1. Introduction

The purpose of this dissertation is to investigate some of the grammatical properties that lead to word order variation in Spanish, and to argue that these properties are inherently related to markedness restrictions on syntactic structure. In this first chapter I introduce the problems that will be addressed in the chapters that follow and the theoretical assumptions that I will adopt for their analysis. I first present an overview of recent analyses of word order and the data from Mexican Spanish that renders these analyses problematic. Then I discuss the OT framework that I adopt throughout this dissertation. I conclude by laying out some of my general assumptions about the syntax of Spanish and by characterizing the variety of Mexican Spanish that provides the data for this dissertation.

1.1 The study of word order

1.1.1 General overview

Costa (1998), one of the most influential works on word order variation developed in recent years, summarizes the fundamental issue that needs to be addressed when studying word order phenomena. As noted by Costa, the study of word order provides two different, but presumably closely related areas of investigation. The first one is cross-linguistic word order variation, the study of why constructions with the same interpretive properties and discourse status can differ with respect to word order across different languages. The second one is language-internal word order variation, the study of why, in any particular language, constructions with the same interpretive properties and discourse status can differ with respect to word order. The first issue is cross-linguistic word order variation, the study of why constructions with the same interpretive properties and discourse status can differ with respect to word order across different languages. The second one is language-internal word order variation, the study of why, in any particular language, constructions with the same interpretive properties and discourse status can differ with respect to word order.

In order to characterize what these two problems are, consider the analysis in Alexiadou & Anagnostopoulou (1998), another very influential work on word order variation. This analysis takes as its starting point the observation that there are strict SVO languages, strict VSO languages, and languages that show an SVO/VSO alternation with respect to unmarked word order. English would correspond to the first group, Welsh to the second, and Greek and some varieties of Spanish to the third group. English and Welsh are SVO languages, while Greek and Spanish show an SVO/VSO alternation with respect to unmarked word order. English and Welsh are SVO languages, while Greek and Spanish show an SVO/VSO alternation with respect to unmarked word order.

In order to characterize what these two problems are, consider the analysis in Alexiadou & Anagnostopoulou (1998), another very influential work on word order variation. This analysis takes as its starting point the observation that there are strict SVO languages, strict VSO languages, and languages that show an SVO/VSO alternation with respect to unmarked word order. English would correspond to the first group, Welsh to the second, and Greek and some varieties of Spanish to the third group. English and Welsh are SVO languages, while Greek and Spanish show an SVO/VSO alternation with respect to unmarked word order. English and Welsh are SVO languages, while Greek and Spanish show an SVO/VSO alternation with respect to unmarked word order.

In order to characterize what these two problems are, consider the analysis in Alexiadou & Anagnostopoulou (1998), another very influential work on word order variation. This analysis takes as its starting point the observation that there are strict SVO languages, strict VSO languages, and languages that show an SVO/VSO alternation with respect to unmarked word order. English would correspond to the first group, Welsh to the second, and Greek and some varieties of Spanish to the third group. English and Welsh are SVO languages, while Greek and Spanish show an SVO/VSO alternation with respect to unmarked word order. English and Welsh are SVO languages, while Greek and Spanish show an SVO/VSO alternation with respect to unmarked word order.

In order to characterize what these two problems are, consider the analysis in Alexiadou & Anagnostopoulou (1998), another very influential work on word order variation. This analysis takes as its starting point the observation that there are strict SVO languages, strict VSO languages, and languages that show an SVO/VSO alternation with respect to unmarked word order. English would correspond to the first group, Welsh to the second, and Greek and some varieties of Spanish to the third group. English and Welsh are SVO languages, while Greek and Spanish show an SVO/VSO alternation with respect to unmarked word order. English and Welsh are SVO languages, while Greek and Spanish show an SVO/VSO alternation with respect to unmarked word order.

In order to characterize what these two problems are, consider the analysis in Alexiadou & Anagnostopoulou (1998), another very influential work on word order variation. This analysis takes as its starting point the observation that there are strict SVO languages, strict VSO languages, and languages that show an SVO/VSO alternation with respect to unmarked word order. English would correspond to the first group, Welsh to the second, and Greek and some varieties of Spanish to the third group. English and Welsh are SVO languages, while Greek and Spanish show an SVO/VSO alternation with respect to unmarked word order. English and Welsh are SVO languages, while Greek and Spanish show an SVO/VSO alternation with respect to unmarked word order.

