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ABSTRACT

An ‘elementary ranking condition’ (ERC) embodies the kind of restrictions
imposed by a comparison between a desired optimum and a single competitor.
All entailments between elementary ranking conditions can be ascertained
through three simple formal rules; one of them introduces a method of argument
combination, fusion, shown to have the same sense as in relevance logic. Fusion
is also central to detecting inconsistency in a set of ERCs; inconsistency and
entailment are closely related here, much as in ordinary logic. Fusion therefore
plays a key role in the definition of Recursive Constraint Demotion (RCD: Tesar
& Smolensky 1994, 1998). When ERCs are hierarchized by the ranking of the
constraints that crucially evaluate them, their entailment and fusional relations
are seen to correlate with aspects of ranking structure. RCD and the Minimal
Stratified Hierarchy it produces also figure prominently in an efficient procedure
for calculating entailments. Harmonic bounding, both simple and collective, leads
to the existence of entailment relations, and removal of entailment dependencies
from a set of ERCs eliminates harmonic bounding in its underlying candidate set.
The logic of entailment in OT is seen to be the implication-negation fragment of
RM (Soboci½ski 1952, Parks 1972) and the logic of OT in general is shown by
a semantical argument to be precisely RM itself. When the logic is extended from
ERCs to constraints, it allows for a direct representation of the notion of a strict
domination hierarchy using only the connectives of the logic; various ranking
restrictions are shown to follow when logical relations exist between constraints.
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Prefatory

Little given to abstract ideas, we accept things as they are and we
 attempt to the maximum of our ability to protect ourselves

against delusions about realities.  – Metternich   

Herein, some brief remarks on the usefulness of logic; the structure of OT; and the stylistic and
typographical conventions employed in this paper.

Utilities

From the questions pursued here, and the answers arrived at, one can extract tools for the
construction, correction, compacting, expansion, and analysis of optimality-theoretic arguments. By
means of these, harmonically-bounded candidates can be discerned and eliminated, crucial rankings
identified, redundancies eliminated, consequences determined, constraint systems rapidly analysed
for consistency with data, and even (at the margins of applicability) related constraints ranked by
their intrinsic logical properties. It may be that the necessary aspects of these functions are second
nature to many; but perhaps not to all.

Beyond such immediate applications, it is to be hoped that the connections found here
between Optimality Theory and the relevance logic RM will lead to a better understanding of OT,
and even perhaps of RM.

In presenting the results, I have felt constrained to depart from the familiar canons and tropes
of linguistic exposition, moving toward a more euclidean mode. Although this leads in places to a
certain dessication of the narrative, the alternatives are harder to live with. For the most part, there
is simply no way to find out whether some thesis holds, or even what it is, really, without attempting
definition and proof.

A primer of Optimality Theory

Given a ‘candidate set’ of alternatives and a set of constraints bearing on their desirability,
Optimality Theory defines the sense in which certain of the alternatives best satisfy a  prioritization
of the constraint set. The basic idea is that a relation of ranking, or ‘strict domination’, holds between
constraints, written Ci>>Cj. For any total ranking order on the constraint set, or ‘constraint
hierarchy’, an alternative T is optimal iff for every competitor x, the highest-ranked constraint
distinguishing T from x decides in favor of T.

Following Samek-Lodovici & Prince 1999 [SLP], we conceive of a constraint as a function
which takes a set as an argument and a returns a subset thereof. Each constraint is associated with
an order on candidate sets: it returns the maximal elements in that order. 

Each such order is presupposed to be a stratified partial order, where by ‘stratified’ we mean
that if elements x,y are noncomparable in the order, they have the same order relations to other
elements. A set so ordered is partitioned into ‘strata’; elements in the same stratum are not ordered
with respect to each other, but are each ordered identically with respect to members of other strata.



1 Besnard, Fanselow, and Schaub (2001) independently re-work the SLP  constraint in a similar
fashion (thanks to Jane Grimshaw for bringing this work to my attention).
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We will write x.y for ‘x and y belong the same order stratum’.  Concisely, a partial order is stratified
iff noncomparability is an equivalence relation. 

A constraint hierarchy is a composition of constraint functions. The ranking order on the
constraint set corresponds to the order of composition of the constraint functions, with highest-
ranked being first applied. This formalizes the intuitive sense that a constraint hierarchy
progressively winnows the candidate set, each constraint eliminating suboptimal elements from the
set it receives, and then passing on the reduced set to its next-lower-ranked neighbor. In SLP:44ff.,
§4.1, it is observed that constraints and constraint hierarchies so defined have certain properties –
for example, ‘downward inheritance of optimality’:  if T is optimal in a set K, then it is also optimal
in any KNfK to which it belongs. Composition of constraint functions is shown to induce a stratified
partial order on the candidate set (SLP:53). This suggests that we might reconstruct the notion of
constraint as a kind of function that has certain properties, and derive its associated order as a
concomitant.1 The following conditions will achieve this goal:

Let U be the set of all candidates; a constraint C is a function meeting the following restrictions:

Def. Constraint function. A constraint is a function C:p(U) ÿp(U) that satisfies
(i)   Choice. C(X) f X.
(ii)  Forced Choice. C(X)=Ø  Y X=Ø   
(iii) Contextual Independence of Choice. If Y1C(X)…Ø, then C(Y1X)=Y1C(X).

Condition (i) means that the optimum is among the set of alternative candidates; condition (ii)
requires that a choice be made. Condition (iii) ensures ‘downward inheritance of optimality’, from
this implicit subclause:

(iiia) Y1C(X) f CY.
In addition, it ensures what we might call ‘upward inheritance of equivalence’

(iiib) C(Y) f Y1CX if Y1C(X)…Ø
By (iiib), if YfX contains any members of C(X), then all of C(Y) must be in C(X). This correlates
with the notion that members of a stratum share order relations.

Following and extending SLP:32, ex. (63), which is aimed at whole hierarchies rather than
their constituent constraints, we define an order relation as follows, given such a C:

Def. Order associated with a constraint. x>Cy iff C({x,y}) = {x}

It is demonstrated in Appendix 1 below, p.102, that when a function C:p(U) ÿp(U) meets
conditions (i)-(iii), the induced relation ‘>C’ yields a stratified partial order on U; and further that C
returns exactly the maximal elements in its argument. It is additionally shown that any composition
of functions satisfying (i)-(iii) also satisfies (i)-(iii). This means that a constraint hierarchy is also a
constraint (SLP:38). 
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Given a hierarchy of constraints, i.e. a functionally-composed sequence of constraint
functions, an optimal element in a candidate set K is therefore a maximal element in the order
induced on K by the hierarchy.

Because constraint functions output sets, it also makes sense to speak of their ‘intersection’:

Def. Intersection of Constraints. f1g(X) =df f(X)1g(X)  

Constraint conflict occurs when different orders of composition yield different results: when
fBg(X)…gBf(X). From SLP:43, §4.1, the Favoring Intersection Lemma, we know that when
constraints do not conflict, their composed output (in any order) is equal to their intersection.

• If fBg(X)=gBf(X), then fBg(X)=f1g(X).
This allows us to broaden the definition of an OT grammar to include composition and intersection
of constraint functions. Under this broader definition, the grammar is itself a stratified hierarchy of
constraints, where each stratum is an interection of its constraints, and the strata are composed to
yield the hierarchy. If we allow free intersection, then the grammar is no longer guaranteed to be a
‘constraint’ in the sense defined above, since it will  fail Forced Choice whenever f1g(X) = Ø for
nonnull X. Intersection of conflicting constraints yields null output, quite possibly a useful state of
affairs. Standardly, however, and throughout this paper, constraints in the same stratum are assumed
to be nonconflicting, i.e. to have nonnull intersections.

A Boolean constraint system, in which the chosen output must satisfy all constraints,  is then
just a monostratal grammar, where intersection is the only means of constraint combination.
Introducing composition is the equivalent of introducing constraint ranking. Of particular importance
is the stratified hierarchy that is closest to the Boolean model, the Minimal Stratified Hierarchy,
which has as few constraints as possible in the scope of other constraints. Precise definitions will be
offered below from a couple of different points of view (§4, §8).

Our focus of interest is almost entirely order-theoretic, and therefore we will be primarily
concerned the decisions made by constraint functions as they apply to sets consisting of just two
candidates. For any constraint function f, there are just three possible outcomes on pair input: 

f({x,y}) = {x} x >C y
f({x,y}) = {y} y >C x
f({x,y}) = {x,y} x .C y    

Taking these relations as atoms of description leads to a three-valued logic that forms the basis of
our investigation. It will be explicitly examined in §7 and §8.

In linguistic applications, Optimality Theory provides a way of relating two sets of linguistic
representations, X and Y, by defining the sense in which, given x0X, some element y0Y is matched
to it by virtue of best satisfying the set of constraints bearing on the {x}×Y relation. Each single
candidate, then, is an ordered pair (x,y), which we may notate as xµy. The issue at hand, for each
constraint and for the hierarchy as a whole, is whether the linguistic relation or ‘mapping’ xµy is
better than, worse than, or indistinguishable from every other possible xµz, for z0Y. If there is no
better alternative, then xµy is optimal. 
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The issue of optimality can be resolved by examining pairs of candidates, in each of which
the desired optimum xµy is compared against a single alternative of the form xµz; optimality for
xµy requires that it never lose in any of these competitions. We will write [a~b] for the results of
such a pairwise face-off over the constraint set, where a,b each denote a entity of the form xiµyj.
Each such [a~b] collects the individual responses of each constraint to the comparison of a with b.
It therefore provides an ‘elementary ranking condition’ (ERC) that determines which rankings of the
entire constraint set must hold in order for candidate a to survive comparison with candidate b. For
much of our discussion, we will treat such [a~b] as atomic and we will focus on relations between
them; they and the ERCs they denote will form the units over which the logic of OT develops.

Sylistica & Typographica

Virtually all sets in sight are finite and this fact will not be noted case-by-case. All logical systems
involved are complete, and no effort will be made to maintain notational separation between formal
deducibility and validity. Among assertions, I distinguish between  remarks, lemmas, propositions,
and corollaries. The intention is that the meatiest theses find their way into propositions, to which
lemmas lead and from which corollaries follow. Propositions are numbered sequentially within the
major section where they occur: thus, Proposition 8.3 is the third proposition in §8. The others, along
with definitions, are only given example numbers, though corollaries are linked by title to their
governing propositions. 

The following acronyms are used:
ERC elementary ranking condition
OT Optimality Theory
MSH minimal stratified hierarchy
PC propositional or predicate calculus
S the logic of Soboci½ski 1952
VS the vectorized version of S
RM R-mingle
OP ordered polyvaluation
AB Anderson & Belnap 1975
ABD Anderson, Bellnap, & Dunn
SLP Samek-Lodovici and Prince 1999
FW Finnegans Wake

I have not been careful about the use/mention distinction, though mentioned items are enclosed in
single quotes from time to time, in the interests of clarity. In the text below, the sign ‘B’ is used only
in its relevance-logic sense of ‘fusion’ and never indicates function-composition. The end of a proof
is marked by the symbol ~.



2 Known as a ‘mark-data pair’ in Tesar 1995 et seq. The notion will be generalized in §2 below.
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0. Preliminaries    

Summary: Elementary ranking conditions can be represented as vectors whose coordinate entries take one
of three values: W, L, e. Directly tied to the logic of the theory, such vectors support the key analytic
computations on ranking arguments.

Aranking argument over a constraint set involves in the simplest case a comparison between a
desired optimum q and a single suboptimal competitor z.2 Any such comparison partitions a

constraint set E into three disjoint subsets: 

(1) Win, lose, or draw
W Those constraints preferring q to z, i.e. those on which q does better than z: 

• all C0E   such that q>C z.  
L Those constraints preferring z to q, i.e those on which z does better than q: 

• all C0E  such that z>C q. 
E Those constraints on which q and z are noncomparable, i.e. do equally well: 

• all C0E  such that q .C z      (i.e. neither q>C z nor z>C q).

We tabulate the comparison as in Prince 2000, marking by ‘W’ any constraint preferring the desired
optimum, by ‘L’ any constraint preferring the desired suboptimum, and using blankness to indicate
lack of preference.

(2) Comparative Tableau. C10E, C20W, C30L.    q>C2  z.      z>C3 q. 

C1 C2 C3 ...

[q ~ z] W L ...

More concisely: if we settle on a fixed but arbitrary listing of the constraint set under consideration,
we can write out the tableau row as a vector with coordinate entries W,L,e, with the last standing for
‘blank’. Writing Â for the vector derived from (2), we have Â=(e,W,L,...).

Each row-vector Âi gives rise to an elementary ranking condition (ERC), here denoted Ai , which
depends only on the contents of Wi and Li. The condition always takes the same general form:  every
constraint assessing L – perversely preferring the desired suboptimum – must be dominated by some
constraint assessing W. (Cf. the Cancellation/Domination Lemma of Prince & Smolensky 1993:148.)

(3) Elementary Ranking Condition (œ› form). With W,L as in (1):
Every constraint C0L is dominated by some constraint D0W.

œC0E   ›D0E  [C0L  e  (D0W  v  D>>C)] 



3 By logic, we have (4)ÿ(3), since ›xœyP(x,y)ÿœy›xP(x,y). Now assume (3): by total ordering,
some member of W dominates all the others, and by virtue of that must also dominate everything in L.

4 This expression makes it clear that we are near to dealing with the “polarity” of relevance logic
semantics (Dunn 1986:189). In §7, we explore the logical status of our  procedures and representations.
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Under the standard assumption that ‘>>’ is a total order, this is equivalent to following:3

(4) Elementary Ranking Condition (›œ form).
 Some constraint D0W dominates every constraint C0L.

›D0E   œC0E  [C0L  e  (D0W v D>>C)]

In what follows, we will work with ›œ form, and by the term ‘elementary ranking condition’ or
‘ranking argument’ we will specifically mean a logical expression of type (4). By ‘ERC vector’ we
will mean a representation such as (e,W,L). Concisely, a ranking argument Ai over a constraint set
E can be notated as Ai = +Wi,Li,,4 which fixes the free parameters in the expression (4), where
Wi,LifE  and  Wi1Li=Ø. We assume that the constraint set E is always nonempty, though of course
either or both of Wi and Li may be empty.

It is useful to note the properties of certain special configurations. If Li  is empty, Ai is vacuously true
under any ranking, because  for any assignment to the variable C the antecedent in (4) is false. In this
case the tableau-row vector Âi consists entirely of W’s and/or e’s; it imposes no ranking conditions.
Let us denote the set of all such vectors by W*. If Li is nonempty, but  Wi is empty, then Ai  is false,
and no ranking of the constraint set can satisfy it, or satisfy any set of arguments containing it. Let
us denote by L+ the set of vectors containing at least one L and no W’s. (The ‘*’ are ‘+’ are chosen
for mnemonic relation to the Kleene regular-language operators of the same names.)

If Ai = +Wi,Li, is such that either Wi or Li is empty, we will say that Ai is trivial. Otherwise,
we will say that Ai is nontrivial. If both Wi and Li are empty, we will say that Ai is degenerate and
we denote it by *. The degenerate ERC is always true. 

Since constraint sets are finite, it might be thought excessively florid to quantify over them in stating
the logical form of a ranking argument. Universal quantification over a finite set is merely
conjunction, existential quantification merely disjunction. In the case of nontrivial ERCs, it is true
that the given definitions boil down to a conjunction of disjunctions (œ›) and disjunction of
conjunctions ( ›œ). Thus, the definitions (3) and (4) become, for Wi0W and Lj0L:

(5) Elementary ranking conditions using disjunction and conjunction
      a. œ›: vjwi (Wi>>Lj)  i.e. [W1>>L1  w W2>>L1 w ...] v [W1>>L2 w W2>>L2 ...] v ...
      b. ›œ: wivj (Wi>>Lj)  i.e. [W1>>L1  v W1>>L2 w...] w [W2>>L1  v W2>>L2 ...] w ...

But not every comparative vector yields this kind of expression – trivial vectors do not. An element
of L+ offers no constraint to place in dominant position in a term Ci>>Cj and an element of W* offers
nothing for the subordinate position. To sustain the isomorphism between comparative row-vectors
and ERCs, we therefore insist on the quantifiers.



5 More specifically, the learner’s task is simply to find a ranking that works, while the analyst (ever
mindful of explanation and the possibilities of improving the theory) will want to determine the set of
necessary ranking relations that every model must respect: those that are entailed by ERC set.
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An analyst or learner deals with a collection of ranking arguments: the goal is to find a ranking of
the constraint set E  that satisfies them all simultaneously, or show that no such ranking exists.5 We
will refer to a (total) ranking of E as a model, and a total ranking of E satisfying a set of arguments
A will be termed ‘a model of A’. A nontrivial ERC – one corresponding to a vector containing both
W and L – is guaranteed to be true in at least one model; and also to be false in at least one.

For any collection of ranking arguments, it may well be that some proper subset is sufficient to
determine the rankings that satisfy the collection. All other arguments are then redundant and
eliminable, in that they are logically entailed by one or more arguments belonging to the determining
subset. Beyond considerations of efficiency, eliminating redundancies in argument ought to lead  to
increased insight into the workings of the constraint system.

 It is also often the case in practice that the analyst or learner is in possession of a set of
ranking arguments from which further requirements follow, but only with the application of (a
sometimes tortured) logic. Finding such entailments may be essential for discovering the necessary
rankings. For example, given arguments n:(W,L,W) and R:(e,W,L), we must conclude that C1>>C2,
despite the fact that n only commits to the disjunctive necessity of C1>>C2 or C3>>C2.  But reaching
the desired conclusion, even in this simple case, uses the following kind of argument:

From n we know that either C1>>C2 or C3>>C2. From R, we know that C2>>C3. This is incompatible
with the second disjunct of n. Therefore the first disjunct of n must hold, and we have C1>>C2.

When more than two arguments are involved, or when each one has disjunctive conditions within
it, as is commonly the case, the complexity of the deduction grows rapidly. Consider a small
modification of the above example: from n:(W,L,W) and R:(W,W,L) taken jointly, it follows that
C1>>C2 and C1>>C3 must both hold. The argument runs like this:

From n we know that either C1>>C2 or C3>>C2. From R, we know that either C1>>C3 or C2>>C3.
Conjoining these arguments produces four cases to consider. Of these, we may dismiss one
immediately as inconsistent: ‘C3>>C2 and C2>>C3’. The remaining three cases are [1] C1>>C2 and
C1>>C3 , [2] C1>>C2 and C2>>C3, [3] C3>>C2 and C1>>C3. Observe that by transitivity of ‘>>’, case
[2] is equivalent to [2'] C1>>C2 and C2>>C3 and C1>>C3. Similarly, case [3] is equivalent to [3']
C3>>C2 and C1>>C3 and C1>>C2. Now observe that [1], [2'], and [3'] all contain the expression [1].
Therefore, since pw(pvq)w(pvr) is equivalent to p, we have [1]. QED.

A particularly interesting entailment, which may also be imperspicuous, is that a set of arguments
is inconsistent. Analysts and learners both need to be able to recognize this state of affairs, for it
indicates that some hypothesis must be changed or abandoned.

In §§1-2, we examine the conditions under which such entailments obtain, and find three operations
on row vectors – L-retraction, W-extension, and fusion – which are sufficient to give the entailment
relation in full. We then determine in §3 the condition (‘W-compliance’) under which a set of ERCs
may be exactly replaced with a single ERC via fusion. 
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With these notions in hand, the examples just reviewed come out like this: 
•First example: (W,L,W) and (e,W,L) fuse to (W,L,L), which gives (W,L,e) by L-retraction.
•Second example: (W,L,W) and (W,W,L) fuse to (W,L,L), an equivalent of the original pair.

In §4 relations are examined between entailment, fusion, and the Minimal Stratified Hierarchy
(MSH) produced by Recursive Constraint Demotion (RCD: Tesar 1995, Tesar & Smolensky 1994,
1998, 2000). Fusion, though conjunction-like, is in general not as algebraically well-behaved as
conjunction, because a fusion does not entail its fusands the way a conjunction entails its conjuncts.
But good order is restored in the MSH. When ERCs are ranked according to the rank of the
constraints that satisfy them, it emerges that the fusion of an ERC set of always lies at least as high
as any individual argument in the set; and further, that any entailed argument lies at least as high as
any member of the minimal set of arguments that entails it. This finding lays the groundwork for an
efficient procedure, relying on the inconsistency-detecting powers of RCD, that  determines which
arguments in a set  are entailed by others (§5).

In §6, the notion of harmonic bounding is explicated  in terms of the behavior of ERC
vectors, the hallmark of bounding being the existence of certain trivial vectors, members of L+ when
the bounded item is placed in desired-optimum position. Bounding, simple or collective, occurs
when and only there is an ERC set that fuses to L+. Bounding induces entailment relations, and it is
shown that any set of ERCs that is free of entailments among its members (exclusive of n|n!) is also
free of bounding relations among the candidate set from which the ERCs are drawn.

The broader logical system in which these inferences take place is examined in §7.
Supplementing fusion with a form of negation, as in §2, leads to a full logical system analogous to
the propositional calculus, with e supplying a third truth-value in addition to T (W) and F (L), and
with fusion acting like (a weakened form of) conjunction. This logic is identified as the three-valued
logic of Soboci½ski 1952, which has been shown to be the implication-negation fragment of RM
(Anderson & Belnap 1975; Parks 1972), a full-blown logic which includes the familiar logical
connectives as well as those of the fusion family. A semantical argument based on the work of Meyer
1975 establishes that RM itself is the logic of optimality theory, in the strong sense that each
constraint ranking corresponds to an RM valuation and vice versa. Logical expressions involving
ERCs are valid iff they are valid as RM expressions. The notion of an (OT) ‘system’ is introduced
– a set of RM valuations derived from the totality of ranking permutations of a set of constraints –
and is shown to behave much like the entire RM model space. 

When the same logic is applied to relations between constraints rather than ranking
arguments (§8), it is found that its connectives allow for a direct expression of the notion of a strict
domination hierarchy. Certain properties of the relation between constraint logic and constraint
ranking are then established. The logical discussion leads to a starkly finitistic arithmetic
representation of strict domination (§9).

Before we step into the main argument, it is useful to point out the tripartite nature of the entity we
are focusing on. An ERC A based on the comparison of a with b is a logical expression that defines
the ranking conditions under which a certain ordering relation, ašb, holds in the candidate set. The
ERC vector Â collects and organizes the constraint-performance data on which the ERC is based.
Since each A corresponds biuniquely to an Â and since A holds of a ranking iff the order relation
a$b holds of the candidate set,  we will not always avoid the temptation to identify these notions,
though we will aim for distinctness when it matters.



6 Blurring the distinction between formal deducibility ( |) and semantic entailment (Ö) which are at
any rate equivalent for the wffs we are dealing with.  
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1. L-retraction and W-extension
Summary: All nontrivial ERCs entailed by any single nontrivial ERC are obtained by adding W’s or taking
away L’s in its vectorial representation.

To begin with, consider two distinct ranking arguments A1 and A2 that are alike except that A1 has
additional constraints in its set of optimum-antagonists L1 , so that L2fL1. 

... Ci Cj Ck Cm

Â1 ... W L L

Â2 ... W L

In this case, argument A1 is strictly stronger and more informative than A2. We can properly say that
argument A1 entails A2, since every model of A1 is also a model of A2.  For this relation, we will
write A1|A2.6 Specifically: A1 says that some constraint D0W1=W2 dominates all of L1, and this D
must also dominate all of L2, because L2fL1 . Whenever A1 holds of some ranking, A2 holds as well.

Now consider ranking arguments A1 and A2 that are alike except that the optimum-preferring
set W2 for A2 has additional constraints in it, so that W1fW2 . 

... Ci Cj Ck Cm

Â1 ... W L

Â2 ... W L W

Once again, it must be that A1|A2. When A1 holds of a ranking, some member D of W1 dominates
all of L1 = L2 . Clearly this D also belongs to W2gW1 and therefore also guarantees the validity of A2.

These two observations may be combined and strengthened by dropping the likeness
condition in favor of simultaneous subsetting in the appropriate directions. Suppose A1 and A2 are
such that L2fL1 and W1fW2 . Then A1|A2, and A2 is, in essence, a sub-argument or weakened version
of A1. This means that A2 can be dropped from (or added to) any set A of ranking arguments to which
A1 belongs, without affecting the consequences of A. 

It is also true that if Ai is nontrivial, in the sense that neither Wi nor Li is empty, then all
nontrivial elementary ranking arguments that logically follow from Ai have these subset/superset
relations with respect to Ai .
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(6) Proposition 1.1. Strength of Individual Arguments. 
Given two elementary ranking conditions A1, A2, defined as in (4),
(a)  if L2fL1 and W1fW2, then A1 |A2 .
(b) Assume A1, A2 nontrivial. If A1 |A2, then L2fL1 and W1fW2 .

Pf. Claim (a). Following the line of argument in the text, from A1=+W1,L1, we have some
D10W1 that dominates every C0L1. By assumption, D10W2 and since L2fL1 , also by
assumption, it follows that D1 dominates every C0L2. This validates A2 = +W2,L2,.

Claim (b). Proof of the contrapositive: failure of either consequent conjunct yields failure
of the antecedent. We proceed by constructing models (rankings) in which A1 is true but A2 is
false, demonstrating the failure of A1 |A2, which requires that all models of A1 are also models
of A2.

Assume first ¬(L2fL1). Then there is a C0L2 with CóL1. A1 does not demand that C be
subordinated, so there is a model R of A1 in which C is top-ranked. (Note that the assumed
nontriviality of A1 means that it has some such model.) But in every model of A2,  this C must
be dominated (by some D0W2). Therefore A2 is false in R. Because there is a model of A1 that
is not a model of A2, A1 |A2  fails.

Now assume ¬(W1fW2). Then there is some D0W1 with DóW2. But there is a model of A1
in which this very D is top-ranked. If D0L2, then A2 is false in that model, and we are done. If
DóL2, then there is a model R of A1 in which D is top-ranked and all of L2 is ranked in an
uninterrupted sequence immediately below it (in any ranking order). But A2 is false in R,
because no element of W2 dominates all of (indeed, any of) L2. (Note that L2 is guaranteed to
be nonempty, by the assumption of nontriviality.) Again, we have a model in which A1 is true,
but A2 is false, showing that it is not the case that A1 |A2.        ~

The role of the nontriviality assumption can be seen in the following valid entailments which do not
meet the subsetting requirements on L and W.

(7) A trivial entailment

Â1 L

Â2 W L

Here A1|A2 , because A1 is always false in any ranking (both rankings) of the two constraints; yet
it is not the case that L2fL1.

(8) Another            

Â2 W L

Â3 W

Here A2 |A3, because A3 is always true under any ranking; yet it is not the case that W2fW3. By
contrast, nontrivial ERCs are neither true in every model, nor true in none.
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Proposition 1.1 gives rise to two rules of inference that can be used to manipulate a tableau-row
vector to produce its entailments. The first we can call ‘W-extension’ — a blank cell may be filled
with W to produce an entailed argument. The second we will call ‘L-retraction’ — a cell containing
L may be replaced with a blank one.

(9) W-extension. e6W. 
 If Â1 and Â2 are identical, except that the ith coordinate of Â1 is e and the ith coordinate of Â2

is W, then A1 |A2 .

(10) L-retraction. L6e. 
If Â1 and Â2 are identical, except that the ith coordinate of Â1 is L and the ith coordinate of Â2

is e, then A1 |A2 .

W-extension and L-retraction, when applied to nontrivial ERCs, instantiate familiar properties of
propositional logic. W-extension adds a disjunct to an ERC, as licensed by the familiar tautology
pÿpwq (known as “disjunction introduction or “or-in” when treated as a rule of inference). L-
retraction takes away a conjunct according to the scheme pvqÿq (“and-out” and ‘conjunction
elimination’ name the cognate rule of inference).

These rules dissect the subsetting conditions of Proposition 1.1. Strikingly, by Proposition 1.1b, all
nontrivial ERCs that follow from any single nontrival ERC may be generated by repeated application
of the two procedures; indeed, by a sequence, possibly null, of L-retractions followed by a sequence,
possibly null, of W-extensions. Compiling the results of all possible interactions, we see that the
following coordinatewise relations are licensed:

(11)     [Â1]k     [Â2]k     
 L  ÷ L, e, W

e   ÷  e, W
           W ÷ W

It is a natural step to explicitly recognize a special subspecies of entailment as being defined by
adherence to just these rules; only the relations between certain trivial ERCs would fall outside its
purview. We pursue this point in §7 below. 



7 Sketch of proof. We want XB(YBZ)=(XBY)BZ. If any one of X,Y,Z is L, then both rhs and lhs must
be L. If all are e, then both sides are e. If X,Y,Z contain at least one W and no L, then both sides are W.
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2. Fusion
Summary: Fusion of ERCs, written nBR, extends direct computation of consistency and entailment to sets
of arguments . A fusion is entailed by the set of its fusands: {n,R}|nBR. The converse is not generally true,
but fusion still computes all ERC consequences, because a slightly weaker, converse-like result does hold.
If  {n,R}|T, then T is entailed individually either by n, by  R, or by nBR. More generally, any ERC entailed by
a set Qof ERCs follows from a single ERC that is the fusion of some subset of Q.

Ranking arguments come in sets, over which joint satisfaction is required:  we must characterize not
only the consequences of single isolated arguments, but also the further consequences that arise when
ranking arguments are conjoined. These consequences emerge from the order-theoretic properties
of  “>>” — that it is asymmetric and transitive. For example, given constraints A,B,C, the
conjunction of ‘A>>B’ and ‘B>>C’ yields the further elementary ranking condition ‘A>>C’, which
follows from neither in isolation. Similarly, the arguments ‘A>>B’ and ‘B>>A’ cannot be satisfied
together, although each is individually unproblematic.

A statement like ‘A>>B v B>>C ’ is not of the +W,L, form and is therefore not an ERC: it
cannot be expressed as a single row in a tableau. Since our goal is to determine the redundancies and
equivalences within a set of ranking arguments, it is important that our calculations yield results
within the space of ERCs. Notice too that the most fundamental questions about ranking structure,
which may yet be difficult to dig out of a tangle of ranking arguments. – e.g., does Cj necessarily
dominate Ck ?– have the ERC form.  Here we advance a method for constructing an ERC ‘nBR’ from
two given ERCs n and R, such that any consequence of the set {n,R} follows from one of the
formulas n, R, and nBR. (The nontrivial consequences follow through W-extension and L-
retraction.) We will call nBR the fusion of n and R, abandoning the term ‘summation’ of Prince
2000:§6. As seen in §7, ‘summation’ of OT comparative vectors corresponds to the operation of
fusion in the logics RM3 and RM (originally discussed en passant in Soboci½ski 1952:52; cf. Parks
1972 ), and we adopt both the standard terminology and the notation from relevance logic (Anderson
& Belnap 1975 [AB] et seq.). NB: the sign ‘B’ does not indicate function-composition in this context.

The intuitive idea is that two rows of a tableau can be combined to produce a third that is entailed
jointly by the original pair. The mode of combining entries is as follows:

(12) Def. Fusion of Entries. For X = W, L, e,
XBX =  X Idempotence
XBL =  LBX = L Dominance of L
XBe =  eBX = X e is Identity 

Fusion, like conjunction and disjunction is commutative (built into the definition) and associative.7

The operation can be extended coordinate-wise to the fusion of vectors. The following defines the



8 The conditions on A,B under which ABB|A does hold are found in §3, (37), p.19.
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coordinates of the fused vector in terms of the fusion of the entries at each coordinate of the
constituent vectors. We write [Â]k for the kth coordinate of Â.

(13) Def. Fusion of vectors by coordinate. For any Â1, Â2, the vector Â1BÂ2 is given by
[Â1BÂ2]k = df  [Â1]kB[Â2]k

A typical outcome can be seen in the following example:

C1 C2 C3

Â1 W L

Â2 W L

Â1BÂ2 W L L

In the more concise notation, we have Â1BÂ2 = (W,L,e)B(e,W,L) = (WBe, LBW, eBL) = (W,L,L),
fusing the vectors coordinate-wise.

Notice that by L-retraction Â1BÂ2 = (W,L,L) yields the argument (W,e,L), i.e. C1>>C3. Thus
we have in this case successfully produced the key results of the conjunctive non-ERC ‘A1vA2’
without venturing outside the ERC domain.

The fusion of a pair (or more generally, a set) of ranking arguments creates a new ranking argument
with valuable logical properties. The familiar sort of ranking argument is based on the comparison
of a single optimum with a single suboptimum; fusion allows us to generalize to a simultaneous
comparison of an optimum with several competitors, or several optima with several competitors, 
deriving conditions required to handle all such competitions simultaneously in one grammar.

Fusion is ‘truth-functional’ at the coordinate level, because the value of a fused coordinate
is uniquely predictable from the value – W, L, or e –  of its components. But at the level of vectors,
such simple truth functionality no longer holds. Consider an expression like (W,e)B(e,L) = (W,L).
The first fusand is true in every model, the second in none, but the truth of the fusion is model-
dependent. Thus, within a given model, the fact that A is true and B is false does not suffice to
predict whether ABB is true or false. The same phenomenon shows up with nontrivial vectors as
well: (W,L,e)B(e,W,L) = (W,L,L) is true in any  model where C1 is top-ranked, even if C3>>C2,
which falsifies the second fusand. These examples illustrate a key divergence between fusion and
conjunction: while AvB|A holds absolutely, it is not the case that ABB|A under all conditions.8 

Our overarching goal is to show that fusion, aided by L-retraction and W-extension, allows us to
reach every elementary ranking condition implied by a given ERC set. We will find that for any such
condition entailed by an ERC set A, there is a subset of A whose fusion entails that condition
(Proposition 2.5 below). In determining the consequences of A, we are able to escape from logical
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conjunction plus tortuous applications of the distributive law and attendant manipulations, replacing
them with deduction from a single ERC (the fusion of a subset) using only L-retraction and W-
extension as rules of inference. Since, as noted above, the kind of truly atomic ranking conditions
that we are ultimately interested in – ‘Ci>>Cj’ – are also ERCs of a particularly simple form, we have
lost nothing by staying within the realm of ERCs. If we can obtain all entailed ERCs, we can find
out what we need to know about the rankings consistent with a set of ranking arguments.

We proceed by accumulating results that are relevant to the desired conclusion or to other
arguments down the line. First we show that the fusion operation behaves properly in general,
producing an entailed condition. Extending the  notation, we write ‘A1BA2’ for the ranking condition
that is associated with the fused vector Â1BÂ2.

(14) Lemma. Let A1, A2 be elementary ranking conditions. Then {A1, A2}| A1BA2.
Pf.  From A1=+W1,L1, and A2=+W2,L2 ,, we have, by the definition of ‘B’, the following:
A1BA2 = +(W1!L2 )c(W2!L1), L1cL2 ,. The first coordinate of the fusion arises because of the
WBL=L rule: every W in A1 that is matched to an L in A2 is removed, and vice versa.

