〉, 〈2, 1〉, 〈3, 1〉, 〈2, 3〉, 〈3, 2〉}

Figure 5: Sample run of the algorithm

This algorithm is confined to OT-systems with a finiteGEN. The finite state construction
in Jäger 2001 is modeled after this algorithm, but it is also applicable to systems with an
infinite generator, provided all building blocks are finite state implementable.

The first step inside thewhile-loop in the algorithm above amounts to finding the
globally optimal input-output pairs in the whole ofGEN. As in Frank and Satta’s con-
struction, this global optimization is achieved by successively optimizing with respect
to the constraints inCON in the order of their ranking. Jäger’s (2000) construction is
also restricted to binary markedness constraints. As a further complication, we have to
distinguish between input constraints and output constraints (the former would not make
sense in unidirectional OT). The definition of the notion of input markedness constraint
is the mirror image of definition 7:

Definition 12 (Input Markedness Constraint) Let O = 〈GEN, C〉 be an OT-sys-
tem. Constraintcj is aninput markedness constraintiff

〈i, o〉 ∈ GEN ∧ 〈i, o′〉 ∈ GEN→ cj(〈i, o〉) = cj(〈i, o′〉))
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If we want to leniently composeGEN with a binary input markedness constraint, we
need a mirror image of Frank and Satta’s lenient composition. Thus backward lenient
composition is defined as

R ↓ L .= (IL ◦R) ∪ (R ◦ IRg(R)−Rg(IL ◦ R))

Furthermore, for reasons that will become clear immediately, in bidirectional optimality
it is not sufficient to consider the best outputs for a given input, but we have to look for
the best input-output pairs in a global way. Thus bidirectional lenient composition is
defined in the following way:

Definition 13 (Bidirectional Lenient Composition) LetO = 〈GEN, C〉 be an OT-
system withC = 〈c1, . . . , cp〉, andci be a binary markedness constraint.

R ⇑ ci
.=


R ◦ IRg(({ε}×Rg(R))↑ci)
if ci is an output markedness constraint

IDom((Dom(R)×{ε})↓ci) ◦R
else

Let us look at this construction in detail. Supposeci is an output markedness constraint.
{ε} × Rg(R) is a relation that relates the empty string to any possible output ofR.
Leniently composing this relation withci leads to a relation that relates the empty string
to those possible outputs ofR that are optimal with respect toci. So if ci is fulfilled by
some output ofR, this relation is just{ε} × (Rg(R) ∩ ci). If no output ofR obeysci,
the relation is just{ε} × Rg(R). In either way,Rg(({ε} × Rg(R)) ↑ ci) is the set of
outputs ofR that are optimal with respect toci. Sinceci only evaluates outputs,R ⇑ ci
is thus the set of〈i, o〉 ∈ R that are optimal with respect toci. The same holdsceteris
paribusif ci is an input markedness constraint.

Like Frank and Satta’s operation, bidirectional lenient composition only makes use of
finite state techniques. It follows directly from the closure properties of regular languages
and rational relations thatR ⇑ ci is a rational relation providedR is rational andci is a
regular language.

Note that a certain input-output pair may be evaluated as sub-optimal according to this
construction even if it neither shares the input component nor the output component with
any better candidate. So while Frank and Satta’s lenient composition operates pointwise
for each input, bidirectional lenient composition is global.

Fact 3 Let O = 〈GEN, C〉 be an OT-system (with binary markedness constraints
only), whereC = 〈c1, . . . , cp〉, and letR ⊆ GEN. Then

〈i, o〉 ∈ R ⇑ c1 · · · ⇑ cp

iff 〈i, o〉 ∈ R, and there are noi′, o′ with 〈i′, o′〉 ∈ R and〈i′, o′〉 < 〈i, o〉.
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The proof of this fact can be found in Jäger 2001.
For simplicity, the notationRC as is used as shorthand for{x ∈ R|¬∃y ∈ R : y <O

x}, whereO is some OT-system withC as its constraint component. Intuitively, this
operation picks out the globally optimal set of input-output pairs fromR. The above fact
states thatRC = R ⇑ c1 · · · ⇑ cp (whereC = 〈c1, . . . , cp〉). Note thatRC is a rational
relation ifR is rational and all constraints inC are regular languages.

Now reconsider the first command inside thewhile-loop of the algorithm given above:

OPT= OPT∪ {x ∈ GEN− BLCKD|∀y < x : y ∈ OPT∪ BLCKD}

This step is equivalent to

OPT= OPT∪ {x ∈ GEN−OPT− BLCKD|∀y < x : y ∈ OPT∪ BLCKD}

In other words, this step adds the set(GEN − OPT− BLCKD)C to the variableOPT.
Bidirectional lenient composition thus generalizes the first part of the naive algorithm to
the general, i.e. possibly infinite case.

