NOTES ON EXCEL SPREADSHEET <navdisp_prefixdata.xls>

John Alderete, Rutgers University, October 2002

This document describes the methods used to enter the prefix data in the Excel spreadsheet <navdisp_prefixdata.xls>. The prefixes are taken from the prefix chart on pg. 37-38 of YM87 (=Young and Morgan, 1987) and the ensuing lists (pp. 39-139), with data and analysis coming from YM87 and other sources (discussed below).

PART I. COLUMNS FOR PREFIX CLASSIFICATION

YM seg = the prefix segments given in YM87. N.b.: ' of YM87 = ? (glottal stop) in this file, v/ = vowel with high-marked tone, v~ = nasal vowel, * = ‘has multiple allomorphs’ (see (2) below in part IV for assumptions about allomorphy). All other sounds are transcribed as in YM87.

lex/func = a classification of prefixes into lexical or functional items (identical to disjunct/conjunct distinction in the traditional literature).

YMslot = the prefix slot assumed in the template analysis of YM87.

gloss = rough gloss that approximates that given in YM87.

PART II. COLUMNS WITH PHONOLOGICAL INFORMATION ABOUT CONSONANTS

cplace = primary place specification for a consonant; not specified for vowels. The features phar (=pharyngeal), dor (=dorsal), cor (=coronal), and lab (=labial) are used.

corspec = place specification for coronal consonants (other consonants not specified); coronals are distinguished as alv (alveolar) or pal-alv (palatal-alveolar).

seclab = secondary labialization feature (only dorsals and pharyngeals).

stoplar = laryngeal setting for stop consonants (not fricatives or other consonants); stops are distinguished as plain (voiceless unaspirated), asp (aspirated), and eject (ejective).

friclar = laryngeal setting for fricatives (not stops or other consonants); fricatives are distinguished as vls (voiceless) or vd (voiced).
affricate = feature for consonants that distinguishes affric (affricates) from non-affricates, which are not marked.

manner = the manner of all the consonants in the prefix; for prefixes with more than one consonant, manner specifications are linearly ordered by the order of consonants in the prefix.

PART III. COLUMNS WITH PHONOLOGICAL INFORMATION ABOUT VOWELS AND OTHER SYLLABLE-LEVEL INFORMATION

vplace = a listing of the vowel quality (or qualities if more than one) of the prefix; vowel quality is listed extensionally for the four vowel phonemes: a e i o.

nasal = a specification for the nasality of the vowels of the prefix; vowels are either nas (nasal) or unmarked if they are oral.

length = a specification of the length of the vowel of the prefix; vowels are either long or unmarked if they are short.

tone = a specification of the inherent tone of the vowel of the prefix; vowels are high if they have a high tone (acute accent) or unmarked if they have a low tone (unmarked in orthography).

PART IV. NOTES ON GENERAL PRINCIPLES OF DATA ENTRY

1) Disyllabic prefixes may involve more than one specification per field. For example, the distinct prefix (Ib) /?ada/ ‘downward’ has two consonant specifications in the cplace and manner columns and two vowel qualities in the vplace column.

2) Principle of allomorph selection: it is often the case that a morpheme has more than one allomorph. I have listed ‘underlining representations’ in the sense commonly understood in Generative Linguistics because alternations are best understood as a consequence of markedness principles, and so the basic form is more likely to contain marked structure. Since the markedness of the prefix is the focus of <navdisp>, it is best to study properties of the underlying representation.

PART V. NOTES ON DATA ENTRY OF PARTICULAR MORPHEMES

0) Zero morphemes, like the 3rd person singular subject marker in regular imperfective inflections, are not given an entry.
1) The direct objects of postpositions (YM87's position 0 and Ia) are collapsed into one category (just 0), since they are derivable from the same underlying morpheme. Also, it is assumed that the underlying representations for these prefixes are CV(CV), without tone on the final vowel, because the allomorphs with high tone and an elided consonant are clearly the result of a phonological process.

2) I follow Faltz 1998 in assuming that the fourth person object marker (IV) is underlyingly /hw/ and that the other surface allomorphs are derived by phonological processes. In position V, I assume it is /ho/ underlyingly because [ha] appears to be derived by a phonological process that describes the CV interaction between glottal consonants and the vowel [a].

3) I assume that the unspecified object marker is /?i/ underlyingly, and that the surface allomorph [?a] is derived by a process, parallel to the derivation of [ha], another glottal consonant.

4) Position V 'Agentive' [?di-] is not listed because it is assumed to be a composite of [?a-] and [-di-].

5) Position V variants of /si-/ and /hi-/, spelled [yi-], are given because they have a different distribution, and so may not be allomorphs in the trivial sense.

6) The position VIII 1 duoplural iiD- subject marker is classified as a [+cont] feature, without a place feature, since there is no evidence for place.

7) The different inflections used for marking subjects in different modes (i.e., yi-perfective, si-perfective, etc.) are not listed separately. Instead, position VII is assumed to cover the phonological structure introduced in these inflections and the regular imperfective prefixes are listed for position VIII.

REFERENCES