Now assume that A1 and A2 are nontrivial and that {A1,A2} is consistent, so that it
has a model. In any model of {A1,A2}, some constraint from E = W1cW2cL1cL2 must be
ranked above all the others. It cannot come from L1 , for this would contradict A1, nor can it
come from L2, contradicting  A2. So it comes from W1cW2!L1cL2 =   (W1!L2)c(W2!L1), and
A1BA2 is true in that model.

If {A1,A2} is inconsistent, the result follows vacuously. If either of A1 or A2 is trivial
in the sense of lacking L’s, so that Â1 or Â20W*,  then A1BA2 follows by W-extension (at
most). If either of A1 or A2 is trivial in the sense of lacking W’s, so that Â1 or Â20L+ , then
it is false in all models and {A1,A2} is inconsistent.       ~

To describe the general result, we need a notation for the fusion of an arbitrary set. We will write ƒiAi
for the fusion of arguments Ai, and more concisely ƒS for the fusion taken over all the elements of
a set S. In the case of a unit sets S={R}, we take ƒ{R}= R. For the empty set, it is convenient to take
ƒ{}=*.  Notice that the fusion of an arbitrary set is well-defined because the operation is associative
and commutative. We adopt parallel conventions for writing conjunction over arbitrary sets.

(15) Proposition 2.1. Let A={Ai} be a set of ERCs.  A|ƒA.
Pf. From repeated application of lemma (14) and familiar properties of entailment.
Directly,(i) A|A1BA2. But then (ii) Ac{A1BA2}|A1BA2BA3 because {A3}c{A1BA2}|A1BA2BA3

by the lemma. Because Q|vQvQ when Q|Q, for any wff Q and any finite set of wffs Q, we
have from (i) A|[vAvA1BA2] and along with (ii) rephrased as  [vAvA1BA2]|A1BA2BA3 we
have by transitivity of entailment A|A1BA2BA3 . Repetition yields the result.       ~

Fusion thus provides us with a legitimate rule of inference for ranking arguments. If we know that
n and R hold of some ranking, then we are assured that nBR also holds of that ranking.

We can further pin down the logical status of ABB by observing that ABB | AwB, and more
generally that the fusion of an ERC set entails disjunction over that set.
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(16) Proposition 2.2. Let A be a set of ERCs.  ƒA |wA.

Pf. Consider that ƒA = A1BA2B … BAn corresponds to +ciWi ! ciLi, ciLi ,. If all the ERCs
in A are degenerate, then both ƒA and wA are simply valid. Assume then that A contains at
least one nondegenerate ERC. In any model R validating ƒA, some Ck0ciWi dominates all
of ciLi. But Ck0Wj for some j so Aj is true of R and therefore wA is also true of R.       ~

The relation between conjunction and fusion leads immediately to a consequence of no little interest.
If the fusion operation eliminates all W’s, then the fusands are inconsistent as a set and no ranking
exists that will model them. Symbolically put, if Â1BÂ20L+, so that Â1BÂ2 contains no W’s but does
contain at least one L, then {A1,A2} is inconsistent. This follows because A1BA2 cannot be satisfied,
and so neither can {A1,A2}, which entails it. More generally, if A={Ai} is a set of ERCs such that
ƒA=ƒiAi0L+, then A is inconsistent, as is any larger ERC set  that contains it. 

(17) Proposition 2.3. Let A be a set of ERCs. If ƒA0L+ then A is inconsistent.
Pf. From Proposition 2.1, A|ƒiAi . But by assumption ƒA has no models, so vA must be
false in all models as well.        ~

(18) Corollary to Proposition 2.3. If QfA, an ERC set, and ƒQ0L+, then A is inconsistent.
Pf. By Prop. 2.3, Q has no models. But any model of A would be a model of Q.       ~

Conversely,  if  A is inconsistent, then A contains a subset that fuses to L+.  To prove this, we focus
on a minimal inconsistent subset:  its fusion cannot contain W without contradicting inconsistency.

(19) Proposition 2.4.Fusion/Inconsistency. A is inconsistent iff there is a QfA such that ƒQ0L+.
Pf. The RL direction is the corollary to Proposition 2.3. We show the LR implication.

If A is inconsistent, then A contains an inconsistent subset Q that is minimal in the
sense that no proper subset of Q is itself inconsistent. Note that Ø is formally consistent,
because there is no model in which any of its members is false. So Q…Ø, but might be a
singleton. Now consider ƒQ. Suppose that ƒQóL+. It cannot be that ƒQ= *, because then for
every R0Q, we have R=*, and Q would hold in every model, not none. So ƒQ contains W
at some coordinate k. But [ƒQ]k=W means that there is some R0Q with [R]k=W and in
addition that for all n0Q, [n]k … L. Let us gather all such R in a set 1={R| R0Q and
[R]k=W}. The set 1 has a model, namely one in which Ck stands at the top of the ranking,
and indeed 1 holds in any model with Ck at the top. 

Consider now Q!1. Because Q is minimal with respect to inconsistency, the relation
(Q!1) Q implies that Q!1 has a model. (Subsetting is proper because 1…Ø. If Q!1=Ø,
then any model will do.) Let R be any such model. Construct a model RN which is the same
as R if Ck is at the top of R, otherwise let RN be the same as R in every respect except that Ck
stands at the top of the ranking in RN. Now, by construction, the constraint Ck assigns e to
every n0Q!1. Therefore Ck has no effect whatsoever on the evaluation of the ERCs in
Q!1, and RN satisfies Q!1 because R does. But RN also satisfies 1, because Ck is at the top
of RN. So RN satisfies (Q!1)c1 = Q. But this is a contradiction, since Q was assumed
inconsistent. Therefore ƒQ0L+.       ~
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As a practical application of these results, consider the problem of determining whether a given
candidate is a possible optimum for some set of constraints — whether a ranking exists for which
it is optimal, a problem studied in SLP. Candidates which are optimal for some ranking are predicted
to be linguistically possible, and those which are never optimal are predicted to be universally
impossible: this is a discrimination of some interest, which we will return to in §6. To test a
candidate, construct a set of ERCs which treat it as the desired optimum. If this set is inconsisent,
the candidate can never be optimal.

It is laborious to test every subset of constraints for consistency. It is wiser to pursue a hunt
for a minimal inconsistent set using fusion as a guide. As in the proof just given, it is easy to identify
a row-vector that cannot participate in a fusion that goes to L+: it will have a W at some coordinate
(some tableau column) that is nowhere matched to an L in the same column. Eliminate this row from
the tableau: it cannot belong to a minimal inconsistent set. The procedure can now be repeated on
what remains of the original ERC set, seeking to determine if it contains a minimal inconsistent set.
Iterate until no further diminution of the tableau is possible. If all ERC rows are discharged and the
tableau is emptied, it is consistent, for it contains no minimal inconsistent set. If not, the residual
arguments are inconsistent and will fuse to L+. The procedure can be carried out rapidly with pencil
and paper, as recommended in Prince 2000.

This method of  elimination is a stripped-down version of the Recursive Constraint Demotion
(RCD) algorithm of Tesar 1995, Tesar & Smolensky 2001, and connects with its order-theoretic
characterization in SLP. We return to RCD and its intimate relation to fusion in §4.

Our goal is to characterize entailment in much the same way as Proposition 2.4 characterizes
inconsistency: in terms of the behavior of a fused subset.  In standard logic, inconsistency is directly
linked to entailment: A|B iff the expression Av¬B is invalid, i.e. iff the set {A,¬B} is inconsistent.
If we extend the logic of ERCs to include a negation like-operator, we will find a similar relation,
one that leads directly from Proposition 2.4 to our desired conclusion.

Let us therefore introduce the negative of an ERC vector, arrived at by interchanging W and L
values. (For purposes of formulating this definition, we observe the careful notational distinction
between the ERC vector and the logical expression that interprets it.)

(20) Def. Negative of ERC vector. 
[1] For a coordinate [Â]k, the negative is defined by the following table:

 [Â]k ![Â]k

W L

e e

L W
[2] For an ERC vector Â, (!Â) is defined coordinatewise as follows: [ !Â]k= ![Â]k. 

This notion of ‘negative’ is entirely natural in the context of the interpretation of an ERC vector as
representing the comparison [a~b] of a candidate a with a rival b. The negative “![a~b]” is exactly
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the comparison [b~a], which swaps W and L, while leaving e alone. Consequently, the negative of
an ERC vector corresponds closely to the ordinary negation of its associated ERC, in the sense that
!Â  is almost always associated with ¬A by the usual rule of interpretation. Only the degenerate
ERC * is exceptional, since  * = !*, there being no W’s or L’s to exchange. Since no wff of ordinary
logic can be equivalent to its negation, the negative of * cannot correspond to the negation of the wff
expressing *.

To see how the negative relates to negation, recall that an expression +X,Y, has the following
interpretation:  there is some constraint in X  that dominates all constraints in Y.

(21)  +X,Y,  =   ›D œC [C0Y ÿ (D0X v D>>C)]
 
For the negative !+W,L,= +L,W,, the interpretation reads this way: there is some constraint in L that
dominates all those in W. When W and L are both nonempty, each of +W,L, and  +L,W , clearly
implies that the other is false, by the asymmetry of domination order. If, for example, D0W
dominates all C0L, then no C0L can dominate all D0W. This establishes that ‘!’ on these ERC
vectors is mirrored by ‘¬’ on the logical expressions that interpret them.  Should one or the other or
both of  W,L be empty, some further delicacy is required

• When L=Ø but W…Ø, the wff +W,L, is of the class W*, and it holds in every model. (The
antecedent of the conditional in (21) is always false.) Swapping W and L to produce  !+W,L,= +L,W,
creates an expression of the class L+ , which holds in none. Here ‘!’ converts a universally valid wff
into a contradiction, exactly as ‘¬’ does.

• When W=Ø but L…Ø, the wff +W,L, is of the class  L+ and cannot be true in any model. The
negative !+W,L,= +L,W, is of the class W*, universally valid. Once again ‘!’ corresponds exactly
to ‘¬’ in its effects.

• When both L and W are empty, the expressions +W,L, and  !+W,L,= +L,W, each have empty
first coordinates, leading to false antecedents in the logical expression they designate. Both are of
the class W*, and universally valid. In this case ‘!’ and ‘¬’ part company. This establishes that the
only exception to the equation of negative and negation is, as claimed, the degenerate ERC *.

(22) Remark. If  Â is a nondegenerate ERC vector, then !Â is associated with a formula equivalent
to ¬A  by the interpretive scheme (4). The converse also holds.

Pf. Along the lines of the discussion in the text.

With the notion of ‘negative’ in hand, we can reduce entailment to inconsistency. Since
inconsistency is detected by fusion, it will follow that entailment reduces to fusion. First, let us
establish the link between between the entailment relation and a suitable set involving the negative.

(23) Lemma. Inconsistency.  For nondegenerate n, and A a set of ERCs,  A |n iff A c{!n} is
inconsistent.

Pf. By Remark (22), !n is the same as ¬n except when n=*, so this is just ordinary
logic. I.e., writing ‘f’ for any contradiction, Ac{!n}|f iff A |¬nef  iff A |nwf iff A |n.    ~
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Next, the link between fusion and entailment.

(24) Lemma. For ", n nontrivial,  "|n iff "B(!n)0L+.
 Pf. LR: By  lemma  (23), {",!n} is inconsistent. By Proposition 2.4, some subset fuses
to L+. Since n is nontrivial, so is !n. Since ",!n are each nontrivial, neither belongs to L+

and the L+ subset cannot be either {"} or {!n}. So it is {",!n}and  "B(!n)0L+, as desired.
RL: Since "B(!n)0L+, {",!n} is inconsistent. By lemma (23), "|n.       ~ 

The main result relating entailment to fusion follows immediately.

(25) Proposition 2.5. Entailment/Fusion.  A|n iff there is a QfA such that ƒQ|n.
Pf. RL. Assume there is a QfA such that ƒQ|n. By Proposition  2.1, we have Q|ƒQ,
and since QfA, A|Q. By transitivity of entailment, we have A|n.

LR. First, let us handle various trivial cases. 
(i) If A is inconsistent, then by Proposition 2.4 there is a  QfA such that

ƒQ0L+. Since ƒQ is invalid, we have ƒQ|n for any n at all
(ii) If n0W* , then it is entailed by anything, so any subset of A will do.
(iii) If n0L+, then since A|n, it must be that A is inconsistent. See (i).

Now assume that n is nontrivial and A is consistent. From lemma (23), A c{!n} is
inconsistent. From Proposition 2.4, we have a 1fAc{!n}with ƒ10L+. 

Let Q= 11A. Since A is itself consistent, no subset of A can be inconsistent, and we
have ƒQóL+. Therefore, since ƒ10L+, it must be that !n01, and 1=Qc{!n}, whence

  ƒ1= ƒ(Qc{!n}) = ƒQ B!n 
All we need now is for ƒQ to be nontrivial. We have ƒQóL+ , from the consistency of A .
And since !n is nontrivial, we cannot have ƒQ0W*, else  ƒQB!n would be nontrivial. By
lemma (24), then, ƒQ B!n0L+ implies ƒQ |n.       ~ 

It is crucially not the case that A|n will always give us ƒA|n. For example, {(e,L,W), (W,L,e)}
entails (W,L,e), but the fusion (W,L,W) does not. Indeed, this kind of behavior demarcates the line
between conjunction and fusion. However, we can easily identify one kind of case where conjunctive
entailment guarantees fusional entailment: when the entailing set is minimal, in that none of its
subsets is sufficient for entailment.

(26) Def. Minimal entailing set. If Q|n, and it’s not the case that 1|n for any 1 Q, then Q is a
minimal entailing set for n.

Minimal entailing sets have a particular close relationship to fusion. 

(27) Corollary to Proposition 2.5. Let Q be a minimal entailing set for n. Then ƒQ|n.  
Pf. Since Q|n, there is a 1fQ with ƒ1|n, by Proposition 2.5. But 1|ƒ1. So 1|n. By
minimality, 1=Q.       ~
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3. Fusion and Conjunction

Summary. Fusion and Conjunction are exactly equivalent when every W in the fusion vector of a set comes
only from the fusion of W’s. Similar conditions relating W and L coordinates determine when ABB|B. 

Fusion provides a way to ascertain not-necessarily-obvious entailments of ranking conditions, and
also therefore a way of identifying redundancies: if AN=A1BA2, then there is no need to include all
of {AN,A1, A2} in the set of ranking arguments, because, by Proposition 2.1, all consequences of AN
are entailed by {A1, A2}.

It is natural to ask, then, under what conditions the converse holds, so that {A1, A2} can be
replaced by A1BA2, or more generally, under what conditions a set A can be replaced by the single
ERC ƒ. Since we always have A|ƒA , we are interested in the conditions that ensure the converse
relation, ƒA|v A.

Consider the set of constraints that award the ‘polar’ values W or L in a ranking argument A. These
are the constraints that distinguish between the competing members of the candidate pair that
generates the ranking argument. If two arguments involve exactly the same set of distinguishing
constraints, then their fusion is equivalent to their conjunction. Here’s an example:

(28) Fusion as conjunction

A W W L

B W L W

ABB /  AvB W L L

Equivalence generalizes to a broader class of ERCs — those which have a common core of
constraints assigning just W, but outside that shared core each may also have other relation-assessing
constraints, so long as they fuse to L or e. The  following provides an example.

(29) When fusion is conjunction

² all W’s ÷ ² no fusion to W ÷

A W W L  

B W W L W  

ABB / AvB W W L L  

The result is that the top two rows are jointly equivalent to the third, ABB / AvB. In this situation,
we may replace rows A and B with their fusion ABB, without loss of information.

Let us call such ERCs ‘W-compliant’, since wherever they fuse to W, both coordinates must
individually be W. The relation extends directly from pairs to general sets of ERCs. W-compliance
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over a set will mean that when a given coordinate fuses to W, all individual values at that coordinate
must also be W. 

(30) Def. W-compliant . A set of ERCs A is W-compliant iff [ƒA]k =W implies that œÂ0A, [Â]k=W.

The useful result we seek (and will find) is that ABB/AvB if A and B are W-compliant, and more
generally, ƒA/vA for W-compliant A.  In essence, W-compliance removes the taint of disjunction
from ‘B’ and renders it logically equivalent to conjunction.

(31) Proposition 3.1. Let A be a set of ERCs. If A is W-compliant, then ƒA/vA.
Pf. Assume A to be W-compliant. We need only show ƒA|vA, since the converse is
guaranteed by  Proposition 2.1. There are two cases to consider.

[1] Assume first that ƒA has no models. Then ƒA|vA holds vacuously..
[2] Now assume ƒA has a model R. Then there is a constraint D0(ciWi)!(cjLj) that

dominates all of cjLj in R. (Some such D must exist, else A0L+ and has no models.) By W-
compliance, D0Wi for every Âi0A. Therefore each Ai0A is true in R, and thus vA is also true
in R.        ~ 

Does fusion-conjunction equivalence conversely imply W-compliance? The answer will be
affirmative for sets of nontrivial ERCs and for many  kinds of sets containing nontrivial ERCs. The
one case requiring special handling involves members of W*, which are universally valid. Adding
a member of W* to a set of ERCs A does not enlarge the set of entailments at all, though it may
weaken the fusion. But even when the fusion remains the same, W-compliance may be disrupted.
Suppose for example A ={(W,L), (e,W)}. Conjunction and fusion are equivalent, but W-compliance
fails in the first coordinate. To achieve a fully general characterization, then, we pull out the W*
subset of A and focus on the non-W* core AN, assumed nonempty, observing that fusion-conjunction
equivalence obtains for such A iff its core AN is W-compliant and the fusion of the core (ƒAN) is the
same as the fusion of the whole (ƒA.), so that the W* periphery is fusionally inert, as it were, in ƒA.

(32) Proposition 3.2. Let A = ANcQ , where QfW*,  AN1W*=Ø, and AN…Ø .
ƒA/vA iff AN is W-compliant and ƒA=ƒAN. 

Pf. Observe that (*) vA/v(ANcQ)/vAN by the logic of conjunction. 
RL. By assumed W-compliance, ƒAN/vAN (Prop. 3.1); from ƒA=ƒAN (assumed) and

vAN/vA (*), we have ƒA/vA.  
LR. By assumption, (**)  ƒA|vA.
[1]  If A has no models, then ƒA|vA yields ƒAfL+ . Since Q contributes no L’s to ƒA,

it must be that ƒA=ƒAN, and ƒANfL+ as well, so that AN is vacuously W-compliant.
[2] Now assume A has a model; it follows that AN has a model, since ANfA. So

ƒANóL+ and ƒAN contains W since AN1W*=Ø. Let K be the set of coordinates on which
[ƒAN]k=W. We argue for the W-compliance of AN by reductio. If, contrary to the assertion,
AN is not W-compliant, then there is a "0AN such that for some j0K, we have ["]j =e. But
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since "óW* (by assumption), there must be some other coordinate p on which ["]p=L. Now
consider the model R in which Cj is top-ranked and Cp is  ranked immediately beneath it.
Since [ƒAN]j =W, ƒAN is true in R. But since ["]j=e and ["]p=L, it must be that " is false in
R. So vA is false in R. But this cannot be, since ƒA|vA by assumption (**). Therefore, AN
must be W-compliant. 

We have the following equivalences:
ƒAN/ vAN     (W-compliance, Prop. 3.1)
vAN/vA. (*)
vA / ƒA  (**)

So ƒA/ƒAN , i.e.  ƒA|ƒAN and ƒAN|ƒA. The desired stronger conclusion, ƒA=ƒAN, follows
becauseƒAN is nontrivial, which via Prop. 1.1 will force identity in all coordinates.          ~

Further insight into fusion-conjunction relation can be gained if we ask not just about equivalence
but about the conditions under which certain simple entailments proceed. From AvB, we may
legitimately infer A and infer B, for any A and B whatever. Fusion works differently. We cannot
safely conclude, given a model of ABB, that A holds or that B holds: only that one of them does –
we don’t know which. 

For example, from n=(W,L,L) – “C1 dominates both C2 and C3” – we certainly cannot
conclude (e,W,L) – that C2>>C3. But n is the fusion of  C2>>C3 and C1>>C2: 

(W,L,L)=(W,L,e)B(e,W,L)
Furthermore, which  fusand holds may vary from model to model of ABB. Consider

(W,W,L)=(W,e,L)B(e,W,L).
Here the fusion entails neither fusand, though whenever ABB holds, at least one will be true.

Conjunction, then,  is conservative in a way that fusion is not. This is fusion’s great strength:
we may lose some information, but we can gain a direct representation of important facts that are
only implicit in a conjunctive expression: for example, that C1>>C3, from (C1>>C2)v(C2>>C3).

It will be useful, then, to understand not only how fusion and conjunction can come to be equivalent,
as in Propositions 3.1 and 3.2,  but also how certain basic patterns of conjunctive inference can be
replicated in fusion. Let us begin with a very general question. Conjunction always allows
‘weakening’: if A|C then AvB|C, no matter what B is. Suppose "|n. Under what conditions on R
are we guaranteed that "BR|n? 

The case of n0W* can be discarded as trivial: valid n places no requirements on its
antecedents. Elsewhere, fusing R with " will spoil the entailment relation just in case R introduces
W into a coordinate in "BR where there is no W in n. This amounts to requiring that whenever
["]k=e and [n]k=e, we do not have [R]k=W. It should be intuitively clear why this is so: an extra W
is an extra disjunction, and from pwq|r  we cannot conclude p|r.

We can phrase the condition more positively, indeed contrapositively, in terms of subset
relations between coordinates bearing polar values W,L in the various participant ERCs. To this end,
let us adopt the following notation. To increase legibility, for WR let us write simply W(R), and
similarly L(R) for LR. For W(R)cL(R), the collection of constraints assessing  polar values in R, let
us write P(R). We may then state the requirement this way: the constraints assessing W in the
interloper R must assess polar values in " or n: 

W(R) f P(")cP(n) = L(")cW(n)
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The latter equality comes about because L(n)fL(") and W(")fW(n) by virtue of "|n.
Before proving the claim, it is useful to sharpen Proposition 1.1b, which broadly declares that for
nontrivial ", n, if "|n, then W(")fW(n) and L(n)fL("). But further distinctions can be drawn
among the various trivial cases.

(33) Remark. Suppose "|n. Then the ‘W-condition’ W(")fW(n) and the ‘L-condition’ L(n)fL(")
hold except in the following circumstances.

a. If n0W* , the W-condition is only  guaranteed to succeed whenW(")= Ø, i.e.  "0L+ or "=*.
b. If "0L+, the L-condition is only guaranteed to succeed when L(n)= Ø, i.e. n0W*.

Pf. (a). Suppose n0W*. The L-condition holds vacuously, because L(n)=Ø. Let us then examine
the W-condition, by cases. Suppose first "0W* and "…* ; consider (W)|(e). The W-condition fails,
but entailment succeeds. Suppose " is nontrivial. Examine (W,L)|(e,W). Again, we have entailment
without satisfaction of the W-condition. But if " lacks W, so that either "=* or "0L+, the W-
condition succeeds vacuously, since W(")=Ø.

(b) Suppose  "0L+. We’ve already covered the case n0W*, where both conditions succeed
vacuously. Suppose now n0L+. We have (L,e)|(e,L), but failure of the L-condition. Now suppose
n is nontrivial. We have (L,e)|(W,L), with failure of the L-condition.       ~

It is now straightforward to deal with W(R) in "BR|n.

(34) Proposition 3.3. FusionalWeakening. 
Suppose "|n, with nóW*. Then "BR|n iff W(R)f P(")cP(n) = L(")cW(n). 

Pf. From Remark (33), W(")fW(n). Going LR, we also have W("BR)fW(n), i.e.
 W(")cW(R) ! L(")cL(R) f W(n).

From this expression it is clear that for any x0W(R), either xóL(") and x0W(n), or x0L(").
RL. Suppose W(R)fP(")cP(n) = L(")cW(n).

W(")cW(R) f W(") c L(") c W(n) 
So, with W(")fW(n), we have

 W(")cL(")cW(n) f L(") cW(n)
Whence by transitivity of ‘f’ 

W(")cW(R)f L(")cW(n)
Whence 

W("BR)= [W(")cW(R) ! L(")cL(R)]f [L(") cW(n)! L(")cL(R)]
= W(n)! L(")cL(R) f W(n)

Since L(R) f L("BR) by the definition of fusion, Proposition 1.1 yields "BR|n.       ~

Proposition 3.3 allows an advance in the analysis of the minimal entailing set, and indeed of
entailing sets in general. Recall that if Q is a minimal entailing set for n, then ƒQ|n (Corollary to
Proposition 2.5). The converse does not hold, because a set A with ƒA|n might contain various
extraneous ERCs outside a minimal entailing set Q A that nevertheless do not destroy the fusional
entailment.  For example, (W,L,e) and (e,W,L) jointly and minimally entail (W,e,L), but we can
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include e.g. (W,W,L) with them and still get the entailment from the fusion of the resulting
(nonminimal) set.

We now know exactly what such extranea must look like: they cannot introduce W into the
fusion where no W was found. When [ƒQ]k=[n]k=e, the kth coordinate of would-be co-entailer
cannot be W. 

This means that in any case where ƒA|n, the entailing set A can be analyzed into the disjoint
union of an entailing (sub)set Q and a periphery 1, where ƒ1 stands in the non-W-inserting
relationship to ƒQ. We do not demand of each 201 that it stand in the  appropriate relationship to
Q, for the fusion can makes amends for individual divergences. In particular, if 2i contains a
misplaced W, 2j can make up for it with an L in the same position. For example, let Q={(W,L,e)},
and 1={(e,L,W),(e,W,L)}, with n=(W,L,e). Then

ƒQ|n  i.e. (W,L,e)|(W,L,e)
ƒ(Qc1)= ƒQBƒ1|n i.e. (W,Le)B(e,L,W)B(e,W,L)|(W,L,e)

But not every member of 1 can be harmlessly added to Q:
(W,L,e)B(e,L,W) /|(W,L,e).

Due to the generality of Proposition 3.3, this remark holds of any entailing set, and not just the
minimal one.

In the example we made use of the following equivalence:

(35) Remark. ƒ(XcY)=ƒXBƒY
 Pf. From the fact that “B” is associative, commutative, and idempotent.      ~ 

We can now characterize the structure of sets whose fusion entails a certain ERC.

(36) Corollary 1 to Proposition 3.3. Structure of Fusional Entailments.
Let A be such that ƒA|n for some nóW*. Then A =Qc1, where Q11=Ø , with ƒQ|n and
W(ƒ1)fP(ƒQ)cP(n)= L(ƒQ)cW(") = ^i L(Ri)cW(")= ^i P(Ri)cP(").

Pf. ƒA= ƒ(Qc1)=ƒQBƒ1, by the remark, to which Proposition 3.3 applies directly. The
last two equalities come about because the polar values of fusands are preserved as polar
values in the fusion, and in particular the L-coordinates are preserved as L’s .       ~ 

The general weakening property of conjunction leads to conjunction eliminability: in the theorem
‘A|C Y  AvB|C’, simply take C=A to obtain AvB|A by modus ponens (using A|A). The same
pattern of reasoning, applied to Proposition 3.3, also leads immediately to a characterization of the
conditions under which fusion parallels conjunction in eliminability by the scheme A op B ² B.

(37) Corollary 2 to Proposition 3.3. Fusion Elimination. Suppose nóW*.  RBn|n iff W(R)fP(n).
Pf. Identify n and " in Proposition 3.3 and observe that n|n.       ~ 
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Corollary 2 also gives us a quick alternative proof of the W-compliance conditions in Propositions
3.1 and 3.2. Observe that "Bn|"vn is equivalent to the assertion that "Bn|n and "Bn|". From these
we have W(")fP(n) and W(n)fP("), which is exactly W-compliance. 

We conclude by noting that the converse relation "|"Bn is also definable in terms of the L-content
of the participating ERCs.

(38) Proposition 3.4.  (a) If L(n)fL("), then "|"Bn. 
(b) Assume that "óL+ or n0W*. Then "|"Bn implies L(n)fL(").

Pf. (a). We want W(")fW("Bn) and L("Bn)fL(n). For the W-condition, observe
W("Bn)= W(")cW(n)!L(")cL(n), from the definition of fusion.

But since by assumption L(n)fL("), we have L(")cL(n)=L("), so
W(")cW(n)!L(")cL(n) = W(")cW(n) ! L(") = W(")c[W(n) ! L(")]

The last step is legitimate because W(")1L(")= Ø. Consequently
W(") f W(")c[W(n) ! L(")] = W("Bn).

As for the L-condition, we want L("Bn)fL("), i.e. L(")cL(n) f L("), i.e. L(") f L(n),
which we are given. Therefore, by Proposition 1.1, "|"Bn.

(b). Here we invoke Remark (33). The L-condition is guaranteed to hold  except in
the one case "0L+ and nóW*, which is precisely what’s excluded. By the L-condition, "|"Bn
yields L("Bn)fL("), i.e. L(")cL(n) f L("), i.e. L(") f L(n).       ~ 
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 4. Entailment, Ranking, and the Minimal Stratified Hierarchy

Summary. Ranking induces a relation between a fused ERC and its fusands, with the fusion as least upper
bound. A similar relation holds between an entailed ERC and its (minimal) entailers in hierarchies that satisfy
a set of ERCs, and quite generally in the Minimal Stratified Hierarchy produced by Recursive Constraint
Demotion, which itself calls crucially on fusion in its formulation.

Fusion leads to a highly varied set of entailment relations between A,B, and ABB. We know that
(AvB)|(ABB) and that (ABB)|(AwB),  but beyond these, we may have it that ABB entails one of

its fusands but not the other; entails both; or entails neither. (These cases classify exhaustively in
terms of W- and L- subsetting relations, by means of Propositions 3.3 and 3.4; Appendix 3 provides
a chart of examples.) This means that there will be no simple general relation between A, B, and ABB
in the set of ERCs as (partially) ordered by entailment (A|B as “A#B”). 

Conjunction behaves well with respect to the entailment ordering, because both conjuncts
are entailed. Writing [X] for the class of wffs logically equivalent to X, we have [AvB]#[A] and
[AvB]#[B]. Indeed, [AvB] is the meet (inf, g.l.b.) of [A] and [B] in the Lindenbaum Algebra, which
is based on that ordering. From this we have, for example,  [A]#[C] Y [AvB] #[C]. But nothing
similar obtains for fusion.

By contrast, a far more tractable relation between fusions and fusands, as well as between all entailed
and entailing ERCs, obtains in the context of constraint rankings that satisfy an ERC set, and even
more generally in the stratified hierarchy which is determined by Recursive Constraint Demotion
(RCD: Tesar 1995, Tesar & Smolensky 1994, 1998, 2000) as modified below. This hierarchy has
been shown to play an important role in the theory quite aside from its role in learning (see e.g. SLP),
and we will see more evidence of its centrality below.

By ‘stratified hierarchy’ is meant a certain kind of partial order, one in which incomparability
is an equivalence relation. As in all partial orders we have three choices for the relation between any
two entitities: a>b, b>a, a2b, where the last means that the order relation does not determine a>b or
b>a, i.e. a and b cannot be ‘compared’. A stratum consists of a set of incomparable elements, which
share all order relations. Thus, if a2b and z>a, we have z>b, and so on.

It is instructive to decouple the characterization of the formal object from the procedure(s)
giving rise to it. (In so doing, we reconstrue some of Tesar & Smolensky’s results to emphasize
certain aspects of the construction.) From Tesar and Smolensky (1994, 1998, 2000), we know that
each stratum in this hierarchy consists of constraints that do not conflict over the set of ranking
arguments, and that each constraint is located in as high a stratum as it can be. The number of strata
is also minimal, in the sense that no hierarchy with fewer strata can resolve all the ranking
arguments. Thus, to define it, we seek an extremal principle which will pick out just this hierarchy
from all stratified hierarchies consistent with the set of ranking arguments.

As a preliminary, let us define what it means for an ordinary, totally-ordered ranking of
constraints to satisfy a set of ERC vectors. Let’s construe a constraint Ci to be the function that
projects the ith coordinate of an argument vector, so that Ci(")=["]i This yields the following notion
of ‘comparative satisfaction’ involving a constraint Ci and a vector ":

(39) Comparative Satisfaction of a constraint.  CiÖ" iff Ci(")=W. 



9 To generalize fully to fusions of constraints over sets of argument vectors, we need only imagine
the arguments enumerated and then define C({"i})= +C("i),, i.e. the (column) vector whose ith coordinate is
C("i). Then the fusion goes coordinate-wise, in the usual fashion.
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To extend this to a hierarchy H=[C1>>C2>>…>>Cn], it is useful to define the fusion of constraints
in essentially the same way we defined the fusion of ranking vectors. A constraint, after all, is a
column vector in the comparative tableau, just as an ERC is a row vector, and any vectorial operation
can be applied to either. Fusion of constraints is defined coordinatewise, where a coordinate is an
ERC. Purely for notational convenience, we will indicate the fusion of constraints by ‘¼’, just to
redundantly emphasize what is being fused. 

(40) Constraint Fusion wrt to a vector. (Ci¼Cj)(") = Ci(")BCj(")

Since it uses the same mechanism as the argument vector fusion, the constraint fusion has the same
properties.9  In particular, it is associative, so that ¼S, for a set of constraints, is well-defined. With
this in hand, we can deal with satisfaction of a hierarchy of constraints. The usual informal
observation is that an argument is satisfied if the first nonblank cell encountered in the left-to-right
sweep contains a W, or if all cells are blank. 

(41) Hierarchical satisfaction of argument vector. 
HÖ" iff , either "=* or, for some m#n, for i ranging from 1 to m, ¼iCiÖ".

The transition to stratified hierarchies is unproblematic. A stratum is a set of constraints; let us rank
the strata instead of the constraints, using the same subscripting device to mark domination order.
Then we need only form the union of sequential strata, starting with the first (numbered ‘0’) and
proceeding inclusively, before fusing them.

(42) Stratified hierarchical satisfaction of argument vector
HÖ" iff either "=* or, for some m#n, ¼i=0 

i=m(ciSi)Ö".

From the definitions, it follow that any stratum responsible for the satisfaction of some vector must
consist only of constraints assessing {e,W} for that vector, i.e. the constraints in the stratum cannot
conflict. Satisfaction of a set of arguments is simply satisfaction of each:

(43) Stratified hierarchical satisfaction of a set of argument vectors 
HÖA iff œ"0A, HÖ"

It is typically the case that numerous stratified hierarchies will satisfy a given set of arguments. We
are interested in the minimal hierarchy, the one which departs least from the Boolean ideal of a single
stratum. There are two dimensions of minimality: the number of strata, and the number of constraints
in each strata. As we will see below, these cannot trade-off against each other in the present context,
and the natural combined measure – summing over stratum-depth × number of constraints in the
stratum – gives a unique result.