Now consider the second component of thewhile-loop:

BLCKD = BLCKD∪ {〈i, o〉 ∈ GEN−OPT|〈i′, o〉 ∈ OPT∨ 〈i, o′〉 ∈ OPT}

BLCKD only plays an auxiliary role in the algorithm; we basically need it to define
the setGEN - OPT - BLCKD. This set can be defined directly, using only finite state
techniques. It is obvious from the definition ofBLCKD that it only contains pairs that
share one component with some element fromOPT. Now consider the following relation:

IDom(GEN)−Dom(OPT ) ◦GEN ◦ IRg(GEN)−Rg(OPT )

This relation contains exactly those pairs fromGEN that share no component with any
element ofOPT. In other words, it is just the relationGEN - OPT - BLCKD.

This fact can be used to define the values thatOPT assumes after each run of the
while-loop recursively while only using finite state techniques.

OPT0 = ∅
OPTn+1 = (IDom(GEN)−Dom(OPTn) ◦GEN ◦ IRg(GEN)−Rg(OPTn))C

Fact 4 LetO = 〈GEN, C〉 be an OT-system such that allci in C are binary marked-
ness constraints. IfGEN is a rational relation and all constraints can be represented as
regular languages,OPTn is a rational relation for eachn.

Proof: Immediately from the construction ofOPT and(·)C and the closure condi-
tions on regular languages/rational relations. a



22 Gerhard J̈ager

The proof that the naive algorithm terminates rests on the fact thatGEN is finite. This
need not hold for the more general case we are considering now. However, even ifGEN
is infinite, there are only finitely many possible patterns of constraint violations if we are
dealing with OT-systems comprising only binary constraints. This guarantees that the
algorithm would also terminate after a bounded number of runs in the more general case,
and it can therefore computed offline.

Lemma 2 LetO = 〈GEN, C〉 be an OT-system withC = c1, . . . , cp, where allci are
binary markedness constraints. Then〈i, o〉 is bidirectionally optimal iff〈i, o〉 ∈ OPT2p .

Proof: See J̈ager 2001.

This leads directly to the central result of Jäger 2001, namely the bidirectional counter-
part of Frank and Satta’s (1998) result.

Theorem 3 LetO = 〈GEN, C〉 be an OT-system withC = 〈c1, . . . , cp〉, where all
ci are binary markedness constraints. Furthermore, letGEN be a rational relation and
let all ci be regular languages. Then the set of bidirectionally optimal elements ofGEN
is a rational relation.

Proof: Directly from fact 4, lemma 2, and the closure properties of regular languages
and rational relations. a

7. Gradient constraints and bidirectionality

The results summarized in the previous section suggest that bidirectional OT is not more
complex than unidirectional OT in an automata theoretic sense, despite its considerable
conceptual complexity. This is not true though; the construction from section 4 does not
carry over to the bidirectional case. To see why, consider the following OT system:

• O = 〈GEN, C〉

• GEN = {〈aibj, akbl〉|i = k ∨ j = l}

• C = 〈c1, c2〉

• c1(〈i, o〉) = #a(i)

• c2(〈i, o〉) = #b(o)
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GEN is a rational relation, since it can be constructed in the following way, using only
regular building blocks and finite state operations:

I∗aI
∗
b ◦ ((((a× ε) ∪ Ib)∗ ◦ (ε× a∗)I∗b) ∪ ((Ia ∪ (b× ε))∗ ◦ I∗a(ε× b∗)))

We assume two constraints:c1: “No a!” applies to the input, andc2: “No b!” applies to
the output. So the number of violations ofc1 equals the number ofas in the string that
is evaluated, and likewise forc2. c1 is ranked higher thanc2 (but this plays no role in the
sequel).

Both constraints are rational in the sense defined in section 4. Recall that a constraint
is rational iff there is a rational relation that holds between two candidatesα andβ
iff β violates the constraint more severely thanα. The domain ofGEN consists only
of elements of the languagea∗b∗. Thus we can transform any input candidate which
violatesc1 n times into any other input candidates which violatesc1 m times form > n
by adding a number ofas at the beginning, and optionally adding or erasing somebs at
the end. There is thus a rational relation corresponding to this constraint, namely

rel(c1) : ((ε× (aa∗))I∗a∪b) ◦ (I∗a(b
∗ × b∗))

The same holdsceteris paribusfor the output constraintc2 which counts the number of
bs in a string. It can be represented by the following rational relation (which is more or
less the result of reversing the order of the relation given above and exchanginga andb).

rel(c2) : (I∗a∪b(ε× bb∗)) ◦ ((a∗ × a∗)I∗b)

Finally, optimality is global with respect toGEN and bothrel(c1) andrel(c2). This
follows from the fact that any two outputs ofGEN are competitors, i.e. they share at
least one input. (If the two outputs in question areaxby andazbw, they share at least the
inputaxbw.)