In order to characterize what these two problems are, consider the analysis in Alexiadou & Anagnostopoulou (1998), another very influential work on word order variation. This analysis takes as its starting point the observation that there are strict SVO languages, strict VSO languages, and languages that show an SVO/VSO alternation with respect to unmarked word order. English would correspond to the first group, Welsh to the second, and Greek and some varieties of Spanish to the third group. English and Welsh are SVO languages, while Greek and Spanish show an SVO/VSO alternation with respect to unmarked word order. English and Welsh are SVO languages, while Greek and Spanish show an SVO/VSO alternation with respect to unmarked word order.
On a first approximation it looks like these word order differences can be accounted for by appealing to the interaction of a number of different parameters, set to different values in the languages under consideration. This is precisely the proposal developed in Alexiadou & Anagnostopoulou (1998). The first parameter they propose has to do with the satisfaction of the Extended Projection Principle (EPP) of Chomsky (1981, 1982). Alexiadou & Anagnostopoulou argue that VSO and SVO/VSO languages without expletives satisfy the EPP via verb raising because they have verbal agreement morphology with the categorial status of a pronominal element.

From this it follows that (i) preverbal subjects in SVO/VSO languages are not in an A-position, and (ii) VSO orders never involve a covert expletive. Concretely, Alexiadou & Anagnostopolou propose, following work by Taraldsen (1978) and Rizzi (1982), that in these languages verbal morphology agreement includes a nominal element ([+D, +interpretable phi-features, potentially +Case], so V-raising in these languages checks the EPP feature in the same way that XP-movement does in non-pro-drop languages. Consequently, it is not necessary for the subject DP to move to satisfy the EPP in null subject languages and the VSO order that these languages can display automatically. On the other hand, this parameter is set to the opposite value in languages like English. Accordingly, in the absence of expletive insertion, movement of the subject XP to [Spec, AgrS] is the only option available to satisfy the EPP. This explains the strict SVO order observed in absence of explicit expletive insertion, movement of the subject XP to [Spec, AgrS] is the unmarked way of fulfilling the EPP requirement in the parameter is set to the opposite value in these languages. On the other hand, this parameter is set to the opposite value in languages like English. Accordingly, in the absence of expletive insertion, movement of the subject XP to [Spec, AgrS] is the only option available to satisfy the EPP. This explains the strict SVO order observed in these languages.

The second parameter has to do with whether or not [Spec, T], TP being the phrase immediately subjacent to AgrSP, is projected for Case-theoretic reasons. Alexiadou & Anagnostopoulou propose that [Spec, T] is projected in Welsh and other Celtic languages. Following the analysis of Irish in McCloskey (1996), the VSO order in these languages is then derived by movement of V through T, ultimately to land in AgrS, and by movement of the subject DP to [Spec, T] to satisfy Case requirements. Consequently, the subject has a fixed position in these languages (the strict VSO order). In comparison, this parameter is set to a negative value in Greek and Spanish: [Spec, T] is not projected in this case, and so the subject does not need to move from its VP-internal position to satisfy Case requirements. Given verb raising, it does not need to move to satisfy the EPP either, and so the VSO order that these languages can display automatically is the result. On the other hand, this parameter is set to a positive value in these languages. Consequently, the subject DP must move to [Spec, T] for Case-theoretic reasons.

The essentials of Alexiadou & Anagnostopoulou's proposal can be summarized as follows:

(a) ENGLISH: No verb raising: EPP satisfied by XP movement.

\[[\text{AgrSP}] \rightarrow \text{VP} \]

Strict SVO

(b) WELSH: Verb raising satisfies the EPP, subject DP moves to [Spec, T] for Case-theoretic reasons.

\[[\text{AgrSP}] \text{V} \rightarrow \text{TP} \rightarrow \text{VP} \]

Strict VSO

(c) GREEK/Spanish: Verb raising satisfies the EPP, [Spec, T] is not projected. Subject DP can remain in [Spec, V] or move to [Spec, AgrS].

\[[\text{AgrSP}] \text{V} \rightarrow \text{VP} \]

SVO/VSO
Impressive as this proposal is, it faces two major challenges that result from broader empirical considerations. On a first approximation it is not evident why a parametrical account of word order variation should be inherently problematic. But this is the result of the fact that too narrow a set of phenomena is being considered in the first place, namely, active sentences with transitive predicates. When we expand this narrowly defined set, a completely different picture emerges, since it is not unusual that in any particular language, the relative order of the arguments of a predicate may vary depending on the specific class of verbs to which the predicate belongs.