10 Thanks to Bruce Tesar for suggesting that fusion could play a role in the formulation of RCD. For
the various formulations of RCD which we are re-working, see Tesar 1995, Tesar & Smolensky 1994,1998,
2000, as well as the order-theoretic formulation of Samek-Lodovici & Prince 1999, and the formulation in
terms of comparative tableaux of Prince 2000.
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Let the strata be numbered from the top. Let card(Sk) be the cardinality of stratum Sk . Let
2Ci2 be the stratum depth of the stratum to which constraint Ci belongs, as given by the stratum
subscript. We then have a natural subordination index F for any hierarchy H= +S0, S1,S2,...,Sn,.

(44) Subordination Index. F(H)= E(k × card(Sk)) =E2Ci2.

We may now define the minimal stratified hierarchy (MSH) for a given set of ranking arguments
and its corresponding constraints, over which the arguments are stated.

(45) Minimal Stratified Hierarchy (MSH) for a consistent set of ERCs.
The minimal hierarchy for a consistent set A of argument vectors, H(A), is a stratified
hierarchy with (a) H ÖA, and (b) F(H) minimal, i.e. F(H)#F(H) for all HÖA.

Concerns about the uniqueness of the MSH will be resolved after the introduction of RCD.
For present purposes it is useful to modify the definition of the minimal hierarchy to include

the case of inconsistent argument sets. We want to segregate off the sources of inconsistency and
place them in the bottom stratum. The subsets of concern are those that fuse to L+. Given a set of
ERCs A let us enumerate all the sets MifA such that ƒMi0L+.  Let ö= ^iMi collect them all; ö is of
course itself inconsistent and ƒö0L+. But A!ö is consistent, and indeed is the maximal consistent
subset of A. In case of inconsistency, we want the MSH to validate as many ERCs in A as possible.
We therefore characterize the MSH for any set of ERCs, consistent or inconsistent, as follows:

(46) Minimal Stratified Hierarchy for a general set of ERCs. 
The minimal hierarchy for A is the minimal hierarchy as defined in (45) for A!ö, with ö
appended as the lowest stratum. 

Let us now turn to RCD, an effective procedure for constructing a stratified hierarchy that will be
shown to be  identical to the Minimal Stratified Hierarchy just defined. The product of RCD is
known as the “h-dominant Target Stratified Hierarchy” in Tesar & Smolensky 2000:92, or more
concisely as the target hierarchy or just target. It has also been more descriptively dubbed the
Favoring Hierarchy (Samek-Lodovici & Prince 1999), because it is arrived at by recursively
selecting out the subset of constraints that favor (do not assess L for) the desired optima – favor, in
the sense that the desired optima stand at the top of the candidate set, according to these constraints’
ordering of the candidates (whence they assess only W and e).

The construction of a stratified hierarchy by RCD is readily explicated in terms of the notion of
fusion explored here.10 Given a constraint set S and set of ERCs A, proceed as follows:
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• Partition S into two subsets determined by the structure of ƒA:  FAVC(A) and DISFAVC(A)
=S!FAVC(A). The subset FAVC consists of the those constraints assessing only W and e across the
set of ranking arguments A: that is, those Ck0S for which [ƒA]k=W or [ƒA]k=e. The set DISFAVC(A)
consists of those Ck0S for which [ƒA]k=L.

• Put the constraints in FAVC(A) aside as a stratum in the developing hierarchy.
• The set of ERCs A is likewise partitioned into two subsets: SOLVEDARGS and

UNSOLVEDARGS, where UNSOLVEDARGS= A!SOLVEDARGS. The ERCs in SOLVEDARGS are those
for which some constraint in FAVC(A) assesses W, i.e. those "0A for which FAVC(A)Ö", i.e. those
for which [¼FAVC(A)](")=W. The demands on ranking imposed by the arguments in SOLVED are
satisified by the stratum just formed. The remaining constraints go into UNSOLVED and are those
"0A for which [¼FAVC(A)](")=e. The developing hierachy has, as yet, nothing to say about them.

An example of this first step should make its logic clear.

(47)  Specimen Argument Pattern – Step 1 of RCD for A = {n,R,P}

C1 C2 C3 C4

n W L SOLVEDARGS

R W L
UNSOLVEDARGS

P W L

ƒA = nBRBP W L L L

FAVC(A) ²  DISFAVC(A) ÷

At the first step of RCD, we have 
Stratum 0 = FAVC(A) = {C1}

since [ƒA]1=[nBRBP]1=W and this is true for no other constraints.
SOLVEDARGS={n}, since [¼FAVC(A)](n)=[ ¼{C1}](n) = C1(n) = W. 

The residual constraints and arguments are these:
UNSOLVEDARGS= A!SOLVEDARGS = {R,P}
DISFAVC(A) = S!FAVC(A) = {C2,C3,C4}

At this point, some of the ranking arguments have been handled successfully (those in
SOLVEDARGS, here merely n), and the constraints that handle them have been incorporated into a
nascent hierarchy (here just C1). We are left with  a diminished set of constraints and a diminished
set of arguments: the constraints in DISFAVC(A) and the arguments in UNSOLVEDARGS. But these
present a problem whose structure is exactly like that of the larger problem we began with: we must
satisfy a set of ranking arguments over a set of constraints. We may therefore repeat the procedure
just outlined, in the hopes of further diminishing the problem, and so on until it disappears or is
shown to be unsolvable. At each stage, we place the new stratum just below the ones previously
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created. If the original set of ERCs was consistent, we will be able to continue cycling through the
procedure until all arguments are placed in SOLVEDARGS and all constraints are stratified. If the
original argument set was inconsistent, we will stratify as much as possible, and (in the version given
here) place the irresolvable residue of constraints in the bottommost level of the hierarchy.

The key to success lies in the effects of removing from further consideration the ERCs that
end up in SOLVED. Returning to our example, we notice that  C2 is not stratifiable at the first step
because [n]2=L, causing [ƒA]2=L. But as soon as n is removed from consideration on the grounds
that it is solved by the first stratum, the situation is quite favorably transformed.

(48) Specimen Argument Pattern - Step 2 of RCD   AN  = A!{n} = {R,P}

C1 C2 C3 C4

n W L

R W L SOLVEDARGS

P W L UNSOLVEDARGS

ƒAN  =  RBP W W L L

FAVC(AN) ² DISFAVC(AN) ÷

The removal of n has led to the disappearance of the offending L = [n]2  in the C2 column. We now
have [ƒAN ]2=W, and we may proceed by stratifying C2 and inserting R into SOLVED. The procedure
may be carried forward yet again on the remaining constraints and ERCs – here P and {C3, C4}only–
yielding the hierarchy {C1}>>{C2}>>{C3}. Only C4 remains, because it has never played the
favoring role in an ERC,  but the set of arguments has been tranferred completely to SOLVEDARGS
and no argument is left to be judged by C4.

To complete the characterization of RCD, then,  we need to specify its termination conditions. If the
original set A of ERCs has a model, then RCD will successfully eliminate all of A, emptying
UNSOLVED, sufficient reason to quit. When the last ERC is thereby eliminated, let any remaining
constraints (like C4 above) be put in a new, lowest stratum. (Technically, with the convention ƒØ =*,
such constraints will fit right into FAVCONS – they do not assess L in any ERC; and nothing special
need be said about them.) In  the example, C4 falls into this class: it only becomes rankable once all
ERCs have been eliminated.

When there is a nonempty residue of unsolvable ranking arguments RESARG, with the
unfortunate property that ƒRESARG0L+, a correlated residue of constraints RESCON will be left over.
No member of RESCON can be put in FAV, and no member of RESARG can be eliminated by being
shifted to SOLVED; also reason to quit, after placing RESCON in the bottom stratum.

A final wrinkle devolves from the presence of degenerate ERCs. Since these have no W, they
will never gain entry into SOLVED. Yet nothing is required to solve them! We assume a pre-sort
whereby degenerate ERCs are removed.
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This discussion is implemented in the following recursive definition of RCD. 

(49) RCD. Definition of H(S,A). S a set of constraints, A a set of ERCs.
FAVC:={C0S| C(ƒA)… L}
SOLVEDARGS := {n0A| ¼FAVC Ön}
If SOLVEDARGS=Ø then H(S,A):=S

Else  H(S,A):= FAVC>>H(S!FAVC, A!SOLVEDARGS).

As promised,  bottom strata  may consist of conflicting but unrankable constraints.  For example,
if S={(W,L),(L,W)}, then on the very first round, SOLVEDARGS=Ø and we’re done, with one
stratum. Such an inconsistent stratum may also emerge in the course of recursion, when no more
arguments can be solved. Such inconsistency, which infects the entire hierarchy, arises when not
every ERC can be transferred to SOLVEDARGS. An inconsistent hierarchy can be detected by placing
a suitable clause in the RCD procedure, one sensitive to the presence of unsolved ERCs, or merely
by examining the resulting hierarchy: a dead giveway is the presence of an ERC whose highest non-e
stratum contains an L.

For concreteness, we illustrate how RCD may be reconfigured to announce inconsistency.
We introduce the variable “flag”, which is initialized to the value “CONSISTENT”.

(50) RCD with built-in inconsistency detection. 
Definition of H(S,A). S a set of constraints, A a set of ERCs.
If A= Ø then H(S,A):=S
    Else

FAVC:={C0S| C(ƒA)… L}
SOLVEDARGS := {n0A| ¼FAVC(n)=W}
If SOLVEDARGS=Ø then H(S,A):=S and flag:=”INCONSISTENT”
    Else  H(S,A):= FAVC>>H(S!FAVC, A!SOLVEDARGS).

The hierarchy that RCD computes – Tesar & Smolensky’s target (with any nonnull RESCON tucked
in beneath) – is precisely the Minimal Stratified Hierarchy for A. To see this, note that RCD
preserves minimality. Consider the top stratum S0 and the arguments A0  that it satisfies. S0 is clearly
minimal over this argument set – it has a subordination index of 0.  Now consider S0cS1 and A0cA1.
The two level hierarchy H=+S0,S1, is minimal over A0cA1 – no constraint can be raised up from S1,
no one-level hierarchy will do, and any three-(or more)-level hierarchy can only fare worse on the
subordination index. (To construct a three level hierarchy, one must move a constraint weighted 0
or 1 into a position where it is weighted 2, for a net increase of 2 or 1 in the subordination index.)
And so on, down through the strata.

 Let us now turn to the relations between entailment, fusion, and ranking. As a first observation,
we note that entailed ERCs are completely inert with respect to the organization of the MSH,
in the sense that the stratal structure of H(A) is unchanged when entailed ERCs are added to



11 The virtues of this method of defining ‘rank’ are two in number. (1) It allows us to cross-compare
the ranks of ERCs and constraints; (2) it uses ‘$’ in the natural way that corresponds to domination. Each
ERC could also be assigned  a  numerical ‘grade’ based on its rank; this leads to the multivalued semantics
of the logic RM: see §7.3 below.
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or removed from A. When A|n, A is logically equivalent to Ac{n}, and both A and Ac{n} are
consistent with the same rankings, among them the unique minimal stratified hierarchy.

(51) Remark. Let H(A) be the MSH for A. Suppose A|n. Then H(Acn)= H(A).

Any stratified hierarchy can also be used to impose a ranking on ERCs associated with it. Imagine
a hierarchy, such as the following, displayed in conventional tableau form, with the strata arranged
across the top: then the supporting ERCs are forced into a vertical arrangement that echoes the
horizontal stratification of the constraints.
 (52) Specimen tableau

I II III IV

C1 C2 C3 C4 C5

I n W L

II
R W L

P W W L

III > W L

Let us define the rank |C| of a constraint C belonging to any hierarchy H as the stratum to which it
belongs in H. (If the hierarchy is a total order, then each stratum contains just one constraint.) It is
natural, then, to define the rank of an ERC n, written |n|, as the highest stratum which contains one
of its polar-valued constraints.11 This is the stratum that determines the success – or failure – of n
on H. (For convenience, we stipulate |*| to be S0.) In the above, the rank of R is stratum II={C2,C3}.
Note that even under total ordering of constraints, several ERCs may have the same rank. If we
impose C2>>C3 in the above example,  we still have R,P 0 |C2|.

(53) Def. Rank. 
The rank |C| of a constraint C in a hierarchy H is the stratum which contains it. 
The rank |n| of an ERC is the highest stratum containing a C such that C(n)0{W, L}.

Given a set of ERCs A, we can notate the inter-ERC stratal relations like this:

(54) Relative rank of ERCs
|n| > |R| the rank of n dominates the rank of R
|n| = |R| the rank of n is the same as that of R  
|n| $ |R| the rank of n is the same as or dominates that of R 
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A constraint hierarchy assigns a rank for any ERC framed in terms of its underlying constraint set.
Because the MSH uniquely determines a hierarchy from an ERC set, it is sensible, given  remark
(51),  to speak of the rank in the MSH of an ERC n entailed by A even if it is not a member of A –
it is its rank in H (Acn), which has exactly the strata of H (A).

The notion of rank interacts in useful ways with both entailment and fusion.

In any hierarchy at all, a fused ERC shows straightforward good behavior with respect to its fusands,
simply because all polar values in the fusion come from polar values in the fusands. An immediate
consequence is that the fusion is a least upper bound rankwise for all of its constituents. 

(55) Proposition 4.1. Fusion Dominance. Let Q be a set of ERCs over the constraint set {Ci}
used in some hierarchy H. Then, with respect to H, |ƒQ|$|R|, for all R0Q. Furthermore,  ƒQ has
the same rank in H as some R0Q.

Pf. If ƒQ…*,  the rank of ƒQ is determined by some Ck with [ƒQ]k 0{W,L}. Now
consider all those constraints Ch which are of higher rank than Ck in H. These are the only
ones that could determine a higher rank for any R0Q.  For each such Ch, it must be that
[ƒQ]h=e, else it would determine the rank of ƒQ. But since [ƒQ]h=e, it must be that [R]h=e
for all h, so none of the Ch can determine the rank of any R0Q either. This establishes that
|ƒQ|$|R|, for all R0Q. Furthermore, since [ƒQ]k 0{W,L}, it must be that [Ri]k 0{W,L} for
some Ri0Q and therefore that Ck determines the rank of Ri.

If ƒQ=*, it lies at the top by convention, with all its degenerate fusands.       ~

This result is entirely independent of whether H satisfies any of the ERCs in Q. To draw further
conclusions, it is useful to note the following:

(56) Lemma. If [R]k=W or [R]k =L, then |R| $|Ck| .
Pf. By definition, |R| is the highest stratum occupied by any constraint polar on R.       ~

W-compliance induces sameness of rank for constraints that satisfy a set of ERCs.

(57) Proposition 4.2. Let QfA be W-compliant. If H is any hierarchy that satisfies Q, then  |n| .|R|
for all n,R 0Q.  In H (A), whether A is consistent or not, if *óQ, then |n| .|R| for all n,R 0 Q.

Pf. Suppose HÖQ. Then either ƒQ=*, or ƒQ contains W. If ƒQ=*, then  R=* for all
R0Q, so that ƒQ and all of Q are given top rank by convention. If ƒQ contains W, then its
rank is determined by some Ck with [ƒQ]k=W. But by W-compliance, [R]k =W for all R0Q,
and so by the lemma, for all R, |R|$|Ck|=|ƒQ|.  We already have |ƒQ|$|R|, for all R, by
Proposition 4.1. Therefore |ƒQ|=|R|, and all R0Q have the same rank. 

This result applies directly to H (A), for consistent A. Even if A is inconsistent, the
argument given for the cases ƒQóL+ goes through. But with if A inconsistent, it may be that
ƒQ0L+. Then, assuming *óQ, QfRESARG, and all of  Q sits in the bottom stratum.        ~
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The requirement *óQcomes into play only when ƒQ0L+. In this case, Q is W-compliant, but if *0Q,
then Q will be split between the top rank (of *) and the bottom rank (of Q!{*}). 

We now establish that argument-entailment and ranking are closely related.

(58) Lemma. If nondegenerate n is derived from " by L-retraction alone, then |n|=|"| in any
hierarchy that satisfies ", as well as in H (A), for any A containing ".

Pf. Given Proposition 4.2, we need only note that " and n are W-compliant.       ~

As before, the nondegeneracy caveat is required for the case where n0L+: then repeated L-retraction
can produce n = *, eliminating all barriers in n to ranking by RCD, so that it pops to the top.

(59) Lemma. If n is derived from " by W-extension alone, then |n|$|"| in any hierarchy.
Pf. Suppose the rank of " is determined by Ck, so that |"|=|Ck|. Now since n is derived
by W-extension, there is another coordinate p such that [n]p=W while ["]p=e. If |Cp|>|Ck|,
then |n| > |"|. Else |n|=|"|.      ~

(60) Proposition 4.3. Entailment bounding. If  "|n, with ",nóW*, then |n|$|"| in any hierarchy
H with HÖ", as well as in H (A), for any A containing ".

Pf. Consider any hierarchy H with HÖ". It cannot be that "0L+ , so " is nontrivial. From
Proposition 1.1, we know that all consequences of a single nontrivial ERC follow by some
sequence of L-retractions followed by some sequence of W-extensions. By Lemma (58), L-
retraction leaves the rank of an argument the same; by Lemma (59), W-extension cannot
lower its rank and may raise it. Thus the thesis holds in any HÖ". Now consider H (A), for
any A with "0 A. If  H Ö", the result just shown will apply. If not, then " lies at the bottom,
and  |n|$|"| for every n0A including those where "|n.       ~

Entailment bounding can fail when the antecedent or the consequent is in W*. Consider the following
example:

C1 C2

" W L

*

$ W  

(  W

Here C1>>C2, yielding two strata.. Among the arguments, ",*,$ belong to the first rank, and ( to the
second. But "|(, even though |"|>|(|, because here the consequent is in W*. Furthermore, *|( and
$|(, although |*|>|(| and |$|>|(|, because here the antecedents (and therefore the consequents) are
in W*.  And since valid ERCs entail each other, they would all have to be at the same rank, which
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they manifestly are not. This example also illustrates how the W* condition on Proposition 4.3 could
be tweaked: since * is always at the top, it needn’t be excluded from consequent position.

Proposition 4.3  has a somewhat paninian flavor, since rank follows from entailment, though it takes
place among ranking-arguments rather than constraint rankings. Similar results hold among the
constraints, when the operation of fusion is generalized to them: see §8 below.

We now generalize to the situation where entailment involves a set of ERCs. As usual, fusion
provides the key, and we first obtain a useful result from the propositions just established:

(61) Corollary to Proposition 4.3. Assume A éW* and nóW*. If ƒA|n, then |n|$|"i| for all "i0A
in any H such that HÖƒA, and in H (A).

Pf. Proposition 4.1 gives us |ƒA| $|"i| in any H, without restrictions. Proposition 4.3
assures us that |n|$|ƒA| in any HÖƒA. Therefore,  |n|$|"i| in this case. Prop. 4.3 also gives us
|n|$|ƒA| in H (Ac{ƒA}). But note that  H(A)=H (Ac{ƒA }) by remark (51), since  A|ƒA.
Therefore,  |n| $|"i| in H (A).       ~ 

Entailment bounding can be now extended to the general case, in which a conjunction of ERCs
entails another ERC. To get a sharp result, we restrict ourselves to the case where every ERC in the
conjunction is required for the entailment, i.e. to minimal entailing sets, as defined in (26), p. 14. If
Q is minimal, then n proves to be an upper bound, in the MSH,  for all of Q.

(62) Proposition 4.4. If Q|n, with Q a minimal entailing set for n, then |n| $|R| for all R0Q, in any
H such that HÖQ, and in H (A) for any AgQ. 

Pf. If n0W*, then Q is empty and the assertion is vacuously true. Assume that nóW*.
Note in addition that a nonempty subset of W* cannot be a minimal entailing set, because
only valid ERCs would be entailed by it, and valid ERCs are entailed by Ø. So QéW* and
ƒQóW*. Because Q is a minimal entailing set for n, we have ƒQ|n, by the corollary to
Proposition 2.5, (27), p. 14.

(a) MSH case. With nóW* and  ƒQóW*, the relation ƒQ|n gives us |n|$|ƒQ|, by
Proposition 4.3, in any MSH containing ƒQ. Let A.be any ERC set with QfA. We then have
|n|$|ƒQ| in H (Ac{ƒA }). Now consider H(A). Since Q|ƒQ, we have  H(A)=H (Ac{ƒA }),
by remark  (51). Therefore |n|$|ƒQ| in H(A). But |ƒQ| > |R| for all R0Q in any hierarchy. 

(b) Say HÖQ. Then HÖƒQ because Q|ƒQ. Then |n| $|R| for all R0Q, directly from
the corollary to Prop. 4.3.       ~ 

Unlike the situation with the fusands and the fusion, an ERC entailed by a set Q, even a minimal
entailing set, can strictly outrank every member of Q. Consider for example the system

A1: (W,L,e) A2: (W,W,L) A3: (e,W,L)
In any hierarchy validating {A1,A2,A3}, there are three constraint ranks |C1|>|C2|>|C3|, where
|C1|=|A1,A2| and |C2|=|A3|. We have A3|A2 (minimally) but also |A2|>|A3|, strictly.
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5. Finding Entailments

Summary. The question of whether A |n can be efficiently decided for nontrivial n by performing RCD on
Ac{! n}, checking for inconsistency. Various economies may be implemented, using results obtained in §§3-4.

Given a single nontrivial ERC n, how might one best determine whether or not n is entailed by an
arbitrary set A? We know from Proposition 2.5 (25) , p.14,  that  A |n iff there is a QfA such that
ƒQ|n. Fusion is easy to compute, but if we are condemned to root around among the (possibly very)
numerous subsets of A, checking the fusional behavior of each, then the reduction of conjunctive
entailment to fusional entailment would be of little practical value. But since an intimate rapport
obtains between inconsistency and entailment,  the inconsistency-detection powers of RCD provide
a rapid and efficient method of entailment-detection as well.

From lemma (23) §2 we know that an entailment relation A|n is accompanied by the
inconsistency of Ac{!n} when n…*. If we want to discover whether in fact A|n, given arbitrary
nontrivial n, we need merely conduct RCD on Ac{!n}. If a consistent hierarchy results, there is no
entailment. Inconsistency signals that the entailment is valid. 

The RCD-based procedure for entailment-checking can be sharpened in the light of the results of §4.

[1] Omit irrelevant ERCs and constraints. In determining the validity of A|n, any ERC
ranked above n in H(Ac{n}) is irrelevant. We know that if Q is a minimal entailing set for n, then
|n|$|R| for all R0Q, by Proposition 4.4 (62). This means that to determine the entailment status of
n, we need only examine  those ERCs of rank equal to or lower than |n| in  H(Ac{n}). 

Furthermore, we may truncate the set of constraints under consideration: none with rank
higher than |n| need be included in the calculation. (If C is any such, and R is any ERC with |R|#|n|,
then C(R)=e and C disables none of them from belonging to an entailing set for n.

It might be thought that a similar economy could be imposed at the lower end of the
hierarchy, if there are strata below the lowest-ranked polar value carried by n. How could constraints
ranked so low interfere with an entailment relation among higher-ranked constraints? Easily, it turns
out. Consider, for example, the following array of constraints: is n entailed by {",$,(}? The MSH
structure on {",$,(} is shown.

(63)

C1 C2 C3 C4 C5

" W L

$ W L W

( W L

n W L
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Constraint C5 lies in a stratum below that of n’s lowest polar evaluation (C3). If we omit C5, then $
looks exactly like n, and entailment is assured. But n is not entailed when C5 is included, as the
reader may easily ascertain. Of course, any constraint in a stratum lower than that of the lowest polar
evaluation of n may be omitted if it contains no W’s.

[2] Halt when the answer is found. There is no need to run the process to its conclusion in
every case. We can assume that A is itself already known to be consistent (else why are we bothering
with it?), so we needn’t test to be sure that no subset of ERCs fuses to L+. All that matters is whether
subsets containing !n are consistent; i.e. whether !n itself can be successfully integrated into the
minimal hierarchy. Therefore the RCD process can quit as soon as !n is successfully stratified, and
need not run on to check whether the rest of the arguments can be handled.

[3] Amalgamate W-compliant ERCs. Since entailed ERCs are inert with respect to the
structure of the minimal hierarchy, as observed in remark (51), it follows that if an ERC is alone in
a stratum, it cannot be entailed. To maximize the number of stratum-isolates, as well as to minimize
the number of ERCs in the hierarchy, it is advisable to collapse W-compliant sets to their fusions,
as licensed by Prop. 3.1 (31). From Prop. 4.2 (57), we know that all members of a W-compliant set
have the same rank. It is therefore reasonable to determine H(A) prior to fusion-collapse, since this
will sharply limit the set of ERCs that must be checked for W-compliance. 

[4] Forget stratal details. When we speak of using RCD to check for consistency, we refer
only to its essential machinery; for example, it is stratifiability and not the actual stratified hierarchy
itself that is required for the consistency proof. There is no need to keep record of the stratal structure
of  H(Ac{!n}), and something like the tableau reduction of Prince 2000 provides an  appropriately
stripped-down version of the process.

The following procedure may therefore be outlined:

(64) General Entailment Check
[1] Determine H(A) by RCD.
[2] Collapse all W-compliant sets by fusion; call the result H(AN).
[4] To check any n0AN to see whether AN|n, 

3a] Replace n by !n,
3b] Perform RCD on the subhiererarchy of strata Si0H(AN) with |n|$|Si|  and over the

set of arguments QfAN with |n|$|R| for R0Q.
•  On any step of RCD where !n is stratified, quit: NOT(A|n).
•  If RCD yields flag=“INCONSISTENT”, then: A|n.

A final procedural question is how the collapse of W-compliant sets should be undertaken. Since
members of a W-compliant subset of A will all have the same rank in H(A), the matter boils down
to examing each rank of arguments to find W-compliant subsets.

A rank consists of a stratum S of constraints and a set Q of ERCs. Each Ck0S bifurcates Q
into two classes, which we may call QW/k and Qe/k. Members of QW/k are those R0Q with [R]k=W;
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the members of Qe/k are those R0Q with [R]k=e. Any W-compliant subset of Q must lie entirely
within one or the other of these. The following example illustrates this observation:

… Ck … 

… … … … 

QW/k R1 W … 

R2 W  … 

Qe/k R3 e … 

R4 e … 

... … …  … 

A strategy of bifurcative sorting therefore suggests itself. Placing the constraint Ck0S in some
arbitrary order, as indicated by subscripting, we can first bifurcate C1 into QW/1 and Qe/1. We then
bifurcate each of these according to the assignments of C2, and so on, achieving this kind of result:

(QW/1)W/2
QW/1

 (QW/1)e/2
Q 

(Qe/1)W/2
Qe/1

(Qe/1)e/2

When bifurcation yields an ERC set that is null or has  a single member, that branch of the search
is over. Because the subsets obtained at each level of bifurcation are disjoint, the search will rapidly
exhaust Q.

The terminal leaves of the tree will contain the candidates for W-compliance. But the search
for W-compliant sets is not over when the constraints in the stratum S, correlating with the rank of
Q, have been gone through. Because we are proceeding by elimination, it may happen – just as in
RCD – that the segregation of various ERCs produces new opportunities for coordinates to fuse to
W, and therefore for W-compliance to fail. This effect is illustrated in the following 2-stratum
example:
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Stratum I Stratum II

C1 C2 C3 C4 C5

R1 W e L W L

R2 W e L e e

R3 e W L L e

Here QW/1= {R1, R2} looks good in the top stratum. But the removal of R3 discloses a failure of W-
compliance at C4. Therefore, the process must continue into the lower strata after the rank of Q has
been analyzed. What’s required is essentially another step of RCD, bring to the fore those constraints
that fuse to W over the potentially W-compliant set produced by the first round of bifurcation.
Another round of bifurcation may then proceed, and so on.
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6. Entailment and Harmonic Bounding

Summary. Harmonic bounding is signaled by a trivial ERC involving the bounded candidate. Harmonic
bounding leads to the existence of entailment relations: any set of ERCs that is free of entailments is also free
of harmonic bounding within the set of candidates that is involved in the ERCs.

The linguistic forms and relations available to natural languages are a tiny fragment of those that are
logically possible. Hard-and-fast principles identifying linguistic primitives and their modes of
combination will rule out many conceivable structures. Some conceptions of generative grammar
see in explicit ‘principles’ (deemed ‘parameters’ when omissible) the primary account of
ungrammaticality. Current theory introduces a new source of explanation: many forms that are
structurally legitimate in the most basic sense are not admitted by the grammar of any language
because they are never optimal under any ranking of the constraint set. This shifts the burden from
stipulated principles (the constraints themselves) to emergent properties of their interaction.

The most straightforward situation in which a form can be structurally licit but never achieve
optimality occurs when it is harmonically bounded by some other form (Samek-Lodovici 1992,
Prince & Smolensky 1993). 

 Suppose that candidate a incurs no more violations than candidate b on any constraint and
that on some constraint it incurs fewer: in short, a always does at least as well as b on any constraint
and sometimes does better. Then no ranking can render b optimal: in the competition a vs. b, which
corresponds to the ERC we write as [a~b], any constraint that distinguishes the two (and a fortiori
the highest-ranked of them) will prefer a. 

This means that the ERC [a~b] belongs to the class W* and its negative [b~a] to the class L+.
Universal validity means success on all possible rankings; universal invalidity means failure on all
rankings. We can now see, looking inside the ERC, which has  hitherto been treated as atomic, that
nondegenerate triviality is co-extensive with the harmonic bounding of one form by another. Notice
that we need not even know whether a is itself optimal, or even possibly optimal, in order to safely
conclude that b is hopeless (Prince & Smolensky 1993:95).

Harmonic bounding of one form by another ensures failure of the bounded form not just under the
strict domination among constraints assumed by OT, but in virtually any scheme that calculates
optimality from violation status on individual constraints, so long as incurring more violations is
worse. Simply summing globally across the constraint set, the bounded candidate has more total
violations; and, because it is locally never better than its bounder, no constaint-weighting scheme
with positive weights (preserving the sense of ‘more=worse’) can change the relative status of the
two competitors. The bounded candidate has literally nothing going for it, no weapon to call on in
the struggle with its bounder. 

But simple bounding by a single form is not the end of the story. Within Optimality Theory, a set of
candidates can work collectively in a ranking-sensitive fashion to force perpetual suboptimality on
another candidate (SLP 1999). Imagine confronting a ranking with a candidate set {a,b,z}and
suppose that under some rankings a is optimal with respect to this set, besting b and z; that under
others b beats a and z; and that these two states of affairs exhaust the possibilities of ranking. Then
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z cannot be optimal. (Adding further candidates to the set cannot improve z’s performance against
a and b; therefore it is legitimate to draw general conclusions about z from this behavior.)  The
phenomenon of collective bounding is intrinsically tied to the notion of strict domination and is not
replicable in full generality within weighted-sum systems. To see how it works in a particular case,
consider the following example from alignment theory (McCarthy & Prince 1993).

(65)

PARSE-F ALL-FEET-LEFT

a.     (FF)(FF)(FF) 0 6

b.     (FF)(FF)FF 2 2

c.      FFFFFF 6 0

The cells under each constraint heading display the number of violations incurred by each form. The
constraint PARSE-F demands that every syllable F belong to a foot, a constituent indicated here by
parentheses, and it assesses one violation for each foot-free F. ALL-FEET-LEFT demands that each
foot appear at the left edge of the form and it assesses one violation for each F separating a foot from
that edge; the violations for each foot in a form are added together to give the violation total for the
whole form.

Observe that the sum of violations across the constraint set for the intermediate candidate (b)
is less than that for the candidates (a) and (c), which are more extreme along each dimension of
evaluation. Yet (b) is collectively bounded by (a) and (c) over this constraint set. The ranking
PARSE-F >>ALL-FEET-LEFT selects (a) as the best of the three candidates; the ranking All-Feet-
Left>>Parse-F selects (c).

Portraying the order relations induced by the violation structure diagrammatically, we have:

(66) PARSE-F ALL-FEET-LEFT
 a  c
  |  |
 b  b
  |  |
 c  a

Here we can see that b is bracketed by {a,c}. If, as in SLP, we think of the constraint hierarchy as
a composition of constraint-functions, where each constraint returns the top stratum of the order it
imposes on the candidates presented to it, then it is clear that b can never be in that top stratum, no
matter how the constraints are ranked. With the ranking PARSE-F >>ALL-FEET-LEFT, for example,
PARSE-F applied to {a,b,c} yields {a}. ALL-FEET-LEFT is then stationary on {a}.

The effect is also clear when presented in ERC form, with b placed in the position of the
desired optimum:
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(67)

b ~ {a,c} PARSE-F ALL-FEET-LEFT

":    (FF)(FF)FF ~ (FF)(FF)(FF) L W

$:    (FF)(FF)FF ~ FFFFFF W L

   "B$ L L

The  set of arguments {",$}is inconsistent precisely because there is no ranking that can make a
bounded candidate optimal. For a set of ERCs {[z~ai], i0I}, all based on the same desired optimum,
fusion to L+ is thus the hallmark of bounding: whether it has one member or many,  the set {ai, i0I}
bounds the candidate z and prevents it from being optimal. 

It is instructive to examine the kind of sets involved in the bounding relation. As background,  we
need to specify the order relation induced on candidates by a ranking.    SLP:38 defines the relation
‘better than’ like this, translating into present terms:

(68) Def. ‘Better than’ on a ranking. For candidates a,b and the ranking R, a is ‘better than’ or
‘beats’ b, written (a™b;R) iff RÖ[a~b] and [a~b]…*. 

The codicil [a~b]…* prevents a and b from exhibiting exactly the same profile of violations and
therefore doing equally well on the constraint hierarchy. Observe that the definition of ‘better than’
for rankings  extends as well to ‘better than’ on a single constraint: we need only think of a constraint
as a one-member hierarchy. The refined version of the SLP conception proposed above (p. iv) unifies
the two notions of ‘better than’ from the start.

The relation ‘better than’ is an order: it is obviously asymmetric (and therefore irreflexive) because
of the nondegeneracy codicil. To show  transitivity, let us work from a slightly more general result.

Let us write #a for the number of violations incurred by a on a constraint (whose identity will be
clear from context). As usual, #a<#b on C iff C([a~b])=W.