If the construction from the previous section could be generalized to rational gradient
constraints in a way similar to Gerdemann and van Noord’s generalization of Frank and
Satta’s result, we would expect the set of bidirectionally optimal input-output pairs for
the OT-system to form a rational relation. This is not so, however.

To prove this fact, another recursive definition of bidirectional optimality is used that
is somewhat more general than the one used in the last section. It is also taken from Jäger
2001.

Definition 14 Let O = 〈GEN, C〉 be an OT-system using only markedness con-
straints.

OPT0 = ∅
OPTα+1 = OPTα ∪ (IDom(GEN)−Dom(OPTα) ◦GEN ◦ IRg(GEN)−Rg(OPTα))C

OPTα =
⋃
β<α

OPTβ if α is a limit ordinal

OPT =
⋃
α

OPTα
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This definition generalizes the one used in the previous section to the transfinite case.
This is necessary if we deal with gradient constraints since there may be infinitely many
different patterns of constraint violations. This cumulative definition coincides with the
standard definition of bidirectional optimality:

Fact 5 Let O = 〈GEN, C〉 be an OT-system using only markedness constraints.
〈i, o〉 is bidirectionally optimal iff〈i, o〉 ∈ OPT .

Proof: See J̈ager 2001.

We can use this construction to determine the set of bidirectionally optimal candidates
from the OT-System given above. The crucial step is the observation that for all finiten:

OPTn = {〈aiby, azbi〉|i < n ∧ (y = i ∨ z = i)} (1)

We prove this by complete induction overn. The base case (n = 0) is obvious since
OPT0 = ∅ by definition. Now suppose the claim holds forn. Then, by the definition
given above,

OPTn+1 = OPTn ∪ (IDom(GEN)−Dom(OPTn) ◦GEN ◦ IRg(GEN)−Rg(OPTn))C

NowDom(OPTn) = {aibk|i < n}, thusDom(GEN)−Dom(OPTn) = {aibk|i ≥
n}. Likewise,Rg(GEN)−Rg(OPTn) = {akbi|i ≥ n}. We will use the abbreviation

R0 = IDom(GEN)−Dom(OPTn) ◦GEN ◦ IRg(GEN)−Rg(OPTn)

We thus have

OPTn+1 = OPTn ∪RC
0

R0 = {〈axby, azbw〉|x,w ≥ n ∧ (x = z ∨ y = w)}

To determineRC
0 , we have to bidirectionally optimizeR0 with respect toc1 andc2. The

effect ofc1 is to minimize the number ofas in the input. So the globally optimal elements
of R0 with respect toc1 are those with the minimal number ofas in the input, i.e.:

{〈anby, azbw〉|(n = z ∨ y = w) ∧ w ≥ n}

Optimizing this relation with respect toc2 minimizes the number ofbs in the output, so
we get

RC
0 = {〈anby, azbn〉|n = z ∨ n = y}

Together with the induction hypothesis, we now have
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OPTn+1 = {〈aiby, azbi〉|i ≤ n ∧ (y = i ∨ z = i)}

This completes the proof of (1).
From this we can infer that

OPTω = {〈anby, azbn〉|y = n ∨ z = n}

We will now demonstrate thatOPT = OPTω. By the recursive definition ofOPTα, it
holds that

OPTω+1 = OPTω ∪ (IDom(GEN)−Dom(OPTω) ◦GEN ◦ IRg(GEN)−Rg(OPTω))C

It obviously holds thatDom(OPTω) = Dom(GEN) andRg(OPTω) = Rg(GEN).
ThereforeDom(GEN)−Dom(OPTω) = Rg(GEN)−Rg(OPTω) = ∅. Further-
more,∅C = ∅. We therefore conclude that

OPTω+1 = OPTω

The same argument can be applied to every transfinite ordinal numberα. So ifα ≥ ω,
it holds that

OPTα = OPTω

Hence

OPT = OPTω = {〈anby, azbn〉|y = n ∨ z = n}

Now suppose this relation were rational. Then the result of composing it with a rational
relation would again be a rational relation. The relation{〈an, an〉|n > 0} is certainly
rational, because it can be defined as:

Iaa∗

ThusIaa∗ ◦OPT should be rational as well. This is the relation〈an, anbn〉|n > 0}. The
range of this relation is known to be a non-regular language, thus it cannot be a rational
relation, and henceOPT cannot be rational either.