The relevant facts are well-known from the descriptive literature on word order (see for example Arnaiz (1998) for Romance languages and Holmberg & Rijkhoff (1998) for Germanic languages), and Spanish is precisely a case in point. Following the standard assumption that unmarked word order is displayed by sentences that can be felicitous answers to questions like "What's happening?", in (5) a clear asymmetry can be observed when transitive, psych, and unaccusative predicates are all taken into account.

(5) MEXICAN SPANISH:

Qué pasa/ pasó?
'What's been happening/what happened.'

This criticism holds not only of Alexiadou & Anagnostopoulou's analysis, but of many other analyses that directly or indirectly deal with word order facts. Some exceptions are Contreras (1976) and Fant (1984) for Spanish, and Belletti & Rizzi (1988) for Italian. Fant (1984) reports the same word order facts in (5) for Peninsular Spanish, but Zubizarreta (1998) reports a SV order for unaccusatives in an out-of-the-blue (sentence focus) context. The varieties of Spanish described in Contreras (1976) and Arnaiz (1998), show the same pattern as Mexican Spanish.

Unmarked word order

a. Una muchacha compró los discos. S V O
'An girl bought the records'

b. A Juan le gustan los chocolates. IO V S
'to Juan
DAT-CL
like. 3p
the chocolates
'Juan likes chocolates.'

c. Llegó tu hermano. VS
'arrived your brother
'Your brother arrived.'

Clearly, any analysis of word order that takes into account only transitive sentences and derives the movement of the subject to a preverbal position as a consequence of a property satisfied by the subject in transitive sentences is clearly not holding in unaccusative constructions.

Whatever condition is met by fronting the subject to a preverbal position in transitive constructions is clearly not being met in unaccusative constructions. The presence of a preverbal postposing the subject in a preverbal position in each class of construction need to occupy the same position in different classes of sentences and thereby the movement of the subject to a preverbal position as a consequence of a property of word order takes into account only transitive sentences of the form: *Un marked word order.

5. From here onwards, specific semantic roles will be signaled in italics.
in which we expect to find these same effects. In particular, all the examples from
anumber different picture emerge as we expand the range of constructions
available to us. In the examples in (5), we no longer claim grammaticalized
place, once again, satisfied through verb raising. It is not surprising that the presence of absence of a
preverbal XP in the examples in (5) has no effect on grammaticality. Once again,
satisfied through verb raising as in (5), we find in (5) a word order restriction on post-verbal subjects. Initially, the claim in (5) would
appear to provide evidence in favor of the analyses given above, since there is also a strong prefrontal requirement for the transitive
subject. The same kind of Spanish displays all characteristics of languages
with a grammaticalized (1998), necessarily Spanish is particularly interesting. Mexican
in relation to the grammaticalization of the satisfaction of the EPP

It is not immediately evident how this criticism applies to the proposal in
Alexiadou & Anagnostopolou (1998), though, where fronting of the subject in
transitive constructions is an optional operation. It could be argued that this option is
there in (5a), but not in (5b) or (5c). In either case, no syntactic condition is satisfied
by fronting of the subject, so it comes as no surprise that the absence of this fronting
operation has no effect on the grammaticality of the relevant examples.