(69) Lemma. Transitivity of ‘~’.  [a~b], [b~c] | [a~c].
Pf. From Proposition 2.1, we have {[a~b],[b~c]}|[a~b]B[b~c]. We show that
[a~b]B[b~c]|[a~c],  because both the W-condition and the L-condition of Proposition 1.1a
are satisfied. Suppose that C([a~b]B[b~c])=W for a given constraint C. Then C ([a~b])…L and
C([b~c])…L. That is, #a##b and #b##c, and one of the inequalities must be strict for the
corresponding ERCs to fuse to W on C. Therefore C([a~c])=W, and the W-condition is
satisfied. Suppose now that C([a~c])=L for some C. This excludes the possibility that #a##b
and #b##c simultaneously on C. Therefore either #b>#a or #c>#b, i.e. at least one of C
([a~b]) and C([b~c]) is L, so C([a~b]B[b~c])=L.       ~ 
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(70)Corollary. Transitivity of ‘Better than’. If (a™b;R) and (b™c;R), then (a™c;R).
Pf. Follows directly from the lemma and the fact that {x™y;R) Y RÖ[x~y].       ~ 

Now to the characterization of bounding by sets. In the broadest sense, z will be bounded so long as
we can identify a set of candidates A which is guaranteed to contain, for each ranking, something
that beats z.  Call such a set a ‘covering set’ for z  with respect to E. 

(71) Def. Covering Set. A is a covering set for z with respect to a constraint set E iff for each
ranking Ri of E there is some element ai 0A, ai …z,  with Ri Ö[ai~z].

The covering set has some useful properties. If A covers z, then any superset of A is also
covers z; similarly, if A doesn’t cover z, then no subset of A covers z either.  However, the general
‘covering set’ notion is too weak to allow a sharper specification of the properties that lead to
bounding, because a covering set can contain all kinds of extraneous material which makes no
contribution to the bounding effect. Given a covering set A for z, we know that the set of ERCs
{[z~ai]} is inconsistent, but Proposition 2.4 informs us that inconsistency is due to the presence of
a subset, possibly proper, that fuses to L+. It is such subsets that we are really interested in.

SLP:6, §2.1, defines the narrower notion ‘bounding set’ in terms of two criteria:

(72) Def. Bounding Set. A set BfK, K a set of candidates, is a bounding set B(z) for z0K relative
to a constraint set G, iff B has these properties:

C Strictness. Every member of B beats z on at least one constraint in G.
C Reciprocity. If  z beats some bi0B on a certain constraint C0G, then some other bk0B beats
z on the constraint C. 

A bounding set is a certain kind of covering set. Of the conditions defining it, ‘reciprocity’ is the key,
as shown in Samek-Lodovici & Prince 2001, where a nonempty set of candidates excluding z that
meets reciprocity is called a defeating set for z.

(73) Def. Defeating Set. DfK, K a set of candidates, is a defeating set D(z) for z0K iff D meets the
following three conditions: (i) D…Ø, (ii)  zóD, (iii) œC0E œd0D, (z™d;C) Y ›b0D (b™z;C).

Translated into present terms, the reciprocity condition (iii) asserts that, given a defeating set
D={di} for z, whenever C([z~d j])=W for some C then we also have C([z~dk])=L for the same C and
some other dk0D: this ensures that the C column fuses to L even when z earns a W by beating some
member of the competitor set on C. The other possibilities, which do not invoke the reciprocity
condition, are C([z~di])=e or C([z~di])=L; no matter how these are distributed, any C column
containing them will fuse to L, or to e when C([z~di])=e for all i. 

Let us introduce some notation to describe the kinds of situations that arise. We are interested
in sets of arguments based on one desired optimum: {[z~di]: di0D}. For this, let us also write {z~D}.
For the fusion over the set, let us write ƒi{[z~di]: di0D} or ƒi{[z~di]}, when we wish to emphasize
the indexing, and simply ƒ{z~D}when we do not.
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We now show that the Samek-Lodovici & Prince 2001 notion of a defeating set, defined in (73),  is
coextensive with fusion to L+.

(74) Remark. D is a defeating set for z with respect to a set E of constraints iff ƒi[z~di]0L+, where
the fusion is taken over all di0D.

Pf. The LR direction is shown in the text. RL: Suppose ƒi[z~di]0L+. For any Ck, we have
either [i] Ck([z~di])=e for all i, or [ii] Ck([z~dj])=L for some j. The first case raises no issues
for reciprocity. In the latter case, we may still have Ck([z~dm])=W for some m…j. In this case,
z beats dm; but dj beats z, satisfying reciprocity.       ~ 

This equivalence allows the use of Proposition 2.4  to obtain the fundamental result of bounding
theory: that the existence of a defeating set for z ensures that z is never optimal under any ranking,
and conversely that any never-optimal candidate has a Defeating Set. Thus, harmonic bounding in
both its simple and its collective forms reduces to the existence of the defeating set.

(75) Proposition 6.1. A candidate z0K can never be optimal under any ranking of constraints E iff
there exists for z a defeating set, D(z)fK.

Pf. LR: To say z can never be optimal is to say that {z~K} is inconsistent. By Proposition
2.4, we must have some subset DfK such that f{z~D}0L+ . Then D forms a defeating set for
z, by the remark (74).

RL. If a defeating set D(z)fK exists, then f{z~D}0L+ which guarantees the
inconsistency of {z~K}.       ~ 

To see where strictness comes in, consider the notion of a ‘minimal defeating set’: a defeating set
which itself properly contains no defeating set. 

A candidate d satisfies strictness against z iff [z~d] shows L at some coordinate k, indicating
that constraint Ck prefers d to z: Ck([z~d])=L. If some d0D(z) fails strictness, then d beats z nowhere,
so that  [z~d]0W* and d is harmonically bounded by z. Any such harmonically-bounded candidate
d obviously contributes nothing to the bounding effect of D with respect to z. Thus a defeating set
consists of a (nonempty) central core satisfying strictness as well as reciprocity – a bounding set –
and a periphery, possibly empty, consisting of candidates harmonically bounded by z. 

 The minimal defeating set will not include the W* periphery; and therefore the members of
the minimal defeating set satisfy strictness. (The converse is not true – satisfying strictness does not
guarantee minimality.)

As an illustrative example of the construction, consider the simplest case, the one in which
D(z) contains but a single element. 
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(76)

C1 C2

d 3 5

z 3 7

z~d e L

The defeating set  D(z) is just {d}. It is nonempty, excludes z, and satisfies reciprocity vacuously,
because on no occasion is some member of D(z) beaten by z on a constraint. As expected,
ƒ{z~D}0L+ , albeit somewhat trivially, since ƒ{z~D}=[z~d].

The constitution of a defeating set D can be viewed from another angle, shifting the focus to the
structure induced on the constraint set by D. 

Since {z~D} fuses to L+ over E, we know that every individual constraint in E fuses over
{z~D} either to L or to e. Thus a defeating set partitions the entire set of constraints into exactly two
subsets: those constraints which treat the candidates in {z}cD as equivalent, assigning e to every
comparison in sight; and those on which some d0D beats z.

(77) Remark. Harmonic Bounding and the constraint set.
D is a defeating set for z over E iff E is partitioned into two subsets as follows: 

1. E|e: {C0E: œxœy  x,y0Dc{z}=> C([x~y])=e}. Those constraints that do not
distinguish, violationwise, the members of {z}cD.

2. E|L: {C0E: ›d0D C([z~d])=L}. Those constraints on which some member of D
beats z. Must be nonempty.

This characterization merely re-states the others: for, given the partition as described, ƒ{z~D}0L+.

It is clear, from a straightforward application of the transitivity lemma (69), that bounding of one
candidate by another is an order relation, and therefore transitive: if a bounds b, and b bound c, then
a bounds c. What of collective bounding? A generalized version of transitivity shows up as well in
this case: if a set of candidates A covers b, and b belongs to a set B covering z, substituting A for b
in B will produce a covering set for z. 

(78) Remark. Generalized transitivity of bounding. Let A, B be sets of candidates. If A covers
b, and b0B, where B covers z, then (B!{b}) c A covers z.

Pf. Only if b belongs to every minimal bounding set D(z)fB(z) is the assertion of
interest; since otherwise the removal of b from B is without consequence for B’s covering
properties with respect to z. Consider therefore the fate of any minimal bounding set
D(z)fB(z) with b0D. We need only consider those constraints C on which C([z~b])…W, i.e.
C([b~z])…L,  for  these are the only ones that contribute to the bounding effect – the fusion
of {z~D} to  L+ – either by providing an L that determines the fusion, or an e when all the
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other d0D also have C([z~d])=e. Since A covers b, we are guaranteed a defeating set
AN(b)fA which partitions the constraint set as in Remark (77). For any constraint C, then,
either (i) C([a~b])=e for all a0AN or (ii) there is some g0AN such that C([g~b])=W. In the
first case, any a0AN will behave exactly like b on C. In the second, #g<#b and since #b ##z,
we have #g<#z and C([z~g])=L. Thus the fusion to L+ is maintained.       ~ 

Harmonic bounding is notionally parallel to ERC entailment. Just as an entailed ERC is an
uninformative accretion on the set of arguments, so a harmonically-bounded candidate adds nothing
to the set of candidates that is not already implicit in its bounders. (For example, ranking is
completely determined by comparison of possible optima,  SLP:5.) The relation between bounding
and entailment is more than a pleasant analogy, however, for bounding leads directly to the existence
of entailment relations. The chief results are these:

• If A is a covering set for z, then {q~A}|[q~z] for any candidate q. 
• If D is a defeating set for z, then ƒ{q~D}|[q~z] for any candidate q.

A striking consequence emerges by contraposition. Suppose the set of ERCs A={q~A} is free of
entailments, in the sense that no subset QfA entails any member of A not in Q. Let K=Ac{q}, the
candidate set underlying the ERC set. Then K is also free of harmonic bounding, in the sense that
no subset of K is defeating set for any member of K.  

Let us now establish these claims.

(79) Proposition 6.2. If A is a covering set for z, then{q~A}|[q~z].
Pf. Consider any model RÖ{q~A}. We know that z is covered by A, but we know
nothing about the relation between z and arbitrary q. If RÖ[z~q], then by the transitivity
lemma (69), RÖ[z~ai] for all ai0A. But since A covers z, {z~A} contains a subset D(z) with
ƒD0L+, so this cannot be true. Contradiction! So it is not the case that RÖ[z~q] for any R
such that RÖ{q~A}. Thus, {q~A}c{[z~q]}={q~A}c{![q~z]}has no models, i.e. is
inconsistent. By virtue of Lemma (23), we conclude {q~A}|[q~z].        ~ 

To obtain the further conclusion that ƒ{q~D}|[q~z], for a defeating set D,  it is helpful to generalize
the transitivity property of ‘~’ to include fusions.

(80) Lemma. Generalized transitivity of ‘~’. [q~z], ƒ{z~A}|ƒ{q~A}.
Pf. The same approach works here as in Lemma (69): we show [q~z]Bƒ{z~A}|ƒ{q~A}.
Suppose that C([q~z]Bƒ{z~A})=W for a given constraint C. Then C([q~z])…L and
C(ƒ{z~A})…L. So, on C, we have #q##z and #z##ai for all ai0A, whence #q##ai so that
C(ƒ{q~A})…L. At least one of the inequalities must be strict, so #q<#aj for some aj, so that
in fact C(ƒ{q~A})=W, as desired, giving satisfaction of the W-condition,  Proposition 1.1(a).
Now  assume C(ƒ{q~A})=L for some C. This excludes the possibility that #q##ai for all
ai0A, so  for some j, #q>#aj and C([q~aj])=L. Thus we cannot have both  #q##z and #z##aj,
so that at least one of C([q~z]) and C([z~aj]) is L. Consequently, C([q~z]Bƒ{z~A})=L,
satisfying the L-condition.        ~ 
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It is also useful to note that the negative obeys a familiar logical property.

(81) Lemma. Loose Excluded Middle. For every ranking R and every ERC ",  RÖ" or RÖ!". 
Pf. If "=* then both disjuncts are true in R. Otherwise, the constraint C that is highest
ranked constraint in R assigning a polar value to  " is also the same  for !", but with
opposite polarity: C will assign W to one of {",!"}.        ~

We call the Excluded Middle here ‘loose’ to emphasize the fact that both " and !" can hold in a
ranking R when "=(!")=*.

(82) Proposition 6.3. If D is a defeating set for z, then ƒ{q~D}|[q~z] for any candidate q.
Pf. This is trivially true if [q~z]=*, so let us assume [q~z]…*. Suppose RÖƒ{q~D}.
Assume for purposes of reductio that RÖ[z~q]. By the generalized transitivity lemma (80),
RÖƒ{z~D}. But this cannot happen, since D defeats z and ƒ{z~D}0L+ . Ergo it is not the case
that RÖ[z~q] = ![q~z]. By the lemma of the loose excluded middle, RÖ[q~z].      ~

An interesting further consequence lurks in the proofs of the transitivity lemmas (69) and (80), which
actually establish a stronger result than is stated, because they show that a fusion rather than a
conjunction entails the desired consequent.. Throughout we have had to deal with the fact that W*
ERCs are mutually entailing, regardless of the W-condition: thus, (W,e)|(e,W), and vice versa. In
the case at hand, however, the W-condition is strictly observed between the consequent and the
fusion of the antecedents, even when they are trivial.

Consider a situation in which a harmonically bounds b. We know from Proposition 6.2 that
[q~a]|[q~b]. Suppose in addition that q harmonically bounds a i.e. that  [q~a]0W*. Then both
antecedent and consequent belong to W*. But we are still assured that the W-condition holds, so that
C([q~a])=W implies C([q~b])=W for any C. This shows that even for universally valid ERCs, the
W-condition can have significant impact. The logic of implication that lies behind this finding will
be taken up in §7.

Because bounding in a candidate set A leads to entailment relations in the associated ERC set
{q~A}, the lack of entailments within such a set will, as noted above, contrapositively lead to the
lack of bounding relations in Ac{q}. Consequently, if an ERC set of the form {q~A} is entailment-
free – a state easily achievable according to the prescriptions of §5 – then its underlying candidate
set Ac{q} is also bounding-free.

(83) Corollary to Proposition 6.2. Let A be a set of ERCs of the form {q~A} and let K=Ac{q}. If
for each ai0A there is no subset EfA,  aióE, such that {q~E}|[q~ai], then no z0A is covered by A.

Pf. The existence of a covering set E(z)fA implies that {q~E}|{q~z} by Proposition 6.2,
contrary to hypothesis.       ~ 

Note that this result includes the case of simple bounding. Suppose K={q,a}, where q bounds a.
Then [q~q]|[q~a] because |[q~a].
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Eliminating entailment therefore eliminates bounding. But it is important to notice a subtlety in the
process. To say that there is no bounding in a set K, with KfKN where KN  is a fuller version of the
candidate set, is not to say that the elements of K are possible optima: they may be bounded in KN.

This observation is relevant to the typical kind of case where one operates on an ERC set to
free it of entailments. Suppose we start out with an ERC set AN={q~AN}, with underlying candidate
set KN={q}cAN. We then remove as many ERCs as is needed to arrive at an entailment-free set (the
selection process need not be unique), arriving at the ERC set A={q~A}fAN, with candidate set K.
We know that the K is bounding-free. But KN might still cover elements of K.

To see this,  consider cases where "|$ and $|" simultaneously. If " and $ belong to an ERC
set AN  that we are stripping of entailments, we have a free choice between removing " and removing
$. But in this case we cannot be sure, from W,L-structure alone, that we are correctly removing a
candidate that is bounded in KN.

Consider the following example:

(84)

C1 C2

": q~a W L

$: q~b W L

Among the violation profiles compatible with these ERC vectors are the following:

(85)

VP-I. {a,b} independent VP-II. a bounds b VP-III. b bounds a

C1 C2 C1 C2 C1 C2

q 0 2 0 2 0 2

a 1 1 1 0 2 1

b 2 0 2 1 1 0

In VP-I, candidates a and b are independent, neither bounding the other; but in establishing
q as optimal, they both supply the same ERC, so only one is needed.

In VP-II, candidate a bounds candidate b and in VP-III the opposite obtains. If we remove
" from the set of ERCs under VP-I, then we are left with b in the candidate set, where b is not a
possible optimum (i.e. over {C1,C2}– but the point is of general applicability). 

Similar examples can be constructed with collective bounding. Consider the following case:
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(86)

C1 C2

q 0 2

b 2 1

x 3 0

z 1 2

Constructing the ERC set based on q, we find:
(87)

C1 C2

q ~ b W L

q ~ x W L

q ~ z W e

Candidate z is bounded by q, and [q~z] can be removed from the ERC set without prejudice. But
[q~b] and [q~x] tell exactly the same story –  each entails the other – and so one of them can be
removed. If [q~x] is removed, then only [q~b] remains, leaving a candidate set {q,b}. But over the
original candidate set {q,b,x,z}, b is defeated by {x,z}, as can be seen from the following:

(88)

C1 C2

b~ x W L

b ~ z L W

[b~ x]B[b ~ z] L L

The significant structural relations in the candidate set can be easily discerned  in the following
diagram, which indicates the orders imposed by the violation patterns. Observe how b is bracketed
by x and z.

(89) C1 C2
q x
| |
z b
| |
b z, q
|
x
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The appropriate response to this observation will depend on the use to which the candidate set KN
is being put. For many purposes, it will be far more important to eliminate entailments –
uninformative ERCs –  than to eliminate bounded candidates, which as we have seen can still
provide informative ERCs. But when bounded candidates are the focus of interest, the phenomenon
of mutual entailment can serve as an indicator that further scrutiny is required.

It is instructive to look at the relation between entailment and the kinds of orders imposed by
constraints. Given a desired optimum q0K, the set K is divided into 3 parts with respect to any
constraint C: those candidates better than q, those with the same status, and those worse than q.
These are the x0K such that C assigns to [q~x] respectively L, e, and W. The result looks like this:
(90)      C/q

L ......

e q,....

W .....

For [q~a]|[q~b], for [q~a] nontrivial, only three situations arise:
(91)

      I.                                           II.                                        III.

L …   … a,…,(b)

e q,…  q, a,…,(b) q, …,(b)

W a, b,…      …,(b)   …,(b)

The following remarks may be made:
 • Case I:   C([q~a]) = W.    By the W-condition, we must have C([q~b])=W.
• Case II: C([q~a]) =  e.    Here C([q~b])=e or  C([q~b])=W. 
• Case III. C([q~a]) = L.   Anything goes.
In short, if  [q~a]|[q~b], trivial ERCs aside, then for every C, we must have a#b in the C/q order,
where equality of order means membership in the same equivalence class.

This result shows why bounding yields entailment: if a bounds b, then #a##b on every constraint
– the violations of a are never greater than those b –  which imposes a stronger ordering condition.
Diagram (91) also illustrates exactly where the converse  fails: when a,b are both in class W or both
in class L, the relation between #a and #b is hidden in C/q, and indeed any relation is possible.
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We conclude with an observation about the relationship between optimality, harmonic bounding, and
entailment. An ERC [q~z] over a constraint set ÷ completely determines the ranking conditions on
÷ under which q is better than or equal to z evaluatively. But this one ERC provides no more than
a necessary condition for the optimality of q, since optimality requires that q never be bested by any
competitor at all. How many competitors must be examined to ensure optimality? It is certainly
sufficient to examine all the possible optima for any ranking of ÷; if q survives comparison with all
of these under a certain ranking R, it will necessarily be optimal on R [SLP:5,43]. Along the same
lines, if q is compared successfully with a set B, where {q}cB covers all other members of q’s
candidate set, then q is sure to be optimal on R as well. But neither of these tactics is necessary, and
there are in fact cases where optimality can established by comparison with elements that are neither
optimal themselves nor bounders for the set of competitors. To see this, consider the following
example (constructed in collaboration with Vieri Samek-Lodovici).
(92)

C1 C2 C3
a b c
| | |
z z z

        b      c         a       c        a        b

Candidate a is rendered optimal when C1>> {C2, C3} and only then. This result is secured directly
from a single comparison with z, which is never optimal under any ranking.  
(93)

C1 C2 C3

a~z W L L

a~b W L

a~c W L

As shown, the single comparison may be (inefficiently) replaced with two, each running against one
of the other possible optima. But it suffices to compare with the never-optimal, non-bounder z. 

The key is that [a~z] entails both [a~b] and [a~c]. The limit on the set of competitors is this:
if the ERCs constructed from a competitor set KN entail all possible ERCs projectable from elements
of the entire candidate set K, then comparison with KN guarantees optimality; and conversely.



12  Passing with regret over András Kornai’s droll proffer: “co-fusion”.
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 7. The Logic of Optimality Theory

Ex falso quodlibet.
– J. D. Scotus, overoptimistically

Rank hath its privileges.
– C.G. Prince, on the US Navy

Summary. The fusion and negative operations on ERCs explored above correspond to a three-valued
propositional logic, the implication/negation fragment of the relevance logic RM. Taken whole, RM itself
provides the logic of OT. Theorems of RM may therefore be freely imported. Returning the favor, it is seen
that the ‘system’ – a set of RM valuations related by permutation of ranking – has properties that make it a
structure of independent logical interest.

7.1 OT as Logic, and v.v

The pattern of relations examined here fits into a larger formal structure that can be identified as
propositional calculus-like logic with a semantics based on not two but three truth-values: T,F,e,
corresponding to the W,L,e of ranking theory. An ERC evaluates the assertion ‘a is better than b’
for two candidates a,b, and each constraint Ck records one of three views on the matter: 

• W/T –  the assertion is true for Ck, and strictly so, since a™b on Ck
•  L/F  –  the assertion is false for Ck, and strictly so, because b™a on Ck 
•  e      –  Ck offers no illumination because neither of the above holds.

As seen in §2, there is a natural definition of ‘negation’ in this system. This leads immediately to
another operation,  dual to fusion, which resembles logical disjunction in the same way that fusion
resembles logical conjunction. Following standard usage in the literature, we notate this connective
as ‘+’ and (biting the terminological bullet) refer to it as ‘fission’.12

(94) Major connectives

Negation Fusion Fission

R…  R… 

n ¬n  n B R T e F  n + R T e F

T F n
!

 T T T F n
!

 T T T T

e e   e T e F   e T e F

F T  F F F F  F T F F
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Bolded values emphasize the complete identity of these connectives with their PC correlates over
the truth values T and F. Fission is not an independent notion, but can be defined in terms of fusion
and negation, in very much the usual way: 

(95) n+R =df  ¬( ¬nB¬R). 

We also have a notion of  ‘arrow’, the conditional connective, again defined as expected:

(96)    nÿR =df   ¬(nB¬R) = ¬n+R

Choice of ‘B’ as basic is arbitrary: the connectives {+, B, ÿ} are interdefinable, given ‘¬’. The truth
table for ‘ ÿ’ then runs as follows:

(97) The conditional connective

R… 

 nÿR T e F

n
!

 T T F F

  e T e F

 F T T T

The notion of ‘arrow’ shown here underlies the properties of entailment established in §1. The
inferential legitimacy of ‘W-extension’ is echoed in the fact that ‘eÿT’ is awarded T; and that of ‘L-
retraction’ in the T awarded to ‘Fÿe’.

We define the designated values in the system to be {T,e}=). If a wff assumes a designated
value under an assignment of truth values, it is said to be true under that assignment. If a wff always
assumes a designated value, regardless of the evaluation of its constituents, it is valid. This
corresponds to the fact that any n0W* interprets to a ranking condition that is true under every
ranking, in the ordinary 2-valued sense.

A remarkable fact about this logic is that there are no invalid wffs – no formula takes on the
nondesignated value F for every assignment. If all the prop letters are assigned e, then the whole
thing evaluates to e. For example, the canonical contradiction pattern is nv¬n, but the analogous
formula nB¬n is e (and designated) whenever n is e.

With these value assigments in hand, it is easy to check that the resulting logic shows many
of the familiar properties of propositional systems. For ‘("ÿ$) v ($ÿ")’, a strong form of
equivalence demanding that " and $ assume the same value under any valuation, we write ‘"=$’.



13 Anderson & Belnap 1975 [AB], p. 344-6, prefer to call ‘B’ co-tenability; other terms include
‘consistency’ (from Dunn 1966, who introduced the notation) and ‘fusion’ (from Meyer, as noted in
http://www.cis.upenn.edu/~bcpierce/types/archives/1992/msg00002.html), with the last eventually winning
out in the literature. Meyer 1973:228ff cites Church (no specific ref.) as the originator of these connectives,
and notes several dissertations in which they are studied: Belnap 1959, Dunn 1966,  Meyer 1966; AB also
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(98) Basic Properties of the Connectives.
 (i)  ¬ ¬ n = n Double negation
 (ii) "ÿn = ( ¬n)ÿ( ¬") Contraposition
 (iii) ¬("Bn) =  ¬"+ ¬n De Morgan
 (iv) ¬("+n) = (¬")B(¬n) De Morgan
 (v) ("Bn ÿ R) = ("ÿ (nÿR)) Trans(ex-/im)portation

Certain properties are missing, though, as we have seen repeatedly above: for example, "Bnÿn and
the closely related nÿ("ÿn) are nontheorems. Furthermore, we do not have the fusional analog of
‘ex falso quodlibet’, which would read ("B¬")ÿn, because "B¬" is not in fact ‘false’ on all
occasions. Nor do we have its contrapositive congener ‘verum ex quodlibet’, nÿ(¬"+"): even
though the consequent is universally designated, it is not ‘arrowed’ by a random wff. (To see this,
calculate its value with the assignment n=T, "=e). Finally, we note that distribution of ‘B’ over ‘+’
and of ‘+’ over ‘B’ also fails (see p. 84 below for some discussion).

The system laid out in (94) might be called ‘propositional calculus with identity’:  the value e serves
as an identity with respect to the connectives ‘B’ and ‘+’, but relations between T and F are arranged
in the normal way. The sense of a third, or intermediate, truth value is often subject to philosophical
disputation; especially when its role is to illuminate certain refractory conundra. In the present case,
the tertium quid offers no difficulties whatever: it serves simply to indicate that no assessment is
made; that the assessing item (constraint, predicate, prop letter, formula) is irrelevant to the outcome.
The system, then, might be called the pure logic of irrelevance, or LI for short. 

The pattern of truth value assignments just laid out has been interpreted in terms of
‘ambivaluation’, by which  propositions assume sets of truth values, and can therefore be both truth
and false. Under this conception, what we call ‘e’ is represented as {T,F}, and is therefore often
named ‘b’ in the literature. This difficult notion receives some clarification, perhaps, from the
concrete, order-theoretic model we are dealing with. A stratified partial order, such as is imposed
by a constraint on a set of candidates, recognizes three relations: a™b, a—b, and a.b, with the last
meaning that a and b occupy the same stratum. If the basic unit of analysis is an assertion of the form
ašb, then the meaning of the values is straightforward:

• T0val(ašb) iff ašb.
• F0val(ašb) iff bša.

If  a.b holds, then both ašb and bša are true. Hence, by these rules, val(a.b)={T,F}=e. 

With the truth table for ‘ÿ’ in hand (97), it becomes easy to recognize that ‘B’ and ‘+’ are the
connectives originally discussed in the context of relevance logic as ‘intensional conjunction’ and
‘intensional disjunction’, more recently ‘fusion’ and ‘fission’.13 Soboci½ski 1952 presents an



mentions Woodruff 1969. [Dissertation‘s nondum vid§]. Belnap 1960 introduces fusion into relevance logic
[AB:345]. Meyer 1973 and Meyer 1975 (i.e. AB,§29.3:393-420, and §29.12, esp. p. 470), a chapter of AB,
provides further discussion in the context of the logics R, RM and RM3. AB: 344-346 reviews both
‘intensional’ connectives; Anderson, Belnap & Dunn 1992 [ABD] contains more discussion passim. Restall
2000 defines fusion in various contexts. Fusion corresponds as well  to the ‘multiplicative conjunction’ or
‘tensor (product)’ of Linear Logic. AB also cites Fisk 1964, who provides (pp. 51-53, 58,60) some brief
general discussion of intensional uses of disjunction and of implication, from which it appears that the
connectives we are dealing do not entirely resolve these notions. For Fisk, intensional uses of ‘either/or’ are
‘true’ if relevant alternatives are exhaustively mentioned, and not merely when at least one disjunct is true;
intensional implication requires some kind of appropriate connection between antecedent and consequent,
and not merely that the latter be true when the former is. It seems little of this is guaranteed for + and ÿ. 

14 Relevance logics include v, w, e, ¬ and typically include the theorems of Propositional Calculus.
But ‘ÿ’ is not defined in terms of these : it has its own axioms. Modus ponens works over ‘ÿ’ not over PC
‘e’, so certain deductions are disallowed. E.g. Ae(BeA) is a theorem, but Aÿ(BÿA) is not, therefore from
the premise A, one may not deduce BÿA, by virtue of which something true would be implied by anything
at all. The originating idea is to formalize the notion of ‘entailment’, which when put to use involves some
relation of  ‘relevance’ between premises and conclusions. (More extremely, some relevantists have objected
to admitting ‘AÿA’, on the grounds that one doesn’t go around saying “2+2=4 entails 2+2=4.”) As we will
find here, the logics have concrete applications that transcend their embattled philosophical origins; this is
also made clear in the accessible treatment of Restall 2000. 

The relevance logic of greatest importance in the present context is RM , an extension of the basic
relevance logic R, obtained by adding the axiom Aÿ(AÿA). A theorem-determining semantics for RM
requires twice the number of truth values as there are letters in the formula under scrutiny; so that it requires
an infinite set of truth values to handle the set of all wffs. RM3 is obtained by adding on a couple more
axioms, and has the virtue that only 3 values are required for a complete semantics. Aspects of Meyer’s
illuminating discussion in AB:§29.3.2 will be presented below. Perhaps the most surprising feature of
relevance logics, for the newcomer, is the drastic increase in complexity that is caused by dropping a few
features of familiar Propositional Logic (forget quantification): even finding a semantics requires major skill
and insight, and some of the most basic systems (E,R) are undecidable. One is struck by the staggering level
of success achieved within the simplicities of classical logic.
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axiomatization of a system using only ‘¬’ and ‘ÿ’, with the truth tables given above. This is exactly
the basis for our logic, which is better but more opaquely called S, after its first investigator; as
noted, the connectives ‘B’ and ‘+’ can be treated as abbreviations for ‘¬(pÿ¬q)’ and ‘¬pÿq’
respectively (designated ‘K’ and ‘A’  in Soboci½ski 1952:52, §4.6). Parks 1972 shows that
Soboci½ski’s system constitutes the implication-negation fragment of RM (Cf. AB:148), the
significance of which will emerge shortly. Logics of the RM family also include  the standard
connectives ‘v’ and ‘w’.14 The logic RM3 uses Soboci½ski’s values for fusion, fission, negation, and
arrow. Here we give the RM3 truth tables for ‘v’ and ‘w’.( As in AB:470; note also that these are
the usual ºukasiewicz/Kleene assignments: Rescher 1969:23.) Taken together, the assignments in
(97) and (99) are known as the Sugihara ‘matrix’ called M3 in AB and S3 in Meyer 1973.   
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(99) RM3 v and w 

Conjunction  Disjunction

R…  R… 

 n v R T e F  n w R T e F

n
!

 T T e F n
!

 T T T T

  e e e F   e T e e

 F F F F  F T e F

The places where e behaves as a non-identity in (99) are shaded. With ‘v’ and ‘w’ in hand, we can
also develop a notion of horsehoe ‘e’, defined as ¬AwB. To facilitate comparison, we present the
RM3 tables for ‘e’ and ‘ÿ’ side by side.

(100) The conditional connectives in RM3

Horseshoe  Arrow

R…  R… 

 ne R T e F  n ÿR T e F

n
!

T T e F n
!

T T F F

e T e e e T e F

F T T T F T T T

The cells where the two differ are shaded. As with the other connectives shown above, the difference
between the extensional (v, w, e) and the intensional  (B,+,ÿ) connectives lies in the treatment of
combinations involving e: the intensional connectives impose further distinctions among
combinations that neutralize to e in the extensional set. 

(101) Intensional/extensional differences in RM3
eBe … TBe = T e+e … F+e = F eÿe …  Tÿe = F eÿe … eÿF = F
eve =Tve = e ewe = Fwe = e eee  =   Tee   = e eee  =   eeF   = e

All these connectives share certain fundamental properties: associativity, commutativity,
idempotence (a op a = a), and what we might call ‘T/F-dominance’. Both ‘v’ and ‘B’ are F-dominant,
while ‘w’ and ‘+’ are T-dominant: the composition takes on a dominant value held by either of its
parts. The  ºukasiewicz assignments extend the notion of dominance: assuming the ternary scale
T>e>F, ‘v’ takes on the least and  ‘w’ the greatest of its component values. The valuation of  ‘+’ can



15 The notion of an auxiliary scale is motivated by Meyer 1975 (AB:400, ex. iii) in the context of
RM, where more truth values are at play. See below p. 56 ff. for development and reformulation.
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be described as taking on the greatest value on the auxiliary scale15 T>F>e (AB:470); but this
amounts to treating e as an identity. The innovation in these relevance logics, and in Soboci½ski’s
precursor, is defining the implication connective ‘ÿ ’ not from  ‘v,w’ but from ‘B,+’ (or vice versa),
a move that we heartily endorse. 

To make use of the logic S, we need to bridge the gap between assigning values to single
formulas and assigning values to the vectorial aggregates formed by individual ranking arguments.
Above, we have treated the ERC vector as a basic object and we have simply extended  operations
to it coordinatewise. Viewing the entries as truth values suggests a change in perspective, which will
embed OT in an appropriate logic.

 In ordinary circumstances, a propositional logic recognizes a valuation function which
assigns truth values to all wffs: a valuation maps the basic propositional variables (“prop letters”)
to truth values, and is extended to complex formulae via the assumption of civilized relations with
the connectives: for example, v(AvB)=v(A)@v(B) in standard propositional logic, with T=1 and F=0.
For the logic S or RM3, a valuation v is a function from the atomic prop letters to {T,e,F} or
{!1,0,1} or some such 3 element set with the same structure, which is extended to general wffs in
accord with the tables given above.

With an ERC represented as single letter, an ERC vector consists of multiple valuations of
the same entity. Each constraint is then a single basic valuation function. We may think of an ERC
vector, then, as representing the product of a number of such basic valuations, which we will call
a polyvaluation.

(102) Vectorial S (VS). Polyvaluation.
Let vi, 1#i#n be valuations, not necessarily distinct, from the set  S of S-wffs to a three
element set 3, so that we have vi: S÷3. The product V=Jvi  is the polyvaluation function
V:S÷3n, with [V(")]k=vk(") for any "0S.

This definition immediately gives us the ‘coordinatewise’ effect we are seeking for the treatment of
the connectives . From it, we have:

V("B$) = (v1("B$),…,vn("B$))
V(¬") = (v1(¬"),…,vn(¬"))

The coordinate valuations vk("B$) and vk(¬") are just those defined in S from vk(") and vk($).
As noted above, a wff R of S is ‘true’ under a valuation v if v(R)0)={e,T}. For this we can

write KvR or vKR, using the special symbol to emphasize that we are working outside standard
propositional logic.

It is natural to extend the notion of truth to a polyvaluation V by requiring that every vi in V
yields a designated value. 

(103) Truth and Validity in VS. 
Let V= Jvi  be a polyvaluation. A wff R of VS is true under V iff œvi inV, vi(R)0). For this
we write KVR or VKR. A wff R is valid iff it is true in every polyvaluation, written KR.