This simple example demonstrates that a finite state implementation of gradient con-
straints along the lines of Gerdemann and van Noord 2000 is not possible in the context
of bidirectional OT. In other words, the optimization strategy of bidirectional OT is in-
trinsically more complex than its unidirectional counterpart.

At the present point I am unable to pair this negative result with a positive one. There
is no known upper limit for the complexity of bidirectionally evaluated OT-systems con-
sisting of finite state building blocks—even though our example suggests that we stay
within the limits of simple pushdown automata (and the corresponding transducers). A
precise characterization has to be left for future research.
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On the other hand, our example is suggestive from the point of view of a theoretical
linguist. The optimal input-output relation in the example displays a recursive structure
that is missing in the generator relation. We might thus speculate that certain recursive
aspects of natural language are not due to a (computationally) powerful generator, but
that they emerge from a process of bidirectional optimization. Future work has to show
whether it is possible to come up with linguistically realistic OT-systems that display a
behavior similar to our abstract example.

8. Conclusion

In this paper some issues pertaining to the computational complexity of optimality were
discussed, both in its standard (i.e. unidirectional) and its bidirectional variety (where
Bidirectional OT is interpreted in the sense of Blutner 2001). Two noteworthy results
on unidirectional OT from the literature were reviewed. Frank and Satta 1998 propose a
general way to implement unidirectional optimization by means of finite state techniques.
There construction is confined to OT systems that only employ binary markedness con-
straints. Gerdemann and van Noord 2000 give a finite state implementation for an OT
system using gradient constraints. The present paper generalized this construction and
showed that it is always applicable (a) if the OT system in question only uses marked-
ness constraints, and (b) the notions of global and local optimality defined by this system
coincide.

The present paper furthermore reviewed the main result from Jäger 2001, which gives
a finite state construction for bidirectional optimality which is based on Frank and Satta’s
construction and is applicable under the same restrictions. Finally it was shown that a
similar extrapolation of Gerdemann and van Noord’s construction to bidirectionality is
not possible.

Given that all the mentioned constructions impose fairly strong constraints on the OT
systems to be implemented, one might wonder whether these results are of much linguis-
tic importance. As far as the unidirectional case is concerned, the restrictions that we
have to assume are no serious obstacle for practical applications though. Most contem-
porary work in OT tacitly or explicitly adopts the premises of Correspondence Theory
(McCarthy and Prince 1995) according to which the outputs ofGEN are not just surface
structures but pairs of underlying and surface structures, enriched with correspondence
information. This means that the input is always uniquely recoverable from the output.
In other words,GEN is one-to-many; the inverse ofGEN is a function. In such OT sys-
tems, all constraints are markedness constraints, and global optimality always coincides
with local optimality. So practical applications of the complexity results solely depend
on the issue whether particular versions ofGEN and of the constraints involved can be
implemented as rational relations, which has to be decided on a case-by-case basis.

The practical usage of the the results on bidirectional OT is less straightforward. First
of all, the existing applications of bidirectionality mainly deal with syntax, semantics and
pragmatics, and in these areas finite state automata have a too limited generative capac-
ity to realistically model linguistic phenomena. The only module of grammar were both
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finite state techniques and bidirectionality are promising tools seems to be morphology.
It has to be acknowledged however that a many-to-one generator does not make much
sense in a bidirectional setting, because then bidirectional and unidirectional OT would
coincide. So for a non-trivial usage of bidirectionality, one has to give up the assumptions
of Correspondence Theory. If this is done, the restriction to markedness constraints turns
out to be a severe limitation. Not surprisingly, the only serious attempt to apply bidirec-
tionality in morphology—namely Wunderlich 2001a—makes crucial use of faithfulness
constraints.

Nonetheless the complexity results on bidirectional OT that were presented in this
article are significant from a theoretical point of view. The fact that bidirectional opti-
mization that uses gradient (markedness) constraints transcends the bounds of finite state
techniques while unidirectional optimization does not indicates that bidirectional opti-
mization is intrinsically more complex than its unidirectional counterpart. The obvious
question that is to be addressed in future work is how the complexity impact of bidirec-
tional optimization can be characterized in a precise way. Besides the repercussions of
this negative result for the appropriate division of labor between the generator and the
optimization procedure deserves to be investigated.
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