16  S (and RM3) is complete with respect to the semantics given, so there is no harm in using
‘theorem’ to mean also  ‘valid wff’.
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With two ways of evaluating the same set of formulae, it’s worth asking what relationship holds
between them. From one point of view, it is particularly simple: any theorem of S is a theorem of
VS, and vice versa.16 If R is true on all S valuations, then it is true over any collection of them, that
is, for any polyvaluation; and if R is true for all polyvaluations, it is certainly true for all simple
valuations (because every simple valuation is also a polyvaluation, over a one-element set). 

(104) Remark. Theorem-Equivalence of S and VS. Any theorem (equivalently, valid wff) of  S
is a theorem of  VS and vice versa.

Pf. As in text.

This doesn’t mean that S and VS are indistinguishable. Generalizations framed with reference
to single (poly)valuations, rather than with respect to  all valuations, can come out differently in the
two logics. Let’s call a wff ‘antidesignated’ under a given valuation if its negative is designated; and
‘nondesignated’ if it is merely not designated. In S, the notions ‘antidesignated’ and ‘nondesignated’
are coextensive, but they part company in VS. 

In S, it is true that for any valuation v, we must have (nonexclusively) either vKR or vK(¬R):
a wff is either designated, or antidesignated, with a designated negative, or both, if v(R)=e. But this
meta-statement is not true for single polyvaluations: there are wffs R such that neither VKR nor
VK(¬R). For example, suppose V(R)=(T,F); then V(¬R)= (F,T) and neither of the mutual  negatives
R and ¬R is true under V: neither consists only of designated values. 

Along the same lines, consider that under simple valuation and polyvaluation alike, if n is
designated and R is not, then nBR is nondesignated; but in the case of simple valuation though not
of polyvaluation, we also have it that nBR is antidesignated, i.e. that ¬(nBR) is designated. Under
simple valuation, the fusion of designated and nondesignated wffs is false, because here
‘antidesignated’ and ‘false’ are synonymous. The failure of this property to extend to polyvaluations
shows up in the kind of ‘nontruthfunctionality’ of fusion noted above (§2, p. 9). For example,
designated (T,e) and antidesignated (e,F) fuse to (T,F), but (T,F) is not ‘false’ or antidesignated.
Finally, observe that under any simple valuation, we must have vK"ÿ$ or vK$ÿ"; yet this is
manifestly not guaranteed under polyvaluation, due to the requirement that the same formula must
hold in every coordinate.

The upshot is that polyvaluation distinguishes more finely among wffs than does simple
valuation. S already introduces a distinction within the set of  ‘true’ or designated wffs that is not
made in standard two-valued logic. Polyvaluation imposes yet further distinctions throughout the
system. For a product of n valuations, there are fully 2n distinct kinds of designated wffs, ranging
from (e,e,...) to (T,T,...), with every combination of e’s and T’s in between. Of these, only (T,T,....)
acts exactly like the simple (T) of the single valuation. Similarly, among antidesignated wffs, there
is a parallel set of distinctions running from (F,F,...) to (e,e,...). And between these two classes, there
is brought into existence a class of wffs which are neither designated nor antidesignated. In essence,
polyvaluation blows up the middle region of value space, replacing the simple 3-point lattice (3)
based on the relations F#e#T with a far richer one (3n).



17 AB:396 state this for  v, w, e, / only. But see Anderson & Belnap 1959, Dunn 1985:149.
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To reach terra firma, we must relate calculations in VS to the familiar kind of PC logical
relations among ERCs and sets of ERCs. Above, we have done this by associating each
polyvaluation with a expression in ordinary predicate calculus. We may then pass back and forth
between statements in VS and PC: for example, writing h for  the function assigning V(") to an
ERC, if VK"ÿ$, then |h(V(")) e h(V($)). 

As we have seen throughout, handling the converse requires some care with valid and  invalid
wffs, because ‘|’ has a coarser sense of these notions than ‘K’. For example, VK"ÿ$ means that both
the W-condition and the L-condition are satisfied without qualification, since by the  the laws of S
valuation for ‘ ÿ’, given in (97), T at ["]k must correspond to T at [$]k, and F at [$]j must
correspond to F at ["]j. Thus, although |(T,e)e(e,T) under the rubric ‘verum ex quodlibet’, it is
manifestly not the case that K(T,e) ÿ(e,T).

7.2  Beyond VS to RM 

To minimize shuttling between VS and PC, the entire scheme of relations can be brought under the
one roof of the logic RM, which contains both the intensional and the extensional connectives.  RM
has the following property, to be demonstrated shortly.

(105) RM/PC. Suppose a formula A contains none but the connectives v, w, e, ¬. Then A is a
theorem of RM iff A is a two-valued tautology.17

In essence, RM hospitably takes in PC in its entirety, along with S, and regulates the behavior of
every mixture of the two. This allows us to operate safely with any wff using the entire range of
intensional and extensional logical apparatus. And when we cash out intensional expressions of
whatever complexity for single ERCs, we are left with a sentence that is fully and correctly
interpretable in standard terms.

ERC fusion puts VS expressions like ABB in 1:1 correspondence with PC expressions
containing only extensional connectives. The relation between ‘¬RM(k)’ and PC ‘¬’ is only slightly
more complicated. This means that the transition from RM to PC will be smooth. 

For example, (AvB)ÿ(ABB) is a theorem of RM (R55, AB:397), which leads immediately
to (AvB)e(ABB), i.e. AvB|ABB, since XÿY entails XeY. But this is just Lemma (14), which will
be given to us outright by RM/PC (105) if we are successful in identifying RM as the logic of OT.
To this end, we develop the basic semantics of RM. (For RM proof theory, see Avron 1987, 1991.)

The relation between RM and ERC logic is most easily determined through the RM semantics
developed by R. K. Meyer (reported as Meyer 1975:400ff.) and further developed in Dunn 1970.
Meyer shows that RM is complete with respect to a multivalued semantics. The fundamental insight
is that the relevant sets of truth values have the property, when represented as integers, that the
integer !k is included in the set whenever k is; staying close to Meyer’s usage, let us call such a
collection of integers a ‘Sugihara set’ (Sugihara 1952). 
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The RM3 values{F,e,T}, for example, can be represented by {!1,0,1},  by {!71,0,71}, or
indeed by any set {!k,0,+k}, though for concreteness and ease of exposition, we will typically
instantiate Sugihara sets with the smallest possible integers that fit the description. Let us label each
Sugihara set as SN, where N is its cardinality (here, we take the liberty of modifying Meyer’s
notation). Two kinds of Sugihara sets will play a role in the following discussion: those which
contain 0, and those which do not. These can be distinguished as S2N and S2N+1. For example,
S5={!2,!1,0,1,2}and S4={!2,!1,1,2}, under the convention of smallest integer representation.
Extending to infinite sets, we have, writing Z for the integers and borrowing from Dunn the notation
Z* for the integers except 0, 

SZ  =  {...,!3,!2,!1,0,1,2,3,...}
SZ* =  {...,!3,!2,!1,1,2,3,...}

The non-negative values will always be designated.

Valuation of the extensional connectives and of negation contains no surprises.

(106) Valuation on Sugihara Sets (Negation, Conjunction, Disjunction)
Let I be Sugihara, i.e. a set of integers such that k0I => !k0I. Let v map prop letters to I. We
extend v to complex sentences as follows:
(i)   Negation v(¬P)   =  !v(P)
(ii)  And v(PvQ) =  min[v(P),v(Q)]
(iii) Or v(PwQ) =  max[v(P),v(Q)]
(iv) H’shoe v(PeQ) =  max[v(¬P),v(Q)]

Note that (ii) - (iv) are not independent, because ‘ v’, ‘w’, and ‘e’ are interdefinable, given negation.

These definitions extrapolate straightforwardly from the familiar patterns:
•   PvQ is designated iff neither P nor Q is negative – ‘false’.
•   PwQ  is designated iff either is nonnegative – ‘true’.
•   PeQ  is designated iff P is nonpositive or Q nonegative (beware zero in the antecedent!).

The negative and nonegative stretches of value space form vast equivalence classes with respect to
these connectives, retaining amid apparent multiplicity the simple familiar sense of F and T. To give
teeth to this intuitive formulation, we state it as the the following:

(107) Lemma. Extensionality. Let n be any sentence using only the extensional connectives and
negation. Let SK be any Sugihara set. Let v be any valuation on SK conducted according to the rules
in (106). Let v* be the valuation defined as follows, for every prop letter P:

v*(P) =  +1  if v(P)>0
v*(P) =    0  if v(P)=0
v*(P) =  !1  if v(P)<0.

Then v(n) <0 iff v*(n)<0 and v(n)=0 iff v*(n)=0.
Pf. By straightforward induction on the number of connectives in n. If none, the thesis
follows trivially from the definition. Now assume that the thesis holds up to n connectives,
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and examine formulae containing n+1. Since all extensional connectives can be defined in
terms of ¬ and  v, we have only two cases to consider. 

(i) n is ¬n1. Then v(n)<0 iff v(n1)>0 (definition of ¬) iff v*(n1)>0 (induction
hypothesis) iff v*(n)<0 (def. of ¬). Along the same lines, v(n)=0 iff v(n1)=0 iff v*(n1)=0
(induction hypothesis) iff v*(n)=0. 

(ii) n is n1vn2.  v(n)<0 iff at least one of the conjuncts is negative, by the definition
of v; call one such conjunct nneg. Then  v*(nneg)<0 iff v*(nneg)<0 (induction hypothesis) iff
v*(n)<0 (definition of v). Along the same lines, v(n)=0 iff one of the conjuncts evaluates
to 0 and the other to a nonnegative integer; the argument proceeds similarly, though both
conjuncts must be kept track of.      ~ 

Note that for S2N, which does not contain 0, the lemma guarantees that valuation of these connectives
tracks PC valuation perfectly: negative to negative, positive to positive.

Dealing with the intensional connectives requires further development. Meyer postulates an auxiliary
order that runs 0, !1, 1, !2, 2, !3, 3, … , i.e. one in which a<b if |a|<|b| , but which reverts to the
usual order between a and b when |a|=|b|, so that !|x|<|x|. In terms of this auxiliary order, v(P+Q) is
defined as the maximum of {v(P),v(Q)}, paralleling disjunction in the ordinary order. But the
auxiliary order is limited in its generality of application. For example, as Meyer notes, in this order
v(PBQ) is not the minimum of v(P) and v(Q). (E.g. 1B!2 is !2, not 1.) Let us therefore approach the
matter in a slightly different way, one that highlights other symmetries in the system and turns out
to mesh more closely with ERC logic.

Let the outermost members of a set of integers to be those with the greatest absolute value;
we can then state the definitions of the intensional connectives as follows:

(108) Valuation of Intensional Connectives on Sugihara Sets
(i)   Fusion  v(PBQ)      =  Outermost of {v(P),v(Q)} if unique, else min[v(P),v(Q)].
(ii)  Fission v(P+Q)     =  Outermost of {v(P),v(Q)} if unique, else max[v(P),v(Q)].
(iii) Arrow v(P ÿQ)  =  Outermost of {v(¬P),v(Q)} if unique, else max[v(¬P),v(Q)].

The relation between the two clauses in each definition is essentially that of constraint domination
in the optimality theoretic sense, and the resulting order is lexicographic, with the primary sort by
absolute value and the subsidiary sort by value tout simple. 

We can give a more compact definition if we recognize a function OUT[X], defined on sets
of integers, that returns a set containing the outermost member(s) of X, i.e. x0OUT[X] iff |x|$|y| for
all y0X. For example, with X={!n,+n}, we have OUT[X]=X, but otherwise for X={m,n}, |m|…|n|, we
have a singleton set. Then we can achieve the desired effects through composition with the functions
min and max, which return the extremal element:

(109) Valuation on Sugihara Sets (Fusion, Fission, Arrow)
(i)   Fusion  v(PBQ)      =  min  OUT[v(P),v(Q)]
(ii)  Fission v(P+Q)     =   max OUT[v(P),v(Q)] 
(iii) Arrow v(P ÿQ)  =   max  OUT[v(¬P),v(Q)]
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 The intensional component, which distinguishes these connectives from their extensional congeners,
lies entirely in the appeal to absolute value via OUT.

All these connectives are of course interdefinable, given negation. An important consequence
is that v(PÿQ) is designated iff v(P) #v(Q).  

(110) Remark. v(PÿQ)$0 iff v(P)#v(Q).
Pf. Left to reader. 

A further consequence worth noting is that 0 is always an identity.

(111) Remark.  0 is an identity for fusion and fission in S2N+1 and SZ .
Pf. 0 is never dominant.       ~ 

As a final observation along these lines, we note that the intensional connectives, including negation,
evaluate to 0 iff all of their arguments are 0. (This is not true for the extensional connectives!)

(112) Remark. v(PBQ) = v(P+Q) = v(PÿQ) = v(¬P) = v(¬Q) = 0  iff  v(P) = v(Q) = 0.
Pf. Direct from (111).       ~ 

We can now define a “Sugihara matrix” Mk to be the Sugihara set Sk equipped with the apparatus
of valuation just outlined. This yields the definition of validity in Mk.

(113) Def. Valid in Mk. A sentence A is valid in Mk, written MkK A, iff v(A)$0 for all v on Mk. 

Note that A is valid in MZ iff A is valid in all Mk. More generally, we have from Dunn (1970:7,
Theorem 4) the result that validity holds downward in the sequence of Mk’s.

(114) Validity Descent. For Mn and Mk, with n$k, MnK A Y MkK A.
Pf. The challenge is going from a 0-lacking Mn to 0-containing Mk: see Dunn.

Equally useful is the contrapositive, ‘invalidity ascent’: for Sk and Sn, with k#n, if A is not valid in
Mk then it is not valid in Mn.

Meyer (1971;1975), reporting work from 1966, establishes the following key result.

(115) Completeness , Soundness, and Decidability of RM.  A sentence of RM with N prop letters
is provable from the axioms of RM iff it is valid in M2N . 

Pf. See AB:413, RM81.

This can be generalized mildly in the light of Validity Descent: an N-letter sentence of RM is
provable iff it is valid in some Mk, for k$2N.



18 In heaven, I suppose, lie down together / Agonized Pilate and the boa-constrictor / That swallows
anything …       – C. Day Lewis.
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From (115), the central properties of RM semantics follow immediately. In particular, MZ and MZ*
provide a general semantic setting for RM logics of unbounded size.

(116) Corollary. Let RM be formulated with denumerably many prop letters. Then all and only the
theorems of RM are valid in MZ and MZ*.

Pf. See AB:414, Corollary 3.5.

In addition, Dunn 1970 shows that each Mk is associated for finite k with a logic of its own: RM[k],
which has the property that all and only its theorems are valid in Mk. When this property holds, one
says that the matrix is ‘characteristic’ for the logic. Thus, MZ and MZ* are characteristic for RM.

(117) Characterization. Each Mk for finite k is characteristic for an extension of RM, i.e. RM with
additional axiom(s). (Dunn 1970: 9, corollary 2).

These results establish that RM and its extensions have a remarkably elegant and simple structure.
We have a hierarchy of logics and symmetry-breaking among the connectives, characterized by the
Sugihara matrices:  

M1   with S1={0}: the peaceable kingdom in which everything is true, and in which all
connectives are the same;18 

M2  with S2={!1,1}: classic Propositional Calculus, in which the extensional and their
corresponding intensional connectives are identified; 

M3   with S3={!1,0,1}: RM3, in which {B,v}, {+,w}, and {ÿ,e} all part company    
! 
MZ   with SZ= { …!3,!2,!1,0,1,2,3, … }      
MZ*  with SZ*={ …!3,!2,!1, 1,2,3,  … }  © 

RM

To get a feel for the system, let us examine how these logics treat the sentence n: ABBeA. 
RM1 Valid, like everything else.
RM2 Valid, and coincident with AvBeA,  AvBÿA,  ABBÿA. 
RM3 Valid, although ABBÿA is not.
RM4     Invalid: because  (!1)B2e(!1) yields 2e(!1) yields (!1).
   !     Invalid: ditto, with more and more problems along the same lines.
RM     Invalid: ditto.

Observe that the invalidity of n is established in RM4, exactly as determined by Meyer’s central
result (115): 4 = 2 × number of prop letters in n. And since all successor matrices contain this
valuation pattern, invalidity persists from RM4 on up, as guaranteed by (114). Further, since the
valuation possibilities of RM2 are a proper subset of those in RM3, the validity established at RM3
persists downward.



19 See Appendix 4 for a ‘world’ or Kripke-style semantics (Dunn 1976) that covers the same territory.
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Meyer’s (115) also makes it easy to nail down the relation between theoremhood in PC and
theoremhood in RM, validating our claim above that RM includes PC.

(118) Remark. RM/PC. Let n be a sentence using only connectives drawn from the set { ¬, v,w,e}.
Then n is a theorem of RM iff n is a theorem of PC.

Pf. The LR direction is straightforward, since RM valuation under SZ includes every
assigment of {!1,+1} to n. Now suppose n is a theorem of PC, and therefore assumes a
positive value under any valuation over S2={!1,+1}. By the 2N property (115), n is a
theorem of RM iff M2N K n, where N is the number of prop letters in n. By the extensionality
lemma (107), the existence of a valuation v on M2N with v(n)<0 implies the existence of v*
on S2  with v*(n)<0. Since there can be no such v*, there is no such v, and RMKn.        ~ 

7.3  Ordered Polyvaluation as RM Semantics

Establishing the relation between ERC logic and RM is now within reach. First we show how the
notion of propositional variables representing ERCs over constraint hierarchies generates a Meyer/
Sugihara semantics, via what we will call the ordered polyvaluation (OP).19  Just as for VS, we
assume that a prop letter represents an ERC by virtue of a polyvaluation V=Jvi over a collection of
ternary valuations vi:Q÷{!1,0,1}, 1#i#N, where Q is a set of prop letters. 

To incorporate the notion of a constraint hierarchy, let the valuations vi be subject to a total
order R, essentially a permutation on the indices. Each vi represents a constraint Ci, and R represents
the domination order among the constraints when they are placed in a (totally ordered) hierarchy. For
Ci>>Cj let us have vi>Rvj, so that the greater element in the R order is the dominating constraint. 

Given an ordered polyvaluation +V,R,, consisting of a polyvaluation V with N individual valuations
vi and an order relation R on them, each R0Q can be assigned a numerical value drawn from the set
of integers {!N,…,N}. The choice of sign is determined by the distinction between T and F; the
absolute value is determined by the position in the ranking order of the highest (first, greatest)
constraint assigning a T or F value. This will allow us to re-construct the Sugihara-set semantics in
its entirety.

To implement this progam, let us recall the notion of ‘rank’ for an ERC, from §3, (53), p. 27. The
rank |C| of a constraint C in a hierarchy H is the stratum that contains it. This notion carries over
straightforwardly to the setting of ordered polyvaluations, where each stratum contains but one
element, due to the totality of R.

To measure position in the ordering R, we assign to each vi a positive numerical weight, its
dominance. The greatest vi under R is assigned N, and we count downward until we reach the least
vi , which earns a value of 1.
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(119) Def. Dominance. Given an ordered polyvaluation +V,R,, the dominance of any vi in V, written
dom(vi), is the number of valuations v in V such that vk$v in the R order. 

dom(vi) = card {v| vk$v}

Using dominance as a weight, we derive a numerical valuation from each vi, which is the value that
it assigns.

(120) Def. Value. Given  +V,R,, the value assigned by vi to an argument R, written vali(R), is equal
to vi(R) weighted by dom(vi).

vali(R) =df   vi(R) × dom(vi)

For example, if V(R)= (e, T, e, F), with R following the coordinate order, then the corresponding
sequence of values would be (0×4, 1×3, 0×2, !1×1) = (0,3,0,!1).

RM semantics is based entirely on the value associated with the highest-ranking polar valuation.
Given the weighting system, this will be the one with the greatest absolute value, i.e. the outermost
of the set of values, and it will be unique.

(121) Def. Principal Value.  The principal value of R in an ordered polyvaluation +V,R,, written
val(R), is the value associated with the highest-ranked valuation in V assigning a polar value to R,
and is equal to 0 if no valuation assigns a polar value.

val(R) =df  min OUT[{vali(R), 1#i#N}]
=   max OUT[{vali(R), 1#i#N}]

Since there is only one outermost value in this case,  the min and max functions are equivalent and
merely serve to extract from the singleton set its one member. It turns out to be useful to express
things this slightly artificial way, because it eases interaction with the intensional connectives.

Dominance assigns to each vi a numerical value in the range +1...N, and the vi themselves assign
values from {!1,0,+1}. The principal value of any R will then lie in the Sugihara set
S2N+1={!N,...,+N}. A small-scale example should make this clear. Here are  the results of all
permutations of order on a 2-valuation system of polyvaluations.
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(122)

R1 : 1>2 R2:  2>1 

  v1 val1 v2 val2 val val v2 val2 v1 val1

i T 2 F !1 2 !2 F !2 T 1

ii e 0 T 1 1 2 T 2 e 0

iii T 2 e 0 2 1 e 0 T 1

iv e 0 e 0 0 0 e 0 e 0

v T 2 T 1 2 2 T 2 T 1

vi e 0 F !1 !1 !2 F !2 e 0

vii F !2 e 0 !2 !1 e 0 F !1

viii F !2 F !1 !2 !2 F !2 F !1

This simplest nontrivial case exemplifies various key  properties:

1. A system of N constraints can assign 2N+1 values under a linear order R, and 2N if we exclude
the degenerate vector * = (0, …,0) .

2. A given polyvaluation of " need not run through all possible assignments to " as we run through
all permutations of the constituent valuations.

3. An ERC true in every model corresponds to a prop letter that assumes a designated (nonnegative)
value under every permutation of order on the polyvaluation: here (ii)-(v), shaded. An ERC that has
no models  assumes only negative values, like those of (vi)-(viii). A nontrivial ERC assumes both
positive and negative values, like (i) does.

Now that we have established a polyvaluation-based semantics for RM, we can inquire about the
relation between validity in VS and valuation in RM. Because the theorems of VS are exactly those
of S, as noted in remark (104), and because S is the implication-negation fragment of RM (Parks
1972), anything valid in VS is also valid in RM, and vice versa for sentences in the intensional
vocabulary. This is unsurprising, and rather weak, in that validity requires truth in all valuations. A
stronger result relates valuation in VS to valuation in RM: anything that is designated in VS under
a given polyvaluation V is also true (i.e. designated) under RM rules in all orderings of that
polyvaluation. This is a straightforward result – validity in VS means no F’s in the polyvaluation,
which ensures a nonnegative RM valuation regardless of order – nonetheless but has useful
consequences. For example, if VK"ÿn in the VS sense, then +V,R,K"ÿn for any R. This means that
val(")#val(n), and  then, taking the OP point of view, we are assured that for any ranking at all of
which " holds, i.e. with val(")$0, the ERC n has a rank that is above or co-stratal with that of ".



62

7.4  RM as the logic of OT

Two essential  tasks remain before we can declare that we have successfully identified  the logic of
OT, as explored above in §§1-6, with RM.

[1] First, we determine the relation between the ERC format as in (4) (“some W must
dominate all L’s”) and the semantics of ordered polyvaluation. 

[2] Second, an important house-keeping task, showing that the various modes of valuation
we have introduced all lead to the same conclusion. Specifically, we show the the result of
polyvaluation in VS, which is defined over complex sentences built with intensional connectives,
coheres with that obtained by the ordered polyvaluation semantics for RM.

[1] The ERC and The Ordered Polyvaluation

 … the  next time he makes the aquinatance of the Ondt after this they have
met themselves, these mouschical umsummables, it shall be motylucky if
he will beheld not a world of differents. FW, 417.

The relation between ordered polyvaluations and constraint hierarchies is clear and straightforward.
An expression R is designated or ‘true’ in a given +V,R, iff val(R)$0, i.e. iff its principal value is
nonegative. Designation does not occur when the principal valuation vR, highest ranked under R,
serves up a negative value on R. This is perfectly parallel to evaluation in a constraint hierarchy,
where an ERC fails iff its highest-ranked polar assessment is L.

An ERC expresses a limitation on contraint hierachies. What limitation does a polyvaluation V(R)
impose on the orders R under which R is designated? Given an ordererd polyvaluation +V,R,,
designation of R,with val(R)$0,  can happen only under these conditions:  

• If there is any vj in V with vj(R)=F/!1, then there must be a vi in V with vi(R)=T/+1, such
that dom(vi)>dom( vj) under R.

This is of course nothing more than a restatement of (4), the definition of an elementary ranking
condition. Thus, the ordered-polyvaluation semantics of RM contains ERC theory within it.

To make the relationship more precise, let us specify the function h mapping from polyvaluated
expressions to PC ERC expressions of type (4). Quantification is over the valuation functions  in V.

(123)  h: (R,V) µ  ›gœf [ (f(R)=F) e  (g(R)=T  v  dom(g)>dom(f)) ]

The function h associates a polyvaluated expression with a statement of the conditions required for
it to be true under an ordering of its polyvaluation. Since this has exactly the form of an ERC, we
identify {V} with the set of constraints that track it, as well as T with W, L with F. The following
relation then holds:

(124) Remark. If a certain R is designated by RM rules under an ordered polyvaluation +V,R,, then
h(R,V) holds of R. Conversely, if  h(R,V) holds of R, then R is designated under +V,R,.
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In this way, the truth (or falsity) of a logical expression under an OP exactly tracks the status of an
ERC over a constraint hierarchy.

This a mere first step to ERC logic. The real strength of the approach is that the sentences of RM,
of arbitrary logical complexity,  translate under polyvaluation to sentences of ordinary logic about
constraint rankings. 

PC logic does not, of course, contain connectives like ‘B’ and ‘ÿ’ or ‘¬RM3’ (i.e. negation
with the possibility of ¬"="). But the interest of RM lies precisely in its intensional connectives and
the way that it handles their relations to the familiar extensional system. In the present context, it is
crucial that the set of ERCs is closed under the intensional operations: ERCs in, ERCs out. This is
a direct correlate, via h, of the fact that VS polyvaluation applies to entire intensional expressions
as well as to the prop letters they are made up of, by virtue of definition (102). Because any ERC
vector or polyvaluation corresponds to an ordinary PC logical expression, all taint of intensionality
can be eliminated, by replacing intensional subformulae with single polyvaluated expressions, when
the time comes to speak only of truth and falsity. In short, "B$ looks just a single prop letter to the
interpretive mechanism.

The eliminative claim holds not just for VS but for the full range of RM sentences, employing
any mixture of connectives. Because RM licenses distribution of {v,w} over {B,+} and vice versa,
with De Morgan laws relating the  connectives within each set, we have a normal form in which the
negative takes scope only over single prop letters, and in which no extensional connective is in the
scope of any intensional connective (AB:396-399). The purely intensional subformulae are
polyvaluable expressions that map to single ERCs, and the extensional remainder may be interpreted
exactly as in standard logic, by virtue of RM/PC (118).

VS supplies the theory of intensional connectives under polyvaluation, but the desired
application is to RM, with a different overall semantics based on order. To complete the argument,
we need to certify that fusion and negation as defined in VS function properly in the ordered
polyvaluation semantics of RM. 

[2] VS and RM

For each intensional connective, including negation, there are now two distinct routes to calculating
its value: one depends only on the Meyer-type rules for RM  (109); the other makes us of the S
recipe for evaluating intensional expressions (102) , which underlies VS. We must make sure that
these two routes give the same result.

To completely specify  the OP semantics for RM, we extend the function val to arbitrarily
complex formulae, in the manner of  (106) and (109)

(125) General Valuation in OP semantics
 (i)   Negation  val( ¬")   =  !val(")
 (ii)  And  val("v$) =  min{val("),val($)}
 (iii) Fusion  val("B$)  =  min OUT{val("),val($)}
 

The function val itself is defined on the constituent valuations in V and their order R, as follows,
repeated from (120) and (121). The definition assumes N valuations vi in V.
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(126) Definition of val
 (i)  vali(") =df   vi(")×dom(vi)
 (ii) val(") =df    min OUT {vali("), 1#i#N}

The ambiguity in valuation paths comes about because the constituent valuations vi are themselves
empowered to handle not just atomic prop letters but general intensional expressions. This is what
gives us VS and the entire theory of ERC logic explored in §§1-6. 

(127) S  definition of v
 (i)  v(¬") = !v(")
 (ii) v("B$) = min OUT {v("),v($)}

Under a given +V,R, within RM, we may calculate, for example, val("B$) from val(") and val($),
according to the Sugiharan RM recipe for fusion as a function of its arguments.

val("B$) =  min OUT{val("),val($)} [(125) (iii)]
But we may also circumvent the recursive val-to-val recipe, using S/VS to do fusion coordinatewise,
and only then evaluate the result under R, ultimately recursing on vi.

val("B$) = min OUT {vali("B$), 1#i#N} [(126) (ii)]
  = min OUT {vi("B$) × dom(vi), 1#i#N} [(126) (i)]

Well-definition requires that these two routes yield the same answer.
min OUT{val("),val($)} ûmin OUT {vali("B$), 1#i#N}?

The following illustrative examples give a sense of the different valuation paths.

(128) Fusion both ways

v1 val1 v2 val2 v3 val3 val

" T 3 F  !2 T   1  3

$  0 T    2 F !1 2

"B$ T  3 F !2 F !1  3

We may obtain the value of "B$ from the last column by computing  with val(") and val($), whereby
the outermost of {3,2} is 3. Or we may first establish the bottom-row polyvaluation of "B$ as
V("B$), and apply val to the resulting expression, selecting 3 as the outermost of {3,!2,!1), arriving
at the same answer. 

Negation shows a similar behavior.
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(129) Negation both ways

v1 val1 v2 val2 v3 val3 val

"  T   3 T   2 F !1   3

¬"  !3 F !2 T   1 !3

We may compute the value of ¬" from val(") in the last column by negating it directly; or we may
negate each component valuation of " to arrive at the bottom-row VS representation of ¬", whose
outermost value will be the same.

Why does this work? The negation case is clear enough – the principal valuation (here v1)
is determined by absolute value, which remains the same under multiplication by !1. And since the
coordinatewise definition of negation, via vi, is the same (arithmetic negation) as the val definition,
we are guaranteed sameness of result. In essence, the ‘outermost’ function for choosing val(")
commutes with the function that interprets the ‘¬’ connective:

! [outermost of{vali(")}] = outermost of {!vali(")}
The success of the fusional calculation turns, somewhat more subtly, on the same considerations.
Perhaps this can be seen most clearly if we construct the order implicit in the (composite) function
‘minimal outermost’. Fusion is minimal in the following linear order on Z:

MinO order: … <  !3  <  3 <  !2  <  2  <  !1  <  1  <  0.
Simple properties of the general min function on linear orders then give us the desired result. The
min function is idempotent: min(min X) = min X. It also has a kind of associative property: given
a set of integers X and Y, we may directly compute min[XcY] or we may first compute min[X] and
min[Y] and only then compute the global minimum min[{min[X], min[Y]} – the outcome must be
the same either way, by transitivity of the order. Generally, we can divide up a set of integers in any
ways we like, take min over the pieces, then min over those piece-wise minima, always arriving at
the same result, which is the minimum for the whole.

In example (128), it matters not whether we take min OUT row-wise first, computing val(")
from the vali(") and val($) from the vali($), and then apply min OUT to the result; or go columnwise
first, computing each vali("B$) from {vali("), vali($)} by min OUT, and then obtain the min OUT of
the resulting set of pairwise minima. In either case, we are ultimately computing min OUT over the
entire collection of vali(")’s and vali($)’s.

Our desired conclusion, then, is that the val function for any +V,R, yields the same results under two
conditions, given a complex expression n with proper subparts ni.

1) Recurse on val.  val(n) is determined from the val(ni) by OP rules (125).
2) Recurse on vi.    val(n) is determined from the vali(n), 1#i#N, where the vali call directly

on vi and therefore on vi(n) and S rules (127).

To deconstruct this distinction, let us separate out the part of val that recurses only at the vi level,
which we will name ‘VAL’. We then show that any derivation using val on an intensional expression
achieves the same value as one using only VAL. This shows that all possible derivations involving
val, with any combination of recursions, will necessarily agree.
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 In the interest of conciseness, we use the following abbreviations: we write MO for ‘min
OUT’, and whenever a subscripted item appears within braces, like {xi} or {f(xi)}, we mean the entire
set of  things obtained by assigning the subscript all of its values.

The theory of valuation then comes out like this, using the concise notation where appropriate. The
definitions are tagged with names in the left-hand column. 

B/val        val("1B"2)   =df    MO { val("k)}
¬/val         val( ¬")   =df   !val(")

These definitions recurse on val. The function val may also be cashed in for the vi indirectly by this,
when " is free of extensional connectives:

val/VAL val(") =    VAL(")
This simply provides a name, ‘VAL’, for the part of the derivation that depends entirely on the vi to
compute the value of intensional collocations. The function VAL itself knows nothing of
connectives, and is defined as follows:

Def. VAL     VAL(") = df   MO {vali(")} 
This establishes VAL as precisely that subpart of valuation that plucks out the dominant value from
a single polyvaluated expression. The vali provide the call to the valuations in V as well as to the
order R. Their definition is recalled here:

Def. vali         vali (") =df   vi(")×dom(vi)
And the vi make use of S definitions of the connectives, paralleling those for val:

B/v           v("1B"2) =df   MO { v("k)}
¬/v           v(¬") =df   !v(")

We will first show that a derivation involving just one recursive call via the rules B/val or ¬/val will
give the same result as a direct computation from VAL. This will then allow us to bootstrap our way
to the desired general conclusion.

(130) Lemma. One-Step Well-Definition. Let "1, "2 be expressions of S. For any OP +V,R,, if
val("1B"2) and val(¬") are each computed with a single recursive call to val, then the resulting
valuation is identical to that obtained from VAL, without such calls.

Pf.
     val("1B"2) = MO { val(""""k)} B/val

= MO { VAL("k)} val/VAL
= MO { MO {vali("1)}, MO{vali("2)} } Def. VAL
= MO { MO {vali("k)} } Assoc. MO
= MO {vali("k)} Idemp. MO

 = MO { vi("k)×dom(vi) } Def. vali

VAL("1B"2) = MO { vali(""""1BBBB""""2) } Def. VAL
= MO { vi("1B"2)×dom(vi) } Def. vali
= MO { MO {vi("k)×dom(vi) } } B/vi
= MO { vi("k)×dom(vi) } Idemp. MO
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       val(¬") =  !!!!val("""") ¬/val
=  !VAL(") val/VAL
=  !MO { vali(") } Def. VAL
=  !MO { vi(")×dom(vi) } Def. vali
=  MO { !vi(")×dom(vi) } Comm. MO/!

 
          VAL(¬") = MO { vi(¬"""")×dom(vi) } Def.VAL

= MO { !vi(")×dom(vi)  } ¬/ vi ~

Now consider the general character of valuations involving val. These track the syntactic structure
of a complex expression, which we may represent as an at-most binarily branching tree, with each
nonterminal node labeled as ‘B’ or ‘ ¬’. For example, 

¬ 

B
=        ¬ ("B ¬$)  

" ¬ 

$

Given any course of valuation for the whole expression, we may represent it by labeling each node
in the tree with the functions that are responsible for its valuation. The key nodes will be those where
valuation is handed over from ‘val’ to ‘VAL’ by the val/VAL rule; they will then be labeled with
both function names. Any node labeled with ‘val’ may have its daughters labeled with either ‘val’
or ‘val/VAL’, depending on the evaluative route taken. The key fact is that every path from the root
to a terminal node must contain a ‘VAL’ at some point, because it is only through ‘VAL’ that contact
is made with the polyvaluation. Furthermore, no more than the one ‘VAL’ will appear in each path,
since ‘VAL’ itself is not recursive. Nor may a node labeled ‘VAL’  dominate any labeled ‘val’. This
means that every such valuation tree, given a val-recursive derivation, has a ‘frontier’ of nodes
labeled ‘val/VAL’ that separates the (upper) val-recursive parts from the (lower) parts where vi  is
at work. 

The lemma allows us to push the frontier back (or ‘up’0. The nodes on the frontier come in
two types: those exhaustively dominated by a ‘val’ node; those that are paired with another frontier
node to form a constituent dominated by a ‘val’ node. In either case, the lemma tells us that the
dominating mother node can be replaced by a ‘VAL’ node, retaining the same valuation. This
procedure creates a new frontier, which can then be pushed back in exactly the same way. Because
trees are finite, this procedure will eventually replace every ‘val’ with ‘VAL’, never changing the
valuation. It follows that any recursive derivation will compute same overall valuation as would be
computed by one that started right off with VAL. This establishes that all derivations give the same
answer, as desired.



20 It might be worth noticing that the matter can be treated syntactically as well, possibly with profit.
Let us reconstruct a polyvaluated expression as a fusion of elementary components. For any  ", let "i be a
prop letter whose polyvaluation agrees with " on vi but evaluates to 0 everywhere else; then " is logically
equivalent, under V, to a fusion over the "i’s. We have VK " = ƒk"k .(In essence, we identify a ‘basis’ for the
polyvaluation.) From this we obtain VK "B$ = ƒk"k B ƒk$k = ƒk("kB$k), the last step by associativity and
commutativity of fusion. But ƒk"kB$k is nothing more than a rewrite of the definition of V("B$), since it
performs fusion in each coordinate. To deal with negation, note along the same lines  that VK ¬ƒk"k =
ƒk(¬"k), where ƒ is self-dual here because of the mutual ‘orthogonality’ of the "k’s. (Since no fusion ever
involves two polar values, we have "B$="+$.)
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(131) Proposition 7.1. Well-definition. Let n be a sentence of S, i.e. one containing connectives
from the set {¬,ÿ,B,+}. All courses of valuation using recursion of val (125) and/or recursion of the
vi (127)  yield the same result.

Pf. By  formalizing the textual narrative.       ~ 

It may also be observed that the VS definition of fusion and negation is the only coordinatewise one
that will fit with RM semantics.20

To complete all the house-keeping with respect to the VS/OP relation, we want to show that 
arbitrary sentences of RM come out the same over any course of valuation, i.e. no matter if or when
or to what extent VS-collapse is done.

(132) Corollary to Proposition 7.1. Let n be an arbitrary sentence of RM, using any mix of
intensional and extensional connectives. For any OP +V,R,, let [val]1(n) and [val]2(n) represent two
distinct courses of valuation. Then  [val]1(n) and  [val]2(n) deliver the same valuation for n.

Pf. Because VAL only works over expressions lacking extensional connectives, the only
differences between any such  [val]k(n) lie in the valuation of intensional subformulae. But
these are evaluated equivalently, by Prop. 7.1. And since the value of the whole is determined
by the values assigned to the parts, which do not change under changes in course of
valuation, the result is guaranteed.        ~ 

The import of these results is that we can freely translate any RM formula, under polyvaluation, for
a purely PC expression involving ERCs, obtained by using the correspondence function h. From the
normal form result (AB:399), we know that any RM sentence is equivalent to one in which
intensional expressions are segregated off from the extensional structure, in the sense that no
intensional connective contains an extensional connective in its scope. Any such intensional
subformula corresponds to a single ERC, by VS rules. Thus, given a polyvaluation, we may de-
intensionalize any RM sentence by reducing it to normal form and replacing every intensional
subformula with a prop letter that has the same polyvaluation. We are guaranteed by Proposition 7.1
that the resulting sanitized wff has the same valuation as the original, under any R. And the resulting
wff has, by RM/PC (118), the same semantic status it has in straight extensional logic.
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We conclude with the observation that we  cannot extend VS-style polyvaluation to the extensional
connectives (v, w, e). Their properties are determined only within OP, where order is crucial. To see
why such extension is impossible, consider the fate of RM3 conjunction under the coordinatewise
logic of VS. The special symbol ¢P emphasizes the distinctness of coordinatewise pseudo-conjunction
from authentic v.

(133)  Pseudo-Conjunction  ¢P  …………  Conjunction vvvv 
Coordinatewise ¢P Value under R = v1>v2>v3

 V(")= (T,F,e)  val(")=3 v"=v1
 V($)= (e, T,F)  val($)=2 v$=v2
 • V("¢P$) = (Tve, FvT, evF) = (e,F,F)  • val("¢P$) = !2 ó )

 • val("v$)  =   2 0 )

Were ¢P and v to be conflated, the result would be classic ill-definition. In the example, two OP-
designated expressions pseudo-conjoin to a falsity, an impossibility for conjunction under OP rules.

This negative result emphasizes the necessity of establishing, as we have just done,  that the
same thing never happens with fusion or negation (and thus with any of the intensional connectives).
In this regard, recall the observation in §2, p.9, that fusion was not ‘truth functional’, in the sense that
even a univerally true ERC and a universally false ERC could fuse to an ERC true under some
rankings. Thus, taking (W,e) as an example of the true and (e,L) as an example the false, we have
(W,e)B(e,L)=(W,L). The apparent oddity is that simple fusion gives TBF=F, which looks
unimpeachably truth functional. Current understanding resolves the apparent conundrum: the
mistake lies in identifying (W,e) with ‘T’, (e,L) with ‘F’; a more nuanced appreciation is required.

(134) Nontruthfunctionality of Fusion Ranked Away
V(")    =    (T,e) val(")     =    2       (nb. R: v1>v2)
V($)    =    (e,F) val($)     =  !1

            •  V("B$) =   (T,F)             •  val("B$) = min OUT{2,!1} = 2

From the fusional point of view, the fact that val($) is negative (‘false’)  matters not at all, in the face
of the greater dominance (rank, absolute value, position of principal valuation in the order) carried
by ". For conjunction, by contrast, where the intensional notion of dominance is not at play,
negativity is all. OP finds no difficulties for fusion in the global fact that truth and falsity can
combine to yield truth, because at the key local juncture (the decisive constituent valuation, "’s
principal valuation,  v" = v1) the expression $ is in fact (locally) designated and not false at all,
because v"($)=v1($)=0. This is, of course, just the story of constraint ranking, retold. 

7.5  From RM to PC

The discussion above leads to the conclusion that RM is the logic of OT, in the sense that any
statement about ERCs made in PC is true iff the corresponding statement in RM is designated under
the relevant orderered polyvaluation.
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There is a minor wrinkle to be smoothed over: not every sentence of RM has a correspondent
sentence about ERCs, because the function h only deals in the language of S. Thus an expression like
(AvB)B(Cw¬D) doesn’t translate directly. We know, though, that any such sentence is, by
distribution, strictly equivalent to one in which all conjunction and disjunction are outside the scope
of fusion,which can be read via h as a statement about conjunctions and disjunctions of four ERCs:
(ABC), (AB¬ D), (BBC), (BB¬D). Let us call ‘normal’ any sentence in which extensional connectives
v, w, e are not in the scope of fusion, fission, or arrow. We lose nothing in focusing on such normal
sentences, and may then state the RM/OT relation as follows:

(135) Proposition 7.2. Let n be a normal sentence of RM subject to evaluation under a given +V,R,.
Let H be a constraint hierarchy in which each vi in V corresponds to a constraint Ci which assigns
W wherever vi assigns T, assigns L wherever vi assigns F, and asssigns e wherever vi assigns e. Let
the constraints in H be ranked according to the sequence imposed on their corresponding valuations
by R. Let nN be the sentence obtained by using the correspondence function h to replace all prop
letters and intensional subformulae of n with ERCs. 

 Then n is designated under +V,R, iff nN holds of H.
Pf. Suppose first that n contains only intensional connectives and negation. Then nN is
just a single ERC. We know from remark (124), p. 62, that the thesis holds, because the ERC
nN is exactly an expression of the conditions under which n is true under +V,R,.

Now suppose that n contains extensional connectives. Let n* be an expression  in
which each maximal intensional subexpression Ri of n is replaced by a prop letter Pi not in
n; let V*  be a polyvaluation exactly like V over the prop letters in n, and which assigns to
each Pi exactly the valuation V(Ri). Clearly, +V*,R ,K n* iff +V,R,K n. Now consider the PC
valuation of nN wrt H. Each maximal intensional subexpression Ri of n corresponds to an
ERC h(Ri), which is either true or false of H, accordingly as +V,R,K Ri or not. Now construct
a PC valuation v of n* which assigns T to Pi if +V,R,K Ri and F to Pi otherwise; it follows
that v(n*) is T iff nN holds of H. Suppose that +V*,R ,K n*. We have it from the
extensionality lemma (107), p. 55, that v(n* )=T, and conversely, if v(n*)=T,  +V*,R ,K n*.
Therefore, if +V,R,K n, then nN holds of H, and conversely.       ~ 

It follows from Proposition 7.2 that any theorem of RM, stated in terms of normal sentences, will
cash out as a true statement about logical relations between ERCs, holding generally over all
hierarchies. A number of the basic results established above may now be recognized as reflexes of
RM theorems, rather than peculiarities of OT. Consider the relations between connectives:

i.     AvB ÿ ABB (R55, AB:397) Lemma (14)  p.10
ii.    ABB ÿ A+B (RM71, AB:397)
iii.   A+B ÿAwB (R54, AB:396)
iv.   ABB ÿ AwB (ii) & (iii) Proposition 2.2, p. 11

Notice too that an RM argument for the truth of assertions like these, based on the Meyer/ Sugihara
semantics, is likely to be rather direct. In the case of the all-important conjunction-fusion relation
(i), for example, we need merely note that val(AvB)=min[val(A),(B)] #val(ABB).
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Transition from RM formulae to those of propositional/predicate calculus is straightforward
Consider expression (i), which contains the non-PC connectives ÿ,B. Fusion is eliminated by taking
ABB to be equivalent to a  single propositional variable denoting h(ABB), which is just another ERC.
Of the arrow, we know from RM that K (PÿQ) ÿ (PeQ), therefore we are licensed to conclude by
modus ponens, which works on ‘ÿ’ in RM, the following:

i.N AvB e [ABB].
This expression is intension-free, so we have the PC result

i.NN | AvB e [ABB]
which can also be written equivalently as  AvB|ABB or {A,B}|ABB, as we have throughout.

Finally, we note that the relations involved here give an instructive view of fusion. “How then to
interpret B? We confess puzzlement,” write Anderson & Belnap ca. 1975 [AB]. By Restall 2000,
various clear interpretations are known: “In the world of function typing, an object is of type ABB
just when it can be obtained by applying something of type A to something of type B. A string is of
type ABB just when it is made up of a string of type A concatenated with a string of type B (p.28-
29).” Nevertheless, it remains somewhat obscure what fusion is when put to work in the home
territory  of logic, combination of propositions. For example, although one grasps the meaning of
“The river is wide v the river is deep”, it is murkier what “the river is wide B the river is deep”
commits one to, and perhaps unclear that it has any sense at all. However, in the case of the kind of
order relations such as we have been dealing with here, we get substantial patches of clarity. For
example,

(a>b)B(c>d) =    (a>b v a>d) w (c>b v c>d)
faithfully translates the fusion relation for nontrivial ERCs. The system does not allow us to interpret
‘!’ as ‘¬’ though: !(a>b) =df (b>a) but ¬(a>b)=(b$a), and this disparity leads to ruination with
expression like b>b. So (b>b) = !(b>b), but we need b>b to be false. And we cannot simply ban
expressions like b>b from our calculus, since they will arise from perfectly ordinary expressions via
fusion conjunction. The full-scale ERC of (4) of course supports a definition of fusion in terms of
familiar logical operators, and negation works there for everything but degenerate ERCs. 

7.6  Systems of Ordered Polyvaluations

Any theorem of RM is guaranteed to hold in all ordered polyvaluations. Optimality Theory, however,
focuses on a collective structure that is intermediate between the single ordered polyvaluation and
the entire set of them: the system of all rankings on a set of constraints, which is equivalent to a
single polyvaluation V considered under every ordering of its constituent valuations. 

OP semantics for RM depends on both V and R, but  makes rather light use of V: although
there may be many consituent vi in V, and many assigning polar values, only the greatest of these
plays a role in any given case; the rest are silent. Optimality Theory, by contrast,  is deeply interested
in each vi, because its force – which may be occulted under a given R – must becomes apparent at
some point in the run through all the possible orders. Within OP semantics for RM, let us define a
system as the collection of all orderings on a fixed polyvaluation;  we will argue that the system has
a natural place in RM semantics as well as in linguistic theory.
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(136) Def. System. An OT System (OTS), notated E(V), is a set of ordered polyvaluations +V,Rk,
sharing the same V, and including all  permutations Rk on the indices i of the vi in V.

It is only within the system that the major characteristics of ERC logic emerge. An ERC, after all,
corresponds to a polyvaluated expression V(") whose conditions for truth are of interest within the
system  E(V).

The notion of ‘entailment’ used throughout is entirely system-based. When we say for ERCs
",$ that "|$, we don’t mean that entailment holds theoremwise and generally, for any V and any
R; we mean that it holds precisely inside the one system E(V), where V refers to the constraint
system of interest. Our logical focus is then on expressions of the form E(V)K n, ‘some RM sentence
n holds throughout any given system E(V)’.

With this understanding, we can further explicate the notation used in the §§1-6 above.
When we write "|$, we mean that the PC expression corresponding to " entails, in the PC sense,
the expression corresponding to $; equivalently, by the deduction theorem, we have |"e$.
Construing ",$ as sentential variables within RM, we mean that for a specific polyvaluation V, we
have E(V)K"e$. The expression ‘"e$’ is strictly weaker in RM than ‘"ÿ$’, but it corresponds
perfectly to the PC notion, and can be immediately cashed in for it, so long as we are sure that " and
$ are free of intensional connectives.

If n is a theorem of S or of RM, then E(V)K n holds a fortiori for any V, because +V,R,K n holds for
any V and any R, and E(V) is just a collection of  +V,R,’s. The converse is clearly not true: if n holds
in some +V,R,, there is no guarantee whatever that it holds in any other. The situation is similar for
collections of ordered polyvaluations: merely holding in various +Vi,Rk, for various Vi and Rk
guarantees nothing of general interest. But certain collections of ordered polyvaluations – systems
– have structural properties that make them rather like down-sized versions of the entire model
space. Let us consider three examples.

[A] VS and RM

The relation between VS and RM is significantly strengthened at the level of the system. We know
from Parks 1972 that a sentence n, with intensional connectives only, is a theorem of S iff it is a
theorem of RM. 

The situation is less salutary for single polyvaluations: we only have one direction of
implication, from VS to RM: if VKn under VS rules, so that every coordinate is designated, then
clearly +V,R,Kn for any R. But the converse can scarcely be expected: the insensitivity of OP
semantics to valuations beyond the principal one means that +V,R,Kn need barely penetrate the
polyvaluation. For example, we have

 +V,R,K(e,T) ÿ(T,F) (Sugihara: 1#2)
taking R to be the same as the coordinate order, but we don’t have coordinatewise VS success,
because the second coordinate fails:

 (eÿT, TÿF) = (T,F) ó )×)
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Similarly for random collections of polyvaluations. Within an entire system E(V), however, good
order re-emerges, and the converse sails through. The fact that n must hold under every R means that
all coordinatewise relations will be searched out.

(137) Remark. For any given polyvaluation V and expression n of S,  VK n iff E(V)K n.
Pf. LR. Since vi(n)>=0, val(n)$0 under every R. For the RL direction, we need only note
that every vi in V is greatest (initial) under some R, and therefore that vk(n)=F cannot be
tolerated for any k, so that every coordinate must be designated.       ~ 

This means that any system behaves like the entire space of RM valuations with respect to this
property.

[B] Fusion and Conjunction. 

It is within the system that fusion emerges as a worthy rival to conjunction. The main result of §2
finds that entailments from a conjunction of ERCs lead to entailments from a fusion of ERCs. We
repeat its statement here for convenience.

(138) (Proposition 2.5) Let A be a set of ERCs. A|n iff there is a QfA such that ƒQ|n.

Interpreted in the present context, this identifies circumstances under which the truth of vAen
guarantees that  there is a QfA with ƒQen. This is true rather trivially for a single RM valuation,
when A is any set of RM sentences at all. It is certainly not guaranteed  for a random collection of
RM valuations, but – by Proposition 2.5 – it is true for all OT systems, with A restricted to ERCs.

(139) Remark. Let A be a set of sentences in the language of RM. Let val be the RM valuation under
a single given OP +V,R, . Then valK vAen iff there is a QfA such that valKƒQen.

Pf. RL is trivial because RMK vQÿ ƒQ, for any Q. For the LR direction, note that
val(vAen)$0 iff val(n)$0 or val( vA)#0. If the first, then the value of the antecedent is
irrelevant, and ƒA will work. If the second, then there is some R0A such that val(R)#0. In
that case, let Q={R}, and val(ƒ{R})=val(R)#0.       ~ 

(140) Remark. There are collections {$k}of RM valuations in which the thesis of Proposition 2.5
fails, i.e. under which {$k}K vAen but it is not the case that there is a QfA  such that {$k}KƒQen.

Pf. We need only a single example. Consider the expression AvBeC, under the
following two valuations.

 $1   $2
A   2 !1
B !1          1
C !1 !1

The antecedent of the Proposition 2.5 thesis is satisfied because {$1,$2}K AvBeC.
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But the consequent of Prop. 2.5  fails for every Q, due to the following counterexamples:
 NOT $1 KAeC (2è!1)

NOT $2 K BeC (1è !1)
NOT $1K ABBeC because 2B!1=2 (NB: 2v!1=!1).       ~ 

Given the parallelism we are seeking between the behavior of systems and that of the entire model
space, it is natural to ask whether Proposition 2.5 corresponds to a theorem about RM. In the
broadest construal of its terms, this is manifestly not the case. From RMK vAen, where A is a set of
RM sentences, we are not licensed to conclude that there is a QfA such that RMKƒQen.

(141) Remark. A non-metatheorem. Proposition 2.5 fails for RM. There are set of sentences A such
that RMK vAen, without A containing a subset Q with the property that RMKƒQen.

Pf. Let A = {AwB, Aw¬B, ¬AwB), let n= AvB. Then
(*) RMK [(AwB) v (Aw¬B) v (¬AwB)] e AvB

but
(**) NOT   RMK [(AwB) B(Aw¬B) B( ¬AwB)] e AvB

Since all PC tautologies are valid in RM, it is clear that (*) is true. Now consider the
valuation val(A)= 1, val(B)= !2.

[i]   val(AvB) = min(1,!2) = !2
[ii]  val((AwB) v (Aw¬B) v  (¬AwB)) = min( max(1,!2), max(1,2),max(!1,!2))

      = min(1,2,!1) = !1
[iii] val((AwB) B(Aw¬B) B(¬AwB)) = min OUT(1,2,!1) = OUT(1,2,!1) = 2.

Ergo valK [ii]e[i], as expected, but NOT valK [iii] e[i]. Note that this suffices to establish the
claim, since no proper subset of A can possibly work. If there were such a QfA , with
RMKƒQen, then we’d have RMK vQen (because conjunction entails fusion), which is
manifestly false, as the reader may easily verify via a PC argument.       ~ 

We are undone here by the behavior of the extensional connectives within the scope of conjunction.
Recalling that an ERC corresponds not to a general sentence of RM but to a polyvaluated expression,
and that only intensional expressions are reducible, by VS rules, to single polyvaluated expressions,
we advance a more modest version of the thesis:

(142) Claim.  Let A be a set of sentences of S. RMK vAen iff there is a QfA such that KƒQen.

To prove this, it is useful to establish certain basic properties of valuation within systems. 

Observe first that the range of valuations generated by a system is typically going to be defective in
certain respects. It will not be the case, in general, that cycling through all permutations of order on
the constituent valuations will succeed in assigning every possible relevant valuation pattern to a set
of prop letters. A system may fall short in two, complementary ways – horizontally and vertically,
as it were: when no single letter receives all the values the system can assign; and when there are
correlations across prop letters, so that not all patterns of valuations are assigned.
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To see this, recall that the Sugihara value assigned by +V,R, to a polyvaluated expression R is
computed from the following formulas:

val(R)=min OUT{vali(R)}
vali(R)= vi(R)×dom(vi)

A nonzero value is determined from the principal valuation under R, the vk in V assigning a polar
value which is greatest in the R order, which yields the outermost value of the vali’s. For N
valuations, the weighting factor dom(vi), determined from the position of vi in the order R, ranges
from N to 1, while vi(R) ranges over {!1,0,+1}. The possible Sugihara values therefore range from
N to !N inclusive. But individual assignments, under permutation, may be restricted so as not to
exhaust the combinatorics.

• ‘Horizontally’. If the polyvaluation of prop letter V(A) contains k polar specifications of
N constituent valuations, then the dominance of its assignments, determined from possible principal
valuations, runs only from N to k.

• ‘Vertically’. For any two prop letters A and B,  vk(A) and vk(B) are coupled permanently,
which will prevent A, B from assuming all values independently of each other.

Patterns of valuation thus differ in structure between the system and the whole model space. But the
apparent divergence proves to be inconsequential, when examined in the light of Meyer’s
foundational results. As recorded in (115), a sentence of RM with N prop letters is valid iff it holds
in a Sugihara set containing 2N values. Furthermore, the key feature of the Sugihara set of integers
is that it contains !k if it contains k. Above, for simplicity of presentation, we narrowed our focus
to sets containing ranges of integers !N...N (with or without 0), but any set with the basic property
will do just as well. Thus, {-117, !73, !2, 2, 73, 117} is every bit as useful as the more staid
{!2,!1,1,2}. By ‘Sugihara set’, let us reinstate general reference to any set of integers with the basic
property, regardless of gaps in the range covered.

Observe that any set of integers that contains a Sugihara set of cardinality 2N will also be completely
diagnostic for the theoremhood in RM of sentences with N prop letters. To show that systems in
general provide an adequate setting for validity determination, we need only show that there are
systems for every N that contain combinatorically exhaustive assignments of 2N Sugihara values to
N prop letters.

Such systems may be constructed as follows. For k prop letters A1...AK , let the polyvaluation
V contain all mappings v:{A1,...,AK} ÷ {!1,0,1}; this will de-correlate the assignments in the way
we desire. In addition to these, let V contain K!2 copies of the constant mapping z:Ai µ0; this will
allow access to all the polar values. Let us call such a polyvaluation ‘K-complete’. We will find that
E (V) generates a set of values that contain a Sugihara set of cardinality 2K.

(143) Def. K-complete. Let V be a polyvaluation of a set of K prop letters. V is said to be ‘K-
complete’ if V includes (i) every mapping v:{A1,...,AK}÷{!1,0,1}, and, additionally, (ii) K copies
of the mapping z:{Ai }÷{0}. 

A quick example will give a sense of how this works. Consider the following polyvaluation, which
meets the criterion of 2-completeness.
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v1 v2 v3 v4 v5 v6 v7 v8 v9

A T T T e e e F F F

B T e F T e F T e F

Here’s some representative Sugihara values obtained from various orderings:
v1> … v7>… v2>v6>… v5>v2>v8>v6>… 
val(A) = 9 val(A) = !9 val(A) =   9 val(A) =   8
val(B) =  9 val (B) =  9 val(B) = !8 val(B) = !5

In this case, the system E(V) contains within it the Sugihara set {!9,!8,8,9), as well as various other
assignments. 

(144) Lemma. Let V be K-complete for some K. Then E(V) assigns every combination of values
in a Sugihara set S2K of cardinality 2K to a set of K prop letters.

Pf. It suffices to show that any Sugihara valuation function $:{A1,...,AK} ÷ S2K can be
represented by OP semantics under some ordering, where A={A1,...,AK}is a set of K prop
letters. If N is the total number of valuations in V, then let S2K be the set {!N, !N+1, … ,
!N+K!1, N!K+1, N!1, ... , N}. For any such $, let us distinguish between the dominance
and the polarity of each assignment:

dom($Ai) = |$Ai|
B($Ai) = sign($Ai) = $Ai/|$Ai|  

For conciseness, we write $X for $(X). The definition of B is sound:  $Ai…0 because 0óS2K.
Let us now construct an ordering on V that produces $. We sort the Ai by dominance

of the $Ai. Let Ad = {Ai| dom($Ai)=d}.We now construct a valuation vd:A÷{!1,0,+1},
according to the following recipe:

vd(Ai)  = B($Ai) for Ai0Ad

  = 0 otherwise.
In short, vd assigns !1 or +1 to the prop letters whose $-value is !d or d, and it assigns 0 to
all others. Any such vd must belong to V, since by the definition of K-completeness, V
contains all maps from {Ai, 1#i#K} to {!1,0,+1}. Further, any two such valuations vd1 , vd2
must be distinct for d1…d2. (In fact, we can say more: if vd10{!1,+1} then vd2=0. Thus, if we
consider the subpolyvaluation VN consisting of the vd’s, we will find that VN(Ai) contains
precisely one polar coordinate, with the rest 0.) The upshot is that the the vd’s form a subset
of V, with no repetition among them.

Let us now arrange the vd’s in the appropriate order. Number the positions in an
ordering of V from N to 1. Let each vd occupy position d. Let any other positions among the
first K-1 be filled by valuations that assign 0 to all Ai. (We have enough of these by
definition of K-completeness.) This arrangement reproduces val(Ai). To see this, consider
any instance of valuation, say  val(Ai)=m. By construction, v|m| = sign(m). But vj(Ai)=0 for
all other vj with N$j$N!K+1. Ergo v|m| is the principal valuation of Ai, and it assigns the
value |m|×sign(m)=m.        ~ 
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We may now use Proposition 2.5, which is concerned with the structure of systems, to prove the
claim (142), which is about the structure of the entire model space for RM.

(145) Proposition 7.3. Let A contain sentences of S.  RMK vAen iff there is a QfA such that
KƒQen.

Pf. Only the LR direction is of interest. Assume RMK vAen. Let K be number of prop
letters in Ac{n}. Let V be a K-complete polyvaluation. By the lemma, E(V)K vAen. By
Proposition 2.5, there is a QfA such that E(V)KƒQen. But {Qcn}has no more prop letters
than A . Therefore, by Meyer’s result (115) and Dunn’s (114), RMKƒQen.       ~ 

[C] Arrow and Horseshoe

We conclude this brief foray into system theory by observing that the relationship between ‘e’ and
‘ÿ’ also takes a strong form within the system. RM gives us a general one-way implicational
relation:

RMK ("ÿn) ÿ("en)

This is just a variant of the RM theorem K (A+B) ÿ (AwB), v. AB:396(R54), obtained by
substituting ¬A for A. The  statement ‘if K"ÿn then K "en’ follows immediately by modus ponens.

The converse does not hold: it is not guaranteed that ("en)ÿ("ÿn); consider the valuation
v(")=1, v(n)=0. Nor do we have ‘if K "en then K "ÿn’; for example, the familiar PC theorem
K(Av¬A)eB holds in RM, as do all PC theorems,  but (Av¬A)ÿB is not valid. We can obtain a near
converse, however, if we limit antecedent and consequent to be ‘nontrivial’ in relevant respects.
When neither n nor ¬" itself valid, the validity of ‘"en’ does guarantee the validity of ‘"ÿn’.

The result does not carry over to random collections of RM valuations, however. Consider this pair:
  $1    $2

    "   2   !1     
    n   1   !1 
"en   1            1
"ÿn   !2     1

Here neither ¬" nor n is designated across {$1, $2}, yet despite the fact that "en is designated under
both valuations, we find that "ÿn fails

Within the system, however, where we restrict ourselves to polyvaluated expressions, the two
species of implication connectives fall into line. The required nontriviality conditions should have
a ring of familiarity from Prop. 1.1 (6), p. 6,  and Remark (33), p. 18.

(146) Proposition 7.4. Let V be any polyvaluation . Let ", n be any sentences in the language of S,
such that it is not the case that VKn and not the case that VK ¬".  The following holds:

if E(V)K"en , then E(V)K"ÿn.
Pf. We show the contrapositive of the main assertion. Assume that it is not the case that
E(V)K"ÿn. From Remark (137), it follows that it is not the case that VK"ÿn,
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coordinatewise. Therefore some constituent valuation of V, call it vk, has vk("ÿn)=F. This
happens in only three conditions. 

[i] vk(")=T, vk(n)=F. In this case, consider the OP in which vk is greatest; clearly,
"en fails on this OP, and so it fails to be valid throughout E(V). 

[ii] vk(")=T and vk(n)=e. Because by assumption n is not valid throughout V, there
must be some vj with vj(n)=F. Consider the OP in which vk is greatest and vj is second-
greatest. In the corresponding RM valuation val, we have val(")>0, val(n)<0, so that "e$
fails again to valid throughout E(V). 

[iii]  vk(")=e and vk(n)=F. By assumption it is not the case that VK ¬", it must be
V(¬") contains F at some coordinate, call it vi, so that vi(")=T.. Consider the OP in which
vk is greatest and vi second-greatest. In the corresponding RM valuation val, we have
val(")>0, val(n)<0, so that "e$ fails yet again to be valid throughout E(V).        ~ 

An immediate corollary is that the thesis of Proposition 7.4 generalizes to RM, via Lemma (144),
since it holds in all systems.

7.7  Syntactical Manipulations of Paramount Interest

We conclude with a look at how syntactic considerations can be used to arrive at results semantically
achieved in earlier sections of this paper. Let us examine the conditions under which fusion can be
coerced into behaving like conjunction. Basic principles involving conjunction include these:

Conjunction Out "v$ ÿ $
Weakening If "ÿ$, then "vnÿ$ 

Neither holds for fusion, as we have seen repeatedly:

“Fusion Out” (FO) "Bnÿn falsified by v(")=T, v(n)=e.
“Fusion Weakening” (FW) If "ÿ$, then "Bnÿ$ falsified by v(")=v($)=e, v(n)=T.

Falsifying valuations from S/RM3 are shown; by ‘invalidity ascent’ (114), these falsify for all RM(k)
for k$3, including RM itself. The situation is not entirely dismal, however, as noted in §3  above,
since we can find useful conditions under which the differences between fusion and conjunction
vanish. 

Upon observing that the only falsifying evaluation for FO is the one given, we can ensure FO
as in VK "Bnÿn by demanding of the polyvaluation that the places where " is assigned T are subset
of those where n is assigned a polar value, i.e. that vk(")=T Y vk(n)0{T,F} for each vk in V:
compare Corollary 2 to Proposition 3.3, (37).

We may also approach the problem syntactically. Fusion is subject to importation and
exportation of premises, just like conjunction.

(147) Transportation. ["B$ÿn] = ["ÿ($ÿn)]
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From this we have, substituting n for $,
["Bnÿn] = ["ÿ(nÿn)].

This gives us a useful syntactic condition on FO: "Bnÿn holds iff "ÿ(nÿn) holds.
The expression nÿn, equivalently ¬n+n,  repays scrutiny. To cut down on the profusion

of arrows let us abbreviate it to T(n). Valid in S/RM, under polyvaluation, T(n) contains a T at every
coordinate where n has either of the polar values T,F. We might say that T(n) detects all the polar
values in V(n) and marks them as T. We know that any implicational expression "ÿ$ will be valid
under a polyvaluation V iff two conditions are met: 

[i] every T in V(") is matched to a T in V($) – the “W-condition” 
i.e. vk(")=T Y vk($)=T 

[ii] every F in V($) is matched to an F in V(") – the “L-condition”
i.e. vk($)=F Y vk(")=F

Since T(n) contains no F’s, only the first condition applies. The expression "ÿT(n) will therefore
be valid iff vk(")=T Y vk(nÿn)=T i.e. iff vk(")=T Y vk(n) 0{T,F}, i.e. iff the T coordinates of "
are a subset of the polar coordinates of n.

W-compliance emerges when we ask for equivalence between conjunction and fusion:
"Bnÿn iff "ÿT(n)
"Bnÿ" iff nÿ T(")

Equivalence, as in "Bn = "vn, occurs when both conditions hold, so that any T in either V(") or
V(n) is  matched to a polar value in the other.

The conditions that allow for the stronger property “Fusion Weakening” are slightly more
elaborate.

(148) FW. Suppose "ÿ$. Then "Bnÿ$ iff nÿT(")BT($), equivalently nÿT(")+T($).

The two expressions are equivalent because A+B WABB when the only values assumed by A, B are
the designated ones, i.e. when vKA and vKB. The sense of the condition nÿT(")BT($) is that, under
polyvaluation, every T assigned to n is matched to a polar value in either " or $. 

To establish FW syntactically, it is useful to note a couple of facts about S. First, fusion is
well-behaved with respect to ÿ:

(149) Double Weakening. If "ÿ$ then "Bnÿ$Bn for any n.
Pf. When n evaluates to F, the consequent implication holds regardless of "ÿ$. When
n evaluates to e, "Bnÿ$Bn evaluates the same as "ÿ$. When n evaluates to T, it only
induces changes in valuation of the fusions when either of ",$ =e, as in eÿT, Fÿe, and
eÿe, but then the result of double weakening by n is valid when "ÿ$ is.       ~ 

Second, T(") functions as a kind of fusional identity with respect to ":

(150) Local Identity. "BT(") = "
Pf. T(") assumes the same value as " for v(")=T and v(")=e. Where v(")=F, we have
v(T("))=T, but TBF=F so that the result equals v(").       ~ 
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Let us now put these to work.

(151) FW I. Suppose "ÿ$ and nÿT(")BT($). Then "Bnÿ$.
Pf. i nÿT(")BT($) assumed

ii "Bn ÿ "BT(")BT($) DW from (i)
iii "BT(")BT($) ÿ"BT($) LI 
iv aBnÿ"BT($) transitivity of ÿ, from  (ii), (iii)
v "ÿ$ assumed
vi "BT($) ÿ $BT($) DW from (v)
vii  $BT($) ÿ $ LI from (vi)
vii "Bn ÿ $ transitivity of ÿ, from (iv),(vi), (vii).

(152) FW II. Suppose "ÿ$ and "Bnÿ$. Then nÿ T(")+T($).
Pf. i "Bnÿ$ assumed

ii nÿ("ÿ$) exportation from (i)
iii ("ÿ$) ÿ ("ÿ$) + ($ÿ") thm. of S
iv n ÿ ("ÿ$) + ($ÿ") transitivity of ÿ, from (ii),(iii)
v n ÿ (!")+$ + (!$) +" definition of ÿ 
vi n ÿ ("ÿ")+($ÿ$) definition of ÿ 

Paralleling  the line of attack in §3, we observe that FW implies FO: we need merely identify " and
$ in the statement of FW, and observe that "ÿ" is a theorem.
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8. Constraint Logic
Summary. When a constraint is understood as a vector of comparative values, the logic S can be applied
to constraints just as it is applied to ERCs. Key constraint relations are definable in logical terms, and the
notion of a constraint hierarchy is itself expressible in terms of fusion and fission. Logical relations between
constraints determine properties of their ranking; for example, a fusion is a greatest lower bound for its
fusands in the MSH.

The full utility of the logical approach, and of VS in particular, only becomes apparent when we
allow the logical connectives to relate constraints as well as ranking arguments. We may then work
with fusion of constraints C1BC2, fission C1+C2, implication C1ÿC2, and negation ¬C1, as well as
with more complicated collocations.

As noted above, p. 22, a constraint can be construed extensionally over an ERC set as a
column vector in the array where the ERCs are row vectors. Any vectorial operation may then be
applied to columns as well as to rows. Given a set of desired optima, the 3-valued comparative
structure is defined on candidate sets, and the logical connectives become fully meaningful. 

In this transformation of perspective, we treat constraints as propositional atoms and ERCs
as functions evaluating them. Give a valuation vi:{"k}÷3 of the familiar type, we construct a
corresponding propositional object vi* and a valuation "k* defined by the relation "k*(vi*)=vi("k).
In the present context, expressions such ‘constraint Ci’ refer to such vi*.

We may now write "*(C) for the value of C at ". A set of ERCs A dualizes to a polyvaluation
A*, and A*(C) is a (column) vector in the valuation table of ERCs A. Over collections of constraints,
we have expressions such as

A*K ¼iCi A*K ¾iCi A*K ¬Ci A*K CiÿCj

and indeed, we may evaluate any intensional expression over constraints in the language of S. For
purposes of clarity, we use a special notation for collective fusion ¼ and collective fission ¾, as a
reminder that we are operating over constraints rather than ERCs.

One application that we have already seen lies in the development of RCD:  in the definition of
satisfaction of nontrivial argument vector by a hierarchy H, (41), p. 22, repeated here in the current
notation:

(153)  HÖ" iff , for some m#n, "*(¼i#m Ci ) =T.   

An ERC " is trivial iff the following condition is met

(154) Triviality of ERC """". "*K ¼iCi = ¾iCi 

Important relations between constraints may be directly formulated in these terms. Two
constraints P and Q cannot possibly conflict iff their fusion and fission are equal, i.e. iff every ERC
when restricted to {P,Q} is trivial.
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(155) Remark. Necessary Nonconflict. Let P, Q be constraints over an ERC set A. Then P and Q
do not conflict iff A*K PBQ = P+Q

Pf. The expression ‘PBQ’ differs from ‘P+Q’ on a valuation v only when v(P)=T and
v(Q)=F, or vice versa, which is necessary for conflict.       ~

In the MSH for A, having P sit in a higher stratum than Q does not mean that P conflicts with Q,
because P could have earned its place in |P| merely by virtue of being ranked as high as possible.
Thus there need be no "0A with "*(P)=T and "*(Q)=F. But with a consistent ERC set, there must
be a conflict relation that puts Q against ¼|P|, the fusion of all the constraints in |P|. If not, then there
is no reason why Q should not sit in |P|, or even higher. The notion of fusion of constraints thus
allows us to state a tight relation between a stratum and the constraints subordinate to it.

(156) Remark. Stratal Conflict. Let P,Q be constraints over an ERC set A, with |P|>|Q| in the MSH.
Then there is an "0A such that "*(¼|P|) 0{T,e} and "*(Q)=F, with "*(C)=e for any constraints C
with |C|>|P|. If A is consistent, then for at least one such ", it must be the case that "*(¼|P|)=T with
"*(C)=e for any constraints C with |C|>|P|. 

Pf. Suppose |P|>|Q| in H(A), where A need not be consistent. The set A is partitioned into
two disjoint subsets by rank of arguments, defined in (53). Let A0 denote the set of arguments
given a polar valuation (necessarily T) by a constraints ranked above P or which are
degenerate. Let AP denote the complement set A!A0, and let EP denote the set of constraints
at rank |P| and below. Then, as is clear from the recursive definition of RCD (49), we must
have AP*K¼|P|, and in fact |P| is precisely the maximal set of constraints from EP for which
this holds.  But if there is no "0AP such that "*(Q)=F, then Q0|P|, contrary to assumption.
So there must be an "0APfA with "*(Q)=F and "*(¼|P| )0{T,e}. It is also clear from the
RCD construction that "*(C)=e for any C with |C|>|P|.

Now by the RCD construction of strata, we can have "*(¼|P|)=e for all "0AP only
if |P| is the top stratum. The constraint set divides into those, like P, for which C(ƒA)=* and
the remainder for which C(ƒA)=L. Whence ƒA 0L + and  A is inconsistent. Contrapositively,
if   A is consistent, some "0A must have "*(¼|P|=T.       ~ 

Let us say that a constraint P occludes a constraint Q if when P is ranked above Q it is guaranteed
that Q can never decide an ERC. This means that Q never assumes a value from {T,F} when P
assumes the value e. We take this semantic relation as the definition of occlusion.

(157) Def. Occlusion. P occludes Q over an ERC set A iff for every "0A it is the case that
"*(Q)0{T,F}implies "*(P)0{T,F}; equivalently, by contraposition, iff "*(P)=e Y "*(Q)=e.

The following syntactic condition determines this relationship; recall that T(P) abbreviates PÿP,
equivalently ¬P+P. 
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(158) Remark. Occlusion. P occludes Q on A iff A*KT(Q)ÿT(P), equivalently iff A*KPB¬PÿQB¬Q.
Pf. Right to left. The formula  XB¬X takes on only 2 possible values: F,e. If <(P)=e then
<(PB¬P)=e, and then from the assumption, it follows that <(QB¬Q)=e. Whence Q=e, so Q
doesn’t decide either. 

Left to right. The only valuations on which PB¬P ÿQB¬Q fails are <(P)=e and
<(Q)0{T,F}. But the definition of occlusion requires <(Q)=e when <(P)=e. ~

It is apparent that P occludes P, and that PBQ occludes both P and Q. Indeed, any intensional
combination of Pi occludes any other intensional combination of the Pi. Occlusion of Q by P also
means that there can be no ranking argument between Q and any constraint ranked below P.
(Grimshaw 1999/2001). We will return to the logic of occlusion below.

More surprising, perhaps, the very notion of a constraint hierarchy can be rendered exactly
in terms of fusion and fission. Consider the following expression:

P + (PBQ)

The value of the expression P + (PBQ) is determined in the following way:
1. P decisive.  P + (PBQ) is true if v(P)=T. It is false if v(P)=F.
2. Else Q. If v(P)=e, then it assumes the value of Q.

This corresponds precisely to the way an ERC is evaluated over the hierarchy P>>Q. The
generalization to more than two constraints is immediate.

(159) [P>>Q>>R>>S …]     P + (PBQ) + (PBQBR) + ( PBQBRBS) …   

With a little notation, an expression can be concocted that represents the general notion of a
constraint hierarchy over a set of constraint {Pi}, where the subscript indicates position in the total
ordering, starting with 1 for the highest position. With any totally-ordered strict-domination
hierarchy

(160)

we associate the following logical expression

(161)  

Call the fission/fusion formula the ‘VS representation’ of the domination hierarchy. It is clear that
a hierarchy satisfies a set of ERCs A iff its VS representation is valid (in the VS sense) under A*,
i.e. evaluates to a vector with every entry designated. The requirement that every ERC must hold
– that vA holds –  is matched by the coordinatewise requirement of VS validity for A*(¾¼Pi).

Note that the expression ‘P+(PBQ)’ is not the generic equivalent of ‘P>>Q’, with the meaning ‘P
dominates Q in some hierarchy’. In particular, from

P + (PBQ) + (PBQBR) ‘P>>Q>>R’ 
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one cannot deduce 
P + (PBR) ‘P>>R’. 

(Consider the valuation v(P)=e.) Thus, the expressions in (159) and (161) characterize entire
hierarchies, not pairwise order relations. 

Note also that the quasi-dual expression, with B and + interchanged,
P B  (P+Q) B  (P+Q+R) 

is logically equivalent to the expression given above for ‘P>>Q>>R’. In both cases, the value of the
expression is determined by the value of the first prop letter that does not evaluate to e. This has a
kind of distributive look to it, though the general distributive law doesn’t hold in S. Distribution
fails in one direction: what’s missing is the implication from P+(QBR) to (P+Q)B(P+R). (To see this,
consider the assignment of F to P, and (e,T) or (T,e) to Q,R.) A restricted form remains valid,
however, obtained by identifying one of the inner elements of P+(QBR) with the outer, thereby
eliminating the fatal valuation: 

P+(PBQ) ÿ (P+P)B(P+Q) = PB(P+Q).
Bringing in the half of the distributive law that does hold, PB(Q+R)ÿ PBQ+PBR, we have

PB(P+Q) ÿ PBP+PBQ = P+PBQ.
Taken together, these give us the desired equivalence:

 P+(PBQ) = PB(P+Q).
This may be generalized as follows:

(162) Generalized restricted distributivity

A stratified hierarchy is obtained by using fusional agglomerations in place of the single prop letters
in a linearly orderered hierarchy. From A>>B, by setting A:=PBQ and B:=RBS, we obtain, for
example, the expression
(163) (PBQ) + (PBQBRBS)
which represents the hierarchy {P,Q}>>{R,S}. Expression  (163) holds under a valuation "* only
if both of P and Q are designated; if both are e, then both of R,S must be designated. This mirrors
exactly the conditions under which the associated stratified hierarchy validates the ERC ".

To construct the general expression for a stratified hierarchy, we define a net N(n) on
positive integer n as a set of positive integers meeting the following conditions: 

[1] n0N, 
[2] k0NYk#n. 

A net on n is just a set of positive integers less than n, which also includes n. The members of a
given net defined the way the elements of {Pi} are clumped together into strata. For example, a net
{1,3,5}will be used to define a 3-stratum hierarchy on five constraints:

P1 >> P2,P3 >> P4, P5 ² P1 + P1BP2BP3 + P1BP2BP3BP4BP5
{1,     3,        5} {1,        3,            5}

Any net N thus gives rise to a stratified hierarchy on {P1, P2,...Pn}. If the net is maximal, in that it
includes all positive k#n, then each stratum has just one constraint in it, and we are back at the
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totally-ordered version of constraint ranking. If the net is minimal, with only n in it, then the
hierarchy has one stratum. A stratifed hierarchy over a net N meets this description:

(164) Stratified Hierarchy  

Each fusional subconstituent ¼1
kPi corresponds to a stratum in the constraint hierarchy, and we will

carry over the term to refer to it. This represensentation makes it clear that a stratum functions like
a single constraint that it is the fusion of the constraints that it contains. 

The VS representation of  a stratified hierarchy is in general not equivalent to the one obtained from
it by swapping B and + throughout. Observe that where

(PBQ) + (PBQBRBS)
is false if v(P)=F, regardless of the valuation of other letters, its B/+-quasi-dual 

(P+Q)B(P+Q+R+S) 
is true whenever v(Q)=T even if v(P)=F. The correct application of B/+ swapping would be this:

(PBQ)B(PBQ + RBS)
where the relevant fusional agglomerates PBQ and RBS are treated as units, like prop letters in (162)

The expression of the form ¼N¾Pi obtained by complete B/+-swapping holds when at least
one constraint in the highest nonneutral stratum (fissile and shaped ¾Pi) is T, or when all strata are
neutral. This formalizes a notion of crucial partial order among constraints, by which an argument
is validated by a stratum if there is some ranking of the constraints in the stratum that validates it.

It is true, however, that whenever  ¾N¼Pi holds under some valuation, then ¼N¾Pi holds
as well; equivalently, that whenever ¼N¾Pi fails, then ¾N¼Pi fails as well. This establishes the one-
way implication to the effect that K ¾N¼Pi ÿ¼N¾Pi. 

The minimal stratified hierarchy occupies a special position in the set of formulae, just as it does
among hierarchies. Of all stratified hierarchies true under some given valuation, represented as in
(164),  the minimal stratified hierarchy has the minimal number of (fusional) strata and given that,
the maximal number of elements per fusional stratum.

To measure minimality, let us define the (Boolean) deviation of fusional stratum in (164)
as the number of prop letters missing from it: for n letters, a k letter fusion has a deviation of (n !k).
Let the deviation of the whole hierarchy be the sum of the deviations of its components. The
minimal stratified hierarchy has the smallest deviation of all stratified hierarchies that are consistent
with a given set of ERCs. Consider, for example, the following hierarchies and their statistics:

Strata Deviation
P>>Q>>R P + PBQ + PBQBR   3     3
P>>{Q,R} P + PBQBR   2     2
{P,Q}>>R PBQ + PBQBR   2     1
{P,Q,R} PBQBR   1     0



21 The deviation of the MSH can only be reduced by removing a fusional cluster, equivalent to
removing a stratum and putting its content in the next lowest stratum, which we know is not possible, or by
adding a prop letter to a fusional cluster that it is not a member of, which is equivalent to raising a constraint
to a higher stratum. But constraints in the MSH are as high as they can go (Tesar & Smolensky 1998/2000).
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Deviation measures the distance from the Boolean ideal, which is one stratum with all relevant
constraints unanimous in support of the desired optima. The MSH deviates minimally from this
paragon.21

With this representation in hand, we may discern certain ranking relations that necessarily hold in
the MSH between logically-related constraint forms. These will resemble (but not mirror) the
relations found to hold among logically-related argument forms in §4. 

Consider the effect of a constraint equivalent to PBQ under some polyvaluation A*, call it
R, so that we have A*K R=PBQ. Two situations may be distinguished. First, the constraints P or Q
may not appear in a stratum higher than |R|. In this case the stratum in which R=PBQ first appears
will look like this:

… X  + (RBX… ) + … = 
… X  + (PBBBBQBX… ) + … , where P,Q,RóX.

But this is indistinguishable from a hierarchy in which the first appearance of P and Q individually
is in that very stratum. 

In the second configuration, one of P or Q may dominate R; for concreteness, let’s say P.
Here we have

…  (PBX) + (PBRBX) … = 
…  (PBX) + (PBPBBBBQBX) … = 
…  (PBX) + (PBBBBQBX) …

This is indistinguishable from a hierarchy in which Q appears at R’s stratum, in the place of R.
Thus, when |P|$|PBQ|, we have PBQ functioning as the equivalent of Q.

In the MSH, there can be no third way, in which |PBQ| >|P|. Once PBQ appears, P appears
with it. 

In other words, the fusion of a set of constraints is a greatest lower bound for that set within
the MSH. It is also completely redundant: with P,Q in the hierarchy, PBQ adds absolutely nothing.
The general result can be stated this way:

•The fusion of a set of constraints has the same rank in the MSH as the lowest-ranked subset of
those constraints. The hierarchy without the fusion is exactly equivalent to the hierarchy with it.

In proving this, it is useful to adapt some terminology: 
According to the VS representation of a stratified hierarchy, as in  (164), it is a fission of

fusional expressions, with an overall ¾kFk  shape, where the fusional strata Fk = ¼Pi are enumerated
according to length, from shorter to longer. We write Fm $Fn if Fm appears before Fn in this
enumeration, i.e. if m<n; equivalently, if Fm is a subconstituent of Fn. The rank |P| of a constraint P
is the first (equivalently, minimal) such Fk that it appears in.
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(165) Remark. If a constraint P appears in some Fk, then we are guaranteed that |P| $Fk. This holds
in any hierarchy. 

For a hierarchy H that validates a given ERC set, this means that the occurrence of a constraint
R=¼Pk in a stratum guarantees that H may be modified, salve veritate, so that any of the Pk ranked
below R are ranked with it. The additional assumption of hierarchy minimality leads to a stronger
result. 

(166) Proposition 8.1. Let  H(A)  be a minimal stratified hierarchy containing all of P = {Pi ,1#i#n},
as well as Q, among possibly other constraints, where Q = ¼P . Then the following assertions hold:

(a)  |Pi| $|Q| for all i.
(b)  |Q| = |Pi|  for at least one i.
(c)   H  /  H !Q.

Pf. Consider the VS representation of  H. Constraint Q first appears in some stratum Fk.
Replace Q by ¼P and we have an equivalent formula in which all of the Pi appear in Fk. By
the remark (165), there is a hierarchy equivalent to H. for which |Pi| $Fk, for all i. The
assumption of minimality for H  entails that all constraints in it occupy their highest possible
stratum, so |Pi|$Fk for H as well. This establishes (a).

As for (b) and (c), let Fk be the lowest rank of any Pi0P. Then Fk is also the first rank
in which all of the Pi appear, i.e. it is the first rank in which Q may appear, therefore the rank
of Q in  H, by minimality. This establishes (b). Now, if we replace Q by its equivalent ¼P,
we merely double the occurrences of each Pi in that stratum. By idempotence, commutativity,
and associativity of ‘B’, this is equivalent to having a single occurrence of each of the Pi –
that is, to having the same hierarchy sans Q.      ~

Proposition 8.1 can also be established by semantical considerations. A constraint is rankable (above
the bottom rank) by RCD as soon as all of its L (truthvaluewise, F) coordinates have been removed.
But each L coordinate of ¼P arises where and only where some Pi has L at the same coordinate.
Therefore by the time ¼P is rankable, so is every Pi. But individual Pi’s may become L-free without
¼P becoming so. This establishes Prop. 8.1a. Now consider the set of lowest-ranked Pi’s. At the
point where they become rankable, there are no L’s left among the coordinates of any Pi. Therefore
¼P is rankable exactly then, as well (8.1b). Finally, note that if these lowest-ranked Pi’s ever
participate in the ratification of an ERC, all higher-ranked Pi’s must take on the value e. Therefore,
the value of ¼P is exactly determined by these lowest-ranked Pi’s and ¼P makes no independent
contribution to the calculation. Removed from the hierarchy, it changes no outcomes (8.1c).

The result makes good intuitive sense. A constraint PBQ evaluated with respect to an ERC [a~b] is
a repository of bad news from its components: it is as pessimistic about a’s chances of losing to b
as the most pessimistic of P and Q. Since the MSH is constructed by collecting at each cycle of RCD
the constraints most favorable to the desired outcome (Samek-Lodivici & Prince 1999), it is to be
expected that the least favorable constraints will be ranked beneath their more favorable companions.



22 E.g. those using ºukasiewicz’s ‘ÿ’ or Bochvar’s ‘external connectives’ (Rescher 1969:23,31).

23 Occlusion results can also be stated order-theoretically. Proposition 8.2 guarantees that a polar
formula G will occlude all formulas transparently made up from its prop letters. Suppose that K is such a
set, and suppose that in a hierarchy H we have |G| $|Ki| for all Ki0K. Then there is an equivalent
hierarchy HN= H!K in which G is a lower bound for transparent formulas made up of prop letters from G.
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Proposition 8.1 shows how the logical composition of a constraint can directly affect both its ranking
and its occlusion relations with other constraints that share logical components. The phenomenon
is quite general, and a key to it lies in the transmission of polar values from atomic constraints to
complex logical constructions that contain them. Let us say that a sentence G is polar in a certain
variable Pj if G assumes a  polar value whenever Pj does.

(167) Def. Polar in a variable. A formula G containing the prop letter Pj, among possibly others,
is polar in Pj over a set of valuations V, if for every v0V, v(Pj)0{T,F} Y v(G)0 {T,F}. Equivalently,
by contraposition, if for every v0V, v(G)=e Y v(Pj)=e. If G is polar in all of its variables, we will
simply say that G is polar.

The converse property, which we can call ‘transparency’, by which the assignment of e to all
variables results in the assignment of e to the whole, is also worthy of note.

(168) Def. Transparent. A logical expression G is transparent in a three-valued system {T,F,e} if
v(G)=e when v(Pi)=e for all variables Pi in G. Equivalently, by contraposition, G is transparent if
v(G)0{T,F} Y v(Pi)0{T,F} for all Pi in G.
Transparency is induced by all connectives we have been concerned with (though of course there are
logics that lack it22). Polarity is more selective. All intensional formulas (those of S) are polar in all
of their variables for any valuation, but other logical collocations may be polar only under certain
valuations. For example, PvQ is not polar in P under RM3 rules when v(P)=T and v(Q)=e, but it is
polar in P in all other circumstances. 

A polar formula occludes other constraints that are transparently made up of its variables.23

(169) Proposition 8.2. Polar Occlusion. Let G be a logical expression and let P be the set of prop
letters used in G. Suppose that G is polar in all Pi0 P. Then G occludes all constraints formulable
as transparent expressions using only prop letters from P. If G is transparent, then G is occluded by
any set of of polar expressions that collectively uses all the prop letters of P.

Pf. Suppose |G|$|K| in some stratified hierarchy, where G is polar and K is some
transparent logical combination of (some of) the variables of G. By transparency, if K
assumes a polar value, then one of its prop letters assumes a polar value. By polarity of G,
G will also assume a polar value. Now assume K={Ki}is a set of formulas in which all the
variables of G appear. Assume further that the Ki are polar in these variables. Say |Ki|$|G|,
for all Ki. Suppose that G assumes a polar value. By transparency of G, at least one of its
prop letters will assume a polar value. Since the Ki are assumed to be polar in the variables
of G, at least one of them will assume of polar value. Since it is higher ranked or co-stratal
with G, by assumption, G will be occluded.         ~ 
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A more fine-grained conclusion can be reached when we limit ourselves to intensional expressions.
A logically-composite constraint G which is polar in Pj over an ERC set A has a potent effect on any
intensional K that shares Pj, whenever |G|$|K|. (We do not presuppose that the relevant hierarchy is
in MSH form.)  In such a situation, K will behave as if it lacked Pj entirely in its logical composition.
There is a kind of ‘knockout’ effect – the involvement of Pj in the constraint G eliminates the need
for its involvement in subordinate or co-stratal constraints. We see this general effect in special form
in Prop. 8.1, from which it follows, for example, that P>>PBQ is equivalent to P>>Q: since P is polar
(trivially) in P, it is effectively erasable from lower-ranked PBQ.

More precisely, suppose G is polar in some prop letter Pj: then whenever |G|$|K| in a
hierarchy, K won’t be needed to evaluate an ERC " unless "*(G)=e, i.e. unless "*(Pj)=e. Therefore,
K may be replaced by any formula KN which is equivalent to K over all valuations v* for which
v*(P)=e. In the case of intensional formulae from the language of S, these are easy to construct by
simple omission.

(170) Def. G\Pj. If G is a formula of S containing a propositional variable Pj, then the formula G\P
is arrived at by replacing binary constituents  in G containing Pj, possibly repeatedly, according to
the following recipe:

  PjBX   ÷  X
¬PjBX  ÷   X

until such replacement may no longer apply.

Since the formulas of S can be written using only ‘¬’ and ‘B’, this covers all cases. Observe that in
the case of the implicational connective, the  result can involve more than erasure: for example,
(XÿP)\P is ¬X.

We may now state the general ‘knockout’ property, whereby a constraint disables part of a lower-
ranked or co-stratal constraint.

(171) Proposition 8.3. Knockout. Let G be a constraint over some ERC set A , where G is a logical
expression that is polar in P. Suppose K, a constraint over A , is an expression of S with P among
its variables. Then any hierarchy H in which  |G|$|K|, with HÖA, is equivalent over A to one in which
K is replaced by K\P, or, if K = P or K= ¬P,  omitted entirely.

Pf. K is clearly dispensable in the evaluation of ERC " when "*(P)0{T,F}; in that case,
it doesn’t matter what K is replaced by. K can only have an effect when "*(G)=e. Since G
is intensional and hence polar in P, we have "*(P)=e. In this case, if K contains more prop
letters than just P, "*(K)="*(K\P), by the definition of K\P. If K only contains P, then
"*(K)=e and K has no effect on the valuation of ".       ~ 

The Knockout property allows us to derive Proposition 8.1c from 8.1a. If Q=¼P, then by 8.1a,
|Pi|$|Q| in the MSH. But each Pi is polar in itself, so all may be removed from Q, establishing that
H =H !Q for any MSH H containing Q and its variables. Similarly, if  |¼P|$|P| in some hierarchy
(necessarily non-minimal if  |¼P|>|P|), then P may be dispensed with, because ¼P is polar in each
of the Pi.
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Occlusion presupposes a dominance relation; but logical structure may also impose limitations
on ranking, as is seen in the special case of  fusion in Proposition 8.1. A bridge between

occlusion and ranking is provided by Grimshaw’s observation that an occluded constraint is freely
rankable with any other other constraint dominated by the occluder.

(172) Proposition 8.4.Occlusion and Ranking. (Grimshaw). Suppose C1 occludes C2 over A. Let
H, HN be stratified hierarchies, in which |C1|$|C2| and which otherwise agree on all ranking relations
except those involving C2. Then HÖA iff HNÖA. 

Pf. Since C1 occludes C2, in any hierarchy Hi with |C1|$|C2|, we have Hi=Hi!C2.Therefore
H=H!C2 and HN=HN !C2. But H!C2 is identically HN!C2.       ~ 

In other words, when C1 occludes and dominates C2, we may rank C2 anywhere below C1. This has
consequences for the structure of MSH:  there |C2| can lie no further down the hierarchy than the
immediately adjacent lower stratum.

(173) Corollary 1 to Prop.  8.4. Let C1 occlude C2 over A, with |C1|$|C2| in the MSH for A. Then
there is no constraint D with |C1|>|D|>|C2| in H(A).

Pf.  By Prop. 8.4, C2 can be ranked anywhere below C1. Since a constraint assumes its
highest possible rank in the MSH, C2 will be co-stratal with C1 if that is possible, else in the
next rank down.     ~ 

We may also draw a general conclusion about the ranking behavior of intensional formulas with
respect to each other: when variable-sharing results in occlusion, Corollary 1 will apply..  

(174) Corollary 2 to Proposition 8.4. Let K be a constraint formulable in the language of S and let
G={Gi} be a set of such constraints, where the prop letters of K are included among those of G. Then
if |Gi| $|K| for every Gi0G, K will be ranked in any K,G-containing MSH in a stratum that is no lower
than the stratum immediately below the lowest ranked Gi.

Pf. Since the Gi are polar in all the variables of K, they collectively occlude K. and
Corollary 1 to Proposition 8.4 guarantees the result.       ~ 

Corollary 2 (174) contrasts with Proposition 8.1, which gives a tighter result: in the MSH relation
between a fusional constraint and its prop letters, we know that the fusion lies no lower than the
lowest ranked prop letter, indeed lies with it. The more complex condition on (174) puts the
occluded constraint at most one rank further down than its occluders. Situations where the next lower
rank is needed are easily found. Consider the following relation between P+Q and PBQ, when
"*(P)=T, "*(Q)=F.

P+Q PBQ

" W L
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Here P+Q includes all the prop letters of PBQ, and occludes PBQ, yet must be ranked above it. This
effect does not go away when we require the presence of the prop letters in the constraint set:

P+Q PBQ P Q

" W L W L

$ W L L W

If we wish to tighten things up so as to put the occluded formula exactly in the lowest stratum
occupied by its occluders, we can require (first) that the prop letters of K both be present in the
hierarchy and not be dominated by K.  And (second) that K be a ‘positive’ formula –  lacking
negation, and composed only through fission and fusion (or possibly conjunction and disjunction,
if we extend to RM3). Any such positive sentence has the valuable property that it takes the value
L only when one of its letters is L.

(175) Remark. Let G be a positive sentence, i.e. one containing only B,+, v, w. Then v(G)=F only
if there is a prop letter P in G such that v(P)=F, where v is an RM3 valuation.

Pf. The assertion holds by basic RM3 definitions if there is only one such connective in
the formula. Suppose it holds up to n connectives; any formula with n+1 connectives will
have the form A op B, where A, B have n or fewer connectives. If v(A op B)=F, then by
RM3 definitions we have v(A)=F or v(B)=F. Apply  the induction hypothesis to the one that
evaluates to F and we’re done.       ~ 

A quick lemma expanding the purview of Proposition 8.1 sets us on our way.

(176) Lemma. Fusion as Lower Bound. Let let G={Gi}be a set of positive expressions constructed
in the language of S from prop letters P={Pi}.  Let G and ¼P belong to an MSH H. Then ¼P is a
lower bound for G in H, i.e. for every Gi0G, |Gi|$|¼P|.

Pf. Suppose |¼P|>|Gi|, for some Gi. Then H must be consistent with an ERC " in which
"*(¼|¼P|)=T and "*(Gi)=F and where "*(|C|)=e for all strata |C|>|¼P|, i.e.an ERC " that
embodies the argument for ranking Gi below the stratum of ¼P, which says that the fusion
of P’s stratum, namely ¼|¼P|, must conflict with Gi. If H is not consistent with ", then
nothing restricts Gi to a stratum below |¼P|. However, if "*(Gi)=F, then by the remark some
Pj  in Gi must have "*(Pj)=F, since Gi is positive intensional. Then "*(¼P)=F, contrary to
assumption. So no such " can exist. This establishes that œGi0G, |Gi|$|¼P|.       ~ 

Under the assumption that all prop letters involved in the constraint under discussion are
independently present in the hierarchy, we can now get our desired result:

(177) Remark. Let K be a positive formula,  and let P={Pi} be the set of prop  letters in K. Let  H
be an MSH containing K and  P, and suppose further that  |Pi| $K for every Pi0P. Let Pz denote the
lowest ranked of the Pi. Then |K| =|Pz|.

Pf. By the lemma, ¼P is a lower bound for K. In the VS representation of  H, |Pz|
contains ¼P. Therefore |K| $|Pz|. Since |Pz| $|K| by assumption, we have |K| =|Pz|.        ~
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To illustrate the range of effects just noted, let us examine the ranking properties of the fissile
constraint ¾P. These are more various than those of its fusional cognate ¼P, even though the
occlusional properties are the same.

Unlike ¼P, a constraint ¾P can sit in a variety of ranking positions with respect to its components
in the MSH. Furthermore, the presence of ¾P in a hierarchy in addition to its component prop letters
can radically alter the range of outcomes. A couple of examples will make this clear. Imagine a set
of constraints C1, C2, which impose orders on candidates {a,b,z}, as follows.

(178) C1
> C2

>

a b
 |  |
z z
 |  |
b a

Example (178) is the kind of system studied in Samek-Lodovici & Prince 1999 and discussed in §5
above. Cndidate z is collectively bounded by {a,b} and no ranking can make it optimal. In ERC
representation, the failure of z is quite apparent:

(179) Collective Bounding

C1 C2

[z~a] L W

[z~b] W L

[z~a] B[z~b] L L

Both columns fuse to L, so no ranking satisfies both ERCs. The only optima from {a,b,z} are a and
b. With C3 = C1+C2 added to the mix, however, candidate z’s situation improves dramatically. 

(180)    C1+C2 >> C1 ,C2

C1+C2 C1 C2

[z~a] W L W

[z~b] W W L

[z~a] B[z~b] W L L

Now z becomes optimal under the ranking C3 >> {C1, C2}.
The fission of a set of constraints may also be ranked below some of its components, though

in this case the intervention of another constraint is required. Here’s an example.
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(181) C1 >>Q>> {C2, C1+C2}

C1 Q C2 C1+C2

" W L L

$ W L … W

The general situation can be portrayed graphically like this. For P={Pi,1#i#n}arrayed in possibly
many strata in an MSH:
(182)

… |P1.… ( …  | … ) … Pn| …  
    

          ¾P
The constraint ¾P can, grossly speaking, fit in anywhere from just above the highest ranked of the
Pi ’s to a position co-stratal with the lowest ranked. Under the assumption that all the prop letters of
¾P are present with it in the hierarchy, the ranking properties of ¾P can be laid out as follows:

(183) Ranking Properties of ¾¾¾¾P
I. |¾P| $ |Pi| .

(a)  ¾P may crucially dominate a subset of P with two or more members. 
•  Example (180) shows how this can happen. Why two or more? Suppose ¾P
dominates only one of its prop letters, call it Pz. Then all the others either dominate
or are co-stratal with ¾P. Call these PN.  By Knockout  (171), Prop. 8.3, ¾P will
function like ¾P\PN. But this is just Pz and self-domination cannot be crucial.

(b) In the MSH, any Pi0P that is crucially dominated by  ¾P falls into the stratum
immediately below that of ¾P. Any such  ¾P-dominated Pi’s contribute nothing to
operation of the hierarchy and can be removed without changing its optima.

• The second clause follows from Prop. 8.2, Polar Occlusion, since ¾P occludes
its variables, ¾P being polar. The first clause then follows from Corollary 1 to
Prop. 8.4, Occlusion and Ranking.

II. |Pi| $|¾P|
 (a)  ¾P may itself be crucially dominated by a Pi0P, but only through transitivity of
domination involving the agency of non-member(s) of  P .

• Since "*(¾P)=T whenever "*(Pi)=T, the two constraints ¾P and Pi cannot
directly conflict: no " yields "*(Pi)=T and "*(¾P)=F. Crucial domination is
possible by a transitivity argument, as illustrated in example (181).

(b) In the MSH, if |Pi| $|¾P| for all Pi0P, then  |¾P| occupies the same stratum as the
lowest-ranked Pi.

• Since ¾P is positive, this follows directly from Remark (177).

(c) When |Pi| $¾P for some certain Pi0P in any hierarchy, then ¾P functions the
same as  ¾(P !{Pi}). Hence, in condition II(b), where this relation holds for all Pi,¾P contributes nothing to the operation of the the hierarchy.

• This is Knockout, obtained because the Pi are trivially polar and ¾P transparent.



24 This disparity would be rectified if we switched the meaning of T and F; after all, assignment of
the polar values to poles of the ‘better than’ relation is arbitrary. Numerous architectural contortions would
ensue, however, and we leave the matter for future contemplation. 
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To this point we have considered logical relations based on syntactic overlap between constraints.
Of equal interest is the logical relation we began with: entailment. Suppose PÿQ holds under

some polyvaluation A*. We find excellent algebraic behavior in the MSH: we are guaranteed that
|P|#|Q| and, further, that P is occluded in hierarchies that validate A.

Proposition 8.5. Let  P,Q be constraints in the MSH H(A). If A*K PÿQ, then |Q|$|P|  Furthermore,
if H ÖA., then H = H !P.

Pf. Say that |P|>|Q| in H(A) . Then, by Remark (156) on stratal conflict,  there must be an
"0A with "*(Q)=L. Since A*K PÿQ, it must be that "*(P)=L and consequently "*( ¼|P|)=L,
an impossibility in H(A). So |P|#|Q|. Now suppose H  validates A. We claim P is occluded.
Because A*KPÿQ, the only valuation $* for which $*(Q)=e and $*(P)0{W,L} requires
$*(P)=L. Thus, Q occludes P except on this valuation. But P cannot be the highest-ranked
issuing a polar valuation of $, else $ is unsatisfied, contrary to the assumption that H ÖA .
Therefore, some other constraint C occludes P on $* in H. Since P is occluded on all
valuations, H = H !P.        ~

Remark. This shows that occlusion in successful hierarchies requires only Occluded=W Y
Occluder0{W/L}.

The converse of Proposition 8.5 is of course not true:  |P|#|Q|  does not force PÿQ. (Obvious,
perhaps, because subordination is not occlusion, which is a concomitant of PÿQ in a hierarchy that
validates its ERC set .) For example, with no other constraints in sight, the column vector
A*(Q)=(W,e,) must dominate A*(P)=(L,W), but ‘ÿ’ fails in the second coordinate (going from
subordinate P to dominant Q). 

Q P

" W L

$ e W

Proposition 8.5 reveals that ‘ÿ’ over constraints construed as VS vectors works in a way that is
opposite to naive Boolean expectations. When one constraint entails another in a Boolean system,
it is the entailed constraint that is superfluous. Here it is the entailer that plays no role.24 Within the
current terms, however, the result makes good sense. For an ERC [a~b], the expression ‘PÿQ’
means that a does no worse against b on Q that it does on P (where earning e counts as doing worse
than W). Since the sense of the MSH is, broadly, that constraints more favorable to the desired
winners are ranked higher than less favorable constraints, it is unsurprising that the at-least-as-
favorable Q should be at least as high-ranked as P.
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By contraposition, whenever we have PÿQ, we also we have (¬Q)ÿ(¬P), and therefore, by
Proposition 8.5, we have |¬Q|#|¬P|, a fact that can be put to use in various ways; for example, by
considering the hierarchy obtained by replacing P and Q with their negations. It is reasonable, then,
to put aside implication, and ask how general the relation is between negation and ranking inversion.
It turns out that it cannot be generally guaranteed in the MSH. Here’s an example showing that the
very opposite can hold:

(184) Preservation of relative rank under negation in MSH

|P| > |Q|

I II III

C1 P C2 Q

" W L L W

$ W L

|¬P|> |¬Q|
I II

C1 ¬P C2 ¬Q

"N W W L L

$N W W

Notice that we have neither implication nor crucial domination between P and Q. P’s rank is as high
as possible, this being the MSH , but a (nonminimal) stratified hierarchy in which P joined Q in rank
III would ratify the same ERCs.

When there is crucial domination between two constraints, however, ranking contraposition does
hold. The notion of ‘crucial domination’ is subject to some ambiguity of use, depending on whether
the focus is on a specific hierarchy or on the class of hierarchies consistent with the ERC set; let us
disambiguate.

Consider the case of constraints defined by an ERC vector (W,L,W). A hierarchy with
domination order C1>>C2>>C3 will satisfy the ERC, and the relationship C1>>C2 might be called
‘locally crucial’ with respect to that hierarchy inasmuch as C1 cannot be shifted to a lower position,
while retaining the rest of the ranking relations. But it is also  noncrucial inasmuch as the work it
does can be replaced by C3, yielding an equally satisfactory hierarchy  C3>>C2>>C1, which denies
the ‘crucial’ C1>>C2. By contrast the relation C1>>C2 over the sole ERC "=(W,L,e) is crucial in the
stronger sense that any  hierarchy consistent with " will require it. It is this latter, global sense of
‘crucial’ that we are interested in. In this sense, a ranking relation is crucial when it is entailed by
ERC set.

(185) Def. Crucial domination. Let P,Q be constraints over a consistent ERC set A. Let us say that
P>>Q is crucial iff P>>Q is entailed by A, equivalently iff Q>>P is inconsistent with A.
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Under this definition, P>>Q will be present in every hierarchy H with HÖA. We can now proceed
to demonstrate that P>>Q, with domination crucial, implies ¬P>> ¬Q. The only complexities in the
proof are superficial and due to the necessity of keeping track of the parallels and anti-parallels in
the two hierarchies being compared.

(186) Proposition 8.6. Assume constraints P,Q in a constraint set S over a consistent  A, with P>>Q
crucial. Construct a modified constraint set SN by replacing P,Q in S with ¬P, ¬Q. Let AN be the ERC
set resulting from this modification and let HN be any hierarchy on SN validating AN.   If such HN
exists, then (¬Q)>>(¬P) crucially in HN.  

Pf. Consider the ERC n, not necessarily a member of A, in which  n*(P)=W and
n*(Q)=L and n*(C)=e for all other C0S. Since n says precisely P>>Q, we have  A |n. By
Proposition 2.5, (25) p. 14,  we must have some subset Q of A with ƒQ|n. 

Let us examine the structure of Q. Note first that we must have AKƒQÿn, because
both n and ƒQ are nontrivial. This gives us a tight hold on the coordinatewise behavior of
the antecedent in the implication. Briefly, ƒQ must have W at P, L at Q, and L or e
elsewhere, with n derived by L-retraction, at most.

(i) For all constraints C0S, with C…P,Q, we have  n*(C)=e, by construction.
Therefore, since CK ƒQÿn for each C, we must have ƒQ*(C)0{L, e}.

(ii) Since n*(Q)=L, we must have ƒQ*(Q)=L.
(iii) We must therefore have ƒQ*(P)=W, else ƒQ0L+, contrary to the assumption that

A is consistent. 
Let AN be the ERC set corresponding to SN, in which P is replaced by PN = ¬P and Q is
replaced by QN = ¬Q. Observe that this transforms n into nN=(!n). Let QN be like Q and
except that in each R0Q the values R*(¬P) and R*(¬Q) are substituted for those of R*(P),
R*(Q), yielding RN0QN. Claim: ANK ƒQN ÿ(!n) . Briefly, ƒQN will have L at P, W at Q, and
will remaining the same as ƒQ at all other coordinates, so these will be L or e. Once again,
L-retraction will do the job.

(iN) For C0S, with C…P,Q, we have C0SN and everything remains the same. From (i),
it follows that CK ƒQNÿ(!n), since (!n)*(C)=n*(C)=e and (ƒQN)*(C)=(ƒQ)*(C)0{L,e}.
Therefore, the interesting action is in the coordinates PN and QN, corresponding to P and Q.

(iiN) By construction, we have (nN)*( ¬P)=L. From (iii), we have (ƒQ)*(P)=W. This
means that for some R0Q, R*(P)=W and therefore (RN)*(¬P)=L. Therefore(ƒQN)*(PN) = L.

(iiiN) By construction, (nN)*( ¬Q)=W. (We also note that (ƒQN)*( ¬Q)=W else ƒQN
is inconsistent, which would lead to inconsistency in AN, contrary to assumption.)

From these remarks, it follows that ANK ƒQN ÿ (!n), and consequently AN|(!n). But
(!n) means exactly Q>>P.        ~ 

Implication and crucial ranking do not exhaust the conditions under which ranking contraposition
can be found. Here’s a case where neither is at issue, but in which ranking does contrapose under
negation.



97

(187) Ranking contraposition without implication or crucial domination

|P| > |Q|

I II III

C1 P C2 Q

n W L L W

R W L

> W W

|¬Q| > |¬P|

I II III

C1 ¬Q C2 ¬P

nN W L L W

RN W W

>N W L

We have seen that logical relations between constraints, represented in VS, correlate with ranking
relations, in ways that are parallel – or anti-parallel – to what we found for ERCs. This recalls to
mind the hopes of some that Paninian special-general relations, which typically involve entailment
in some form, would also limit domination patterns. This is manifestly untrue for constraints
construed as assessors of violation (Prince 1997 et seq.), where special-case/general-case constraints
are crucially rankable, via transitivity, in any order. But by tranferring operations from violation
space to comparison space, we have located the setting in which logic and ranking interact
systematically.

To conclude this survey of constraint logic, let us switch perspective and think in terms of sets of
candidates, in order to ascertain what fusion means for candidate-set structure. Each constraint

Ci imposes a stratified partial order Ci
> on a candidate set. For example, we could have the following

structure imposed over a candidate set {a,b,c,d,e,f,g,z.}, represented in a Hasse-type diagram, with
better being higher:

C1
>

a
|
b
|

        c,d,z
|
e
|
f
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From the point of view of any individual candidate z, the candidate set falls orderwise into three
equivalence classes on each constraint Ci:

Li the set of candidates to which z loses. For 80Li, (8>z;Ci).
Ei the set of candidates which Ci does not distinguish from z. œ>0Ei (>.z;Ci).
Wi the set of candidates which z beats on Ci. œT0Wi( z>T;Ci)  

Recast in familiar terms, this description puts into the set Li all those candidates 8 such that
Ci([z~8])=L; into Ei all those candidates > such that Ci([z~8])=e; intoWi all those candidates T such
that Ci([z~T])=W.

For the triple  +Li,Ei,Wi ,, let’s write Ci
>/z. Our example transforms as follows: 

C1
>/z

L: a,b 
  |

E:           c,d,z
  |

W: e, f

Given two such constraint-orders Ci
>/z and Cj

>/z, their fusion can be constructed in a way that
accords completely with previous usage:
(188) (Ci

>/z) B(Cj
>/z) = + LicLj, Ei 1Ej , (WicWj) ! (LicLj) , 

The first component consists of those candidates that beat z on at least one of the constraints; since
L is dominant in ‘B’, these must also beat z on the fusion (LBL=LBW=LBe=L). The last component
consists of those candidates that z beats on at least one of the constraints but that do not beat z on
either (WBW=WBe=W). The middle component includes all those candidates that are orderwise
indistinguishable from z on both constraints (this includes, of course, z itself), falling under the rubric
eBe = e. This immediately leads to the general expression:

(189)  ¼(Ci
>/z) = + ^Li, _Ei, ^Wi !^Li,.

For a concrete sense of how this plays out, consider the following example.

C1
>/z C2

>/z       (C1
>/z)B(C2

>/z)
L: a,b a,e a,b,e

    |   |    |
E:           c,d,z           b,c,z   c,z

  |   |    |
W: e, f d,f  d,f

Suppose we have a hierarchy H in which z is optimal in its candidate set K. Consider the fate
of K as we proceed from constraint to constraint down the hierarchy. Construe a constraint  as a
function that returns its top stratum, with ranking as functional composition: then at each point in
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the hierarchy only the top stratum is passed on to the next-ranked constraint. The candidate set
shrinks around the optima as we descend the hierarchy. 

A constraint +Li,Ei,Wi , becomes rankable at the point in RCD where Li becomes null:  where
all the candidates in Li have been eliminated by virtues of their membership in some higher-ranking
Wk. (See Samek-Lodovici & Prince 1999 for further development along these general lines). It is
clear from expression (189) that when ¼Ci is rankable under RCD, by virtue of the emptiness of ̂ Li,
all of its component constraints Ci  have become rankable as well. This replicates the semantical
argument for Prop. 8.3a; the others proceed along similar lines.

A further consequence of algebraic interest follows directly: fusion preserves ranking relations in the
MSH. Grossly put, if |A|$|B|, then |ABX|$|BBX|.

(190) Proposition 8.7. Let  H  be a hierarchy in MSH form containing constraints ÷c{A,B}, where
÷ is a set of constraints, possibly null, disjoint from {A,B}. Let  H N be a hierarchy in MSH form that
contains  ÷ as well as ABX and BBX, for some constraint X, and possibly contains A,B as well.   

If |A| $|B| in H , then |ABX| $|BBX| in H N. 
Pf. Writing L(Ai) for the L component of Ai= +Li,Ei,Wi ,, we have

(*)  L(ABX)= L(A)cL(X) 
(**)  L(BBX)= L(B)cL(X).

Let D be the set of constraints in H  dominating A. Since A does not lie among those strata
of H  containing members of D, it must be the case that either 

(i) A contains no L’s and D is empty, or 
(ii) The ERC set underlying H  is inconsistent and has no consistent subsets, and

therefore  H  has only one stratum, with D empty, or 
(iii) the distribution of L’s in A is such as to lead to domination of A by the

constraints in a nonempty D. 
Now consider the role of D in H N. Let ED be the set of strata in H N which contain

the members of D. It cannot be that ABX lies in ED . This is trivial for cases (i) and (ii), since
D is empty. For case (iii) note that  ABX has all the L’s of A  and possibly more, as is clear
from (*). Similarly for BBX. If BBX were positioned in one of these strata, B would also be
positionable among the constraints of D in H : since all the L’s of BBX would be eliminated
from leading position in the hierarchy by constraints in D, so would those of B, by (**). 

Now suppose  |BBX|>|ABX| in H N. At the first stratum occupied by BBX, namely
|BBX|, both L(X) and L(B) must have been eliminated. But since |BBX| lies strictly below
the strata in ED,  L(A) is also eliminated. But then ABX must be rankable in |BBX| or higher,
contrary to assumption.       ~ 

The reader might wish to show that the same relation holds for ERCs.



25 Suppose C1(A)=0 and C1(B)=1. For A to prevail, its score must always remain less than that of B.
Now  let C2(B)=C3(B)=0. The worst that A can do, maxing out on the lower ranked constraints, is
C2(A)=N!1, C3(A)=M!1. The score assigned to A is therefore M(N!1)+M!1 = MN!1. Therefore, the C1
weight MN is required to push B’s single violation over the limit.
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9. The Arithmetic of Optimality Theory

Courage. Weren’t strips of heart culture seen
Of late mating two periodicities?                   

!Empson    
Summary. The arithmetic of comparison in Optimality Theory is strictly finitistic.

Optimality Theory can be understood as an extreme case of weighting constraints (Prince &
Smolensky 1993, ch. 10), with minimization of the summed weights.

To determine optimality arithmetically by a weighted sum of violations, we might for
example assign a numerical score to each candidate: say, 3@C1+C2, with 1 point assessed for each
failure. The winner would be the candidate with lowest score, 0 being the best possible. In this
system, violations of C1 count more than violations of C2 – each C1 violation weighs in at 3 units,
against 1 for violations of C2. This will imitate optimality theoretic relations over a limited region
of violation space, but it lacks the crucial property of strict domination, which forces  one violation
of a higher-ranked constraint to be worse than any number of violations of lower-ranked constraint.
Consider the following violation pattern:
(191)

C1 C2

A ****

B *
Under OT, the optimum is A, because it bests B on the highest -ranking constraint that distinguishes
A and B. But under the weighted-sum model 3@C1+C2, it will be B that obtains the minimal score.
Weighted-sum theories equilibrate violations, allowing kinds of trade-off that OT can disallow.

To ensure the strict-domination effect, we’d need to use a formula of the shape N@C1+C2,
where N is strictly greater than the greatest possible number of violations of C2 incurred by any form.
(For example, if 4 is the max, then 5@C1+C2 will work.) Since this relation must hold between every
adjacent pair of (crucially interacting) constraints in the hierarchy, we quickly get a multiplicative
scheme. If M@C2+C3 works for the C2/C3 relation, then M@N@C1+M@C2+C3 will work for all three
constraints.25 If M>N, we can be conservatively sure that M2@C1+ M@C2+C3 will do the job. In
general, a successful weighting strategy will surely be obtained if we take as its base a number
greater than the greatest possible number of violations of any constraint. Then we score violations
by the following exponential scheme, starting the sequence with C0 for convenience and numbering
upwards in domination order:
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(192)

But there is typically no principled limit to the number of violations that a given constraint may
assess, just as there is no principled limit to the length of a linguistic form. Therefore, to arithmetize
OT it would appear that we need to appeal to infinite weights, using the principles of nonstandard
arithmetic to calculate with them. The spectre of the infinite has been known to induce discomfiture.

Courage. Calculation throughout this paper has been in terms of only three values: W,L,e.
We have seen that a logical expression taking values equivalent to these can represent the notion of
a strict domination hierarchy, linearly ordered  (161) or stratified. (164). Robert Wilson (p.c.) points
out that the constituent operators ‘B’ and ‘+’ can be represented as bivariate polynomials taking
values in the field F3, whose three elements may be understood as the integers mod 3, e.g. as
numbers from {1,0,!1}, with the assignment W=1, e=0, L=!1. From this observation, we can
deduce immediately that the logical formulas for domination hierarchies will translate into
polynomials taking values from {1,0,!1}. For P>>Q>>R, for example, we will have the following
representation, using lower case for the value assigned to upper case constraints:

(193) Scoring P>>Q>>R     

The  expressions involving squared variables will detect polar values: (1!p2) is 0 whenever p=1 or
p=!1, but 1 when p=0. Therefore, if p is polar, all terms beyond the first go to 0 and the value of the
expression is determined entirely by p. If p=0, then q  assumes the determining role; when q is polar,
all subsequent terms vanish. And so on. This exactly mirrors the process of evaluation of a strict-
domination hierarchy.

The general expression can be written like this, enumerating the constraints in domination
order, starting with top-ranked P1. For convenience, we put p0=0.
(194) 

A (linearly ordered) hierarchy P1>>...>>Pn  is successful if this expression evaluates to 1 or 0 over
every ERC, with 0 occurring only for the degenerate ERC.

The key, of course, is that OT is really only interested in the difference in degree of violation
between the optimum and its competitors, and then only in the sign of the difference. To do
arithmetic sensibly, you subtract first, and normalize weights to {1,0,!1}. In a scheme of infinite
weights, all but the greatest really function like 0; here we just use 0. OT arithmetic is then finitistic
in the rather extreme sense that it need use integers no larger than 1, no smaller than !1.
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Appendix 1. Functional Characterization of Constraints

Let U be the universal set of forms and let an ‘OT choice(OTC)  function’ C be a function
C:p(U)÷p(U) that meets the following restrictions.

(i)   Choice. C(X)fX for all XfU.
(ii)  Forced Choice. C(X)=Ø Y X=Ø.
(iii) Contextual Independence of Choice. If Y1C(X) …Ø, then C(Y1X)=Y1C(X).

We show any such function C induces a stratified partial order on each XfU; that C is the
‘maximum’ function with respect to this order; and conversely, that the maximum function on any
stratified partial order defined on U satisfies these three conditions. In addition, we show that a
constraint hierarchy, a functional composition of OTC functions, is itself an OTC function.

By a strict partial order, we mean one that is asymmetric, irreflexive, and intransitive. By a stratified
order, we mean one in which noncomparability  ‘2’  is an equivalence relation. Two elements x,y are
noncomparable, x2y, iff neither x>y nor y>x.

To avoid a befuddling proliferation of parentheses, commas, and braces, I will use the following
aggressive abbreviations:

for C(X) write CX
{x,y,z} xyz
{x} x (with distinction between x and {x} contextually determined).

Given such a C meeting the above description, we define the following order:

Def. Order induced by C. For every x,y 0U such that x…y,   x>Cy iff Cxy=x.

Def. max.   x0max(X) iff x0X and ¬›y0X ý y>x.

Remark. x2y iff Cxy=xy .

Proposition 1. For any C meeting conditions (i),(ii), (iii), >C is a stratifed partial order on any XfU.
Proof.  First, we show that >C is a strict partial order: that it is asymmetric, irreflexive, and transitive.
Asymmetry is built into the definition, as is irreflexivity. To show transitivity, assume

(a) Cxy=x
(b) Cyz=y.

We claim that Cxz=x.
Suppose yz1Cxyz…Ø. Then by (iii), C(yz1xyz) = yz1Cxyz = y1Cxyz = y. So y0Cxyz.

Thus xy1Cxyz…Ø. But C(xy1xyz)=Cxy=x by assumption (a). Contradiction!
Since yz1Cxyz = Ø, Cxyz=x, by Forced Choice (ii).

Note that xz1Cxyz cannot be null, by Choice (i). So Cxz = C(xz1xyz)=x. 
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Next, we show that >C is stratified. We must show that ‘2’ is symmetric, reflexive, and transitive.
Symmetry and reflexivity are immediate from the definition of ‘2’. To show transitivity, assume:

(a) Cxy=xy
(b) Cyz=yz

We claim that Cxz=xz.
Cxyz has a nonnull intersection with at least one of  xy, yz.
If xy, then Cxy=C(xy1xyz)=xy1Cxyz=xy so xy fCxyz. And then yz1Cxyz …Ø as well.
If yz, then Cyz=C(yz1xyz)=yz1Cxyz=yz so yzfCxyz. And then xy1Cxyz … Ø as well. 

So yz1Cxyz …Ø and xy1Cxyz … Ø must both hold, and both of  xy fCxyz and  yzfCxyz.
Therefore, Cxyz=xyz, so that xz1Cxyz…Ø.
Therefore, Cxz= C(xz1xyz) = xz1Cxyz=xz1xyz=xz.       ~ 

Proposition 2. C is max in its induced order.
Proof.
Say x0CX. Then x>y for any yóCX. And no y0CX is such that y>x.
Say x0max(X). If xóCX then œy0CX, y>x, and ›y 0CX by Forced Choice. Contradiction!       ~

Proposition 3. Let > be a stratified partial order on U. Then max for this order is an OT Choice
function.
Proof. The function max clearly satisfies Choice and Forced Choice. We show Independence.. 
Claim: Y1max(X) f max(Y1X)

Suppose a0Y1max(X). This implies a0max(X) and a0X. If ›x0Y1X with x>a then since
x0X, aómax(X). So there is no such x, and a0 max(Y1X).

Claim: max(Y1X) fY1max(X).
Suppose a0max(Y1X). We have a0Y and a0X; we need a0max(X). By assumption,
Y1max(X)…Ø. Consider any c0Y1max(X). By what has just been shown, c0max(Y1X). If
aómax(X), then c>a and aómax(Y1X). Contradiction!. So a0max(X), as desired.       ~ 

Proposition. 4. Composition of OTC’s. Let C,D be OTC functions. Then CBD is an OTC function.
Proof.

(i) Choice. DXfX and CBD(X)=C(DX)fDXfX.
(ii) Forced Choice. If X… Ø, then DX… Ø, then CBD(X)=C(DX)…Ø.
(iii) Independence. Suppose Y1CDX…Ø. Since CDXfDX, Y1DX…Ø. So D(Y1X)=Y1DX,

and CD(Y1X)=C(Y1DX)=Y1CDX.
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Appendix 2. Direct Implication Checking and RCD.

The method of implication-checking proposed in §5 involves indirection: we examine not ‘n’ but
rather ‘!n’ and we work through RCD. This raises the question of whether a direct assault on the
problem might not have a significantly different character. Here we show that it does not.

Given the charge to determine the validity of A|n, we seek to find a minimal entailing set
QfA, or at least to assure ourselves of its existence. What we need is a subset 1fA which has the
property ƒ1|n. The existence of such a subset certifies the desired implication A|n, because v1|ƒ1
(Prop. 2.1, (15)). The nonexistence of such a subset certifies the failure of the implication, because
any minimal entailing set Q for n has ƒQ|n (corollary to Prop 2.5, (27)). 

We cannot be content with grossly examining whether ƒA|n. If it does, we are done, but if
it does not, we still have work to do. To see this, let us consider the conditions under which the
entailment can fail.

(195) Conditions leading to failure of the entailment ƒA|n 

I [ƒA]k=W [n]k=L

II [ƒA]k=e [n]k=L

III [ƒA]k=W [n]k=e

Of these, conditions I and II are immediately fatal for the prospects of A|n as well.
• Condition I. If ƒA|n, then there is minimal entailing set QfA with ƒQ|n. But in condition

I, it must be that [ƒQ]k…L for every QfA, otherwise we’d have [ƒA]k=L. But [n]k=L requires L at
the kth coordinate of any entailing ERC. (L may be retracted but not added.) So no such minimal
entailing set exists, and it can’t be that A|n. 

• Condition II. If [ƒA]k=e, then [ƒQ]k=e for any QfA and there is no minimal entailing set
here either.

Condition III differs from the others in that its defect is potentially remediable. If [ƒA]k=W, it’s not
the case that every subset 1fA need have the property that [ƒ1]k=W, since a W can arise as the
fusion of W’s and e’s. Therefore a minimal entailing set Q, with ƒQ=e, may yet lurk inside A. We
need only dig it out, or do enough digging to detect its presence.

Under condition III, with [n]k=e, the minimal entailing set Q must have [ƒQ]k=e. The
virtuous behavior of such a Q can be masked by the presence of extraneous spoiler ERCs in A which
have W at their kth coordinate. But these can be removed, and we will be a step closer to Q. What
we want is a subset 1fA with the property that ƒ1=e. If such a subset exists, it might contain a
minimal entailing set. If no such subset exists, there is no entailing set.

If we remove from A all "0A which have W where n has e, then we will be left with a subset
ANfA which is better off with respect to condition III situations. A subtlety now arises. The removal
of any such " can change also the situation for the worse. Consider the following example:
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(196) Masking of entailment

C1 C2 C3 C4 C5

" W L

R1 W L

R2 W L L

n e e W L e

Suppose we are trying to ascertain whether {",R1,R2}|n.  The obvious point of delicacy is with "
at C1. Removal of " discloses a further problem: the valuable L in C2 is attached to "; with " gone,
we see that (R1BR2) suffers from a condition III issue precisely at C2. 

We must therefore iterate the removal procedure and extract R1 from the potential entailing
set. In the case at hand, this successfully reveals R2 as a potential (and indeed actual) entailer. In
other cases, yet further problems may be revealed and iteration must continue.

Notice that finding a subset 1 free of Condition III problems does not guarantee entailment: 

(197) 1 is not enough

R W L

n W L

Here R doesn’t entail n, nor vice versa, yet no condition III situations are in evidence. The result of
condition III elimination is a subset whose fusion must still be tested for the entailment relation.

The disclosure of columns fusng to W is of course the very motif upon which RCD is built, and the
iterating removal procedure – like RCD – looks for W-fusing columns. The difference is that
condition III repair is not concerned with those columns where n itself has W. 

But if we switch our focus to !n, as in the inconsistency-testing procedure of §5, RCD will
continue as before to seek out the columns where n (and !n!) have e. But RCD no longer wants
those columns where n has W, because these now fuse to L when !n is included. The switch to !n
thus eliminates one source of extraneous noise from RCD. It has another crucial effect. Columns
where [n]k=L are those where [!n]k=W. RCD will wish to stratify any of these that it can. And if
Ac!n is consistent it will succeed, demonstrating nonentailment of n. If Ac-n is inconsistent, it will
fail, demonstrating A|n. 

RCD thus natively includes the entailment check that condition III repair must add on.
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Appendix 3. Entailment and Nonentailment between Fusions and Fusands

W(B) f P(A)? W(A) f P(B)? L(B) f L(A)? L(A) f L(B)?

A B ABBBBB ABBBBB||||A ABBBBB||||B A||||ABBBBB B||||ABBBBB

1 (e,W,L) (W,L,e) (W,L,L) no YES no no

2 (e,W,L) (W,L,L) (W,L,L) no YES no YES

3 (e,W,L,L) (W,W,W,L) (W,W,L,L) no YES YES no

4 (W,L,e) (W,L,W) (W,L,W) no YES YES YES

5 (W,L,e,e) (e,e,W,L) (W,L,W,L) no no no no

6 (e,e,L,W) (W,L,L,e) (W,L,L,W) no no no YES

7 (W,L,L,e) (e,e,L,W) (W,L,L,W) no no YES no

8 (W,L,e) (e,L,W) (W,L,W) no no YES YES

9 (W,L,e) (e,W,L) (W,L,L) YES no no no

10 (W,W,L,e) (e,W,L,L) (W,W,L,L) YES no no YES

11 (W,L,L) (e,W,L) (W,L,L) YES no YES no

12 (W,L,W) (W,L,e) (W,L,W) YES no YES YES

13 (W,L,e) (W,e,L) (W,L,L)  YES YES no no

14 (W,L,e) (W,L,L) (W,L,L)  YES YES no YES

15 (W,L,L) (W,L,e) (W,L,L)  YES YES YES no

16 (W,L) (W,L) (W,L)  YES YES YES YES

For the conditions on the coordinates cited at the head of the yes/no columns, see (37), p. 19, and (38), p. 20.
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Appendix 4. A Kripke-Style Semantics for OT

Dunn 1976 (also ABD:177ff) develops a Kripke or ‘world’ style semantics for RM, which only uses three
truth values. By adapting his construction, we may do the same for OT, i.e. for RM based upon
polyvaluations. In this informal overview, I will modify his notation, terminology and definitions rather
freely, in the interests of (what I deem to be) accessibility in the present context; the interested reader
should turn to the cited pieces for the original details.

The chief ingredients are these: a set of ‘worlds’  K={wi}, an order relation ‘#’  on them, and a valuation
function f(p, wk) that assigns values from {T,e,F} to prop letters at each world, extended to entire sentences
in the usual recursive manner. Crucially, the order relation is required to be linear (strict domination cannot
be far in the background). Furthermore, valuation at each world is not entirely independent, but must meet
the “hereditary condition”.

(198) Hereditary Condition. If wi#wj then f(p, wi) = e or f(p, wi)= f(p, wj).

According to the Hereditary Condition, any legitimate string of world-based valuations will begin with
a (possibly null) sequence of e’s, which is then possibly followed up by a string of T’s, or a string of F’s;
polar values are therefore ‘inherited’ intact in successve worlds.  As we advance in through the worlds in
order, we may start out evaluating any given prop letter to e and then possibly move on to one of the polar
values, with which we must remain.

Evaluation of complex sentences proceeds at each world by RM3 rules, with the wrinkle that the positive
intensional connectives – fusion, fission, arrow –  look back in the order to determine their local value.
For conciseness, let us write ‘rm3[n]’ for the RM3 valuation of n.

(199) Arrow (Dunnean)
   f(AÿB, wk) = F iff ›wi #wk , rm3[f(A, wi)ÿf(B,wi)] =  F

= e iff œwi #wk , rm3[f(A,wi)ÿf(B,wi)]  =  e
= T otherwise.

In short, AÿB is F at wk if its RM3 valuation, based on the value of its consituents, is F anywhere in
w1,...,wk. It is designated at wk iff it is designated throughout w1,...,wk, and T iff one of those designated
values is T.

The passage to OT clears when we observe that the linearity of R, in consort with the Hereditary
Condition, imposes very narrow requirements on the progression of values. Instead of having to survey
the entirety of the sequence, we need only examine the first occasion on which AÿB, or indeed A+B,
ABB, assumes a polar value.
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(200) Arrow (OT style)
•  Let wdom be the first world in K  such that rm3[f(A, wdom)ÿf(B,wdom)] is polar. Then 

f(AÿB,wk)=rm3[f(A, wdom)ÿf(B,wdom)] for all wk$wdom .
  •  If there is no such wdom0K, wdom #wk, then f(AÿB, wk)=e.

Adverting to firstness, i.e. dominance, eliminates the need for the Hereditary Condition; without it, we find
ourselves squarely in the territory of ordered polyvaluations. If we identify each world wk with a valuation
vk, but assign the world’s valuation on the basis of wdom, we are just doing OP semantics without the
numbers. Extensional connectives combine the dominant values of their constituents; intensional
connectives take as dominant the world where the combination first achieves polarity. 

To proceed in a more Dunn-like fashion, let us suppose that we are given a polyvaluation V, and
an order R on V={v1,...,vn}. For convenience, assume that R is given by the order of indices. We put the
worlds in the same order {w1,...,wn} and define the basic valuation function f as follows:

f(p,w1) =  v1(p) 
f(p,wk) = vk(p) if f(p, wk!1)=e, 

else f(p,wk) =   f(p,wk!1)
This version of f incorporates the Hereditary Condition, and extension to complex formula then proceeds
exactly as before.

The valuation at wk is exactly the one that would be assigned by the initial segment of the ordered
polyvaluation running from v1 to vk, flattened so as to only distinguish polar from nonpolar and designated
from nondesignated values. In essence, a world wk functions like the ordered subpolyvaluation
Vk=+v1>…>vk,, assigning to n e if vi(n)=e, i #k, else T if VkK n and F if VkK¬n.
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Appendix 5. Axioms for S and RM

Soboci½ski gives the following axioms for S (Soboci½ski1952:23). Parks (1972) shows that S constitutes
the implication-negation fragment of RM.

1.  (Aÿ B) ÿ((BÿC) ÿ (Aÿ C) ) Transitivity of ‘ÿ’ (suffixing)
2.  Aÿ ((AÿB) ÿB) Assertion
3.  ((Aÿ(AÿB)) ÿ (A ÿ B) Contraction
4.  Aÿ(Bÿ(¬BÿA) Double excluded middle
5.  (¬Aÿ¬B) ÿ(BÿA) Contraposition & double negation.

Axioms 1,3 are found in Church 1951ab, along with ‘AÿA’ and ‘[Aÿ(BÿC)]ÿ[Bÿ(AÿC)]’, which
are theorems of S. Therefore, as noted by Soboci½ski §4.8,  p. 54, Church’s negation-free ‘weak positive
implicational calculus’ is a subsystem of S. Soboci½ski deduces  a collection of 187
theorems from these axioms. Modus ponens and substitution are the only rules of deduction.

Among the most striking of his meta-results is the finding that no wff of S can be a theorem if it
contains a prop letter that occurs only once (Soboci½ski 1932, 1952). From this it follows that  Aÿ(BÿA)
and the closely related ABBÿA cannot be theorems. 

It is also worth noting that only half of the distributive law goes through:

 Quasi-distribution in S.
 (i) AB(B+C) ÿ (ABB)+(ABC)
 (ii) (A+B)B(A+C) ÿ A+(BBC)

These are essentially the same – (ii) follows from (i) by substitution of ¬X for X, contraposition, De
Morgan, and double negation; and vice versa. The converse implications are not valid.

A set of axioms for RM is provided in AB:341/394.

R1 AÿA Identity
R2 (Aÿ B)ÿ((BÿC)ÿ(AÿC)) Transitivity of  ÿ’(suffixing)
R3 Aÿ ((AÿB) ÿ B) Assertion
R4 (Aÿ(AÿB))ÿ(AÿB) Contraction
R5 AvB ÿ A Conjunction Elimination
R6 AvB ÿ B Conjunction Elimination
R7 (Aÿ B) v (AÿC) ÿ (Aÿ BvC) Conjunction Introduction
R11 Av (BwC) ÿ (AvB)wC Distribution
R12 (Aÿ ¬B) ÿ (Bÿ ¬A) Contraposition
R13 ¬¬AÿA Double Negation
RM0 Aÿ(AÿA) Mingle

Rules of deduction are modus ponens, conjunction introduction, and substitution.
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