Although Alexiadou & Anagnostopolou’s analysis fares better than Subject-
condition analyses (either transformational or Optimality-theoretic), it still raises
two important issues. First, if fronting is entirely optional in Spanish, it is not obvious
why speakers have such clear intuitions about unmarked word order (i.e. IO V S for
Psych predicates instead of S V IO, for example). And second, if fronting is entirely
optional, this means that every example in Spanish where a constituent is fronted
reproduces the properties of a V O I construction (5a), and examples it contains it
reproduces the properties of a V O I construction (5a). And examples it contains it

This second issue leads us to the second problem faced by parametrical accounts.
The second problem that everyone faces in Spanish where a constituent is fronted
reproduces the properties of a V O I construction (5a), and examples it contains it

In relation to the grammaticalization of the satisfaction of the EPP

...
Mexican Spanish below, where the preverbal position is empty, are extremely marked, if not downright ungrammatical:

(6) MEXICAN SPANISH
a. ??Compró Juan el periódico. V S O
'bought Juan the newspaper'

b. ??Le regaló Juan un disco a María. V S O IO DAT-CL
gave Juan a record to María

'Juan gave a record to Mary.'

c. ??Le gustan a Juan los chocolates. V IO S DAT-CL
'like. to Juan the chocolates

'Juan likes chocolates (lit. chocolates appeal to Juan).'

Example (6a) is particularly important, since it shows that the SVO/VSO alternation is absent in Mexican Spanish, but all the examples pose the same problem for Alexiadou & Anagnostopolou's proposal. In their analysis, the unacceptability of the data in (6) goes unaccounted for. The verb has raised to I0 in all cases, carrying the [+D] feature that characterizes verbal agreement morphology in null subject languages, so EPP checking should have taken place successfully. By contrast, all the examples in (7), where the subject appears in preverbal position, are fine:

(7) a. Juan compró el periódico. S V O
'Juan bought the newspaper'

b. Juan le regaló un disco a María. S V O IO DAT-CL
gave a record to María

'Juan gave a record to María.'

c. Los chocolates le gustan a Juan. S V IO
'the chocolates like. to Juan

'Juan likes chocolates.'

Interestingly, the relevant fact in (7) is not that the subject appears in preverbal position. As shown in (8), what improves the examples in (6) is that there is some maximal projection in the preverbal position. It can be an adverbial, as in (8a), the direct object, as in (8b), or the indirect object, as in (8c-d). In this respect Mexican Spanish displays a pattern strikingly similar to the verb-second behavior described for Yiddish in Diesing (1990).

(8) a. Ayer compró Juan el periódico. Adv V S O
'yesterday bought Juan the newspaper

'Yesterday Juan bought the newspaper.'

9

One should note from the start, though, that not all of the examples in (7) are discourse-equivalent. Examples (7a) and (7b) are felicitous in an out-of-the blue context, while (7c) is not, as noted originally in Fant (1984). Example (7c), has a reading where either the subject is a topic, or where the experiencer IO is in focus (or both). Similarly, not all of the constructions in (8) are discourse-equivalent. I will return to this issue in chapter 4.
These data point to the conclusion that Mexican Spanish has an active EPP requirement that is independent of: (i) the pro-drop character of this language and: (ii) the requirement that the subject occupy the preverbal position.

It is crucial to note at this point that the contrasts observed above cannot be analyzed as the result of Mexican Spanish being set to a strict parameter that requires satisfaction of the EPP through XP movement. This is because Mexican Spanish, like any other dialect of Spanish, ordinarily tolerates certain constructions with an empty preverbal position. We have already seen that this is what is observed in unaccusative constructions like (5c), repeated here as (9a). Other constructions that follow this pattern are pro-dropped constructions (9b) and impersonal passives (9c):

Although more research is needed there is some evidence that the property is not unique to Mexican Spanish.

To summarize the discussion so far I have argued for the following two points:

1. Other constructions that follow this pattern are pro-dropped constructions (9b) and impersonal passives (9c):

 a. Llegó tu hermano. (Your brother arrived.)
 b. Compraron el periódico. (They bought the newspaper.)
 c. Se vendió la casa. (The house was sold.)

2. Mexican Spanish shows an active EPP requirement which

 a. El periódico lo compró Juan. (The newspaper John bought.)
 b. A Juan le gustan los chocolates. (Juan likes chocolates.)
 c. A María le regaló Juan un disco. (Juan gave a record to Mary.)

In contrast, the following constructions are ungrammatical (9d):

 1. ?Se lo regaló Juan a María. (Juan gave her a record.)
 2. ?Compró el periódico Juan. (John bought the newspaper.)

In view of these facts, we can conclude that the EPP requirement is not absolute in Mexican Spanish. Rather, the EPP requirement is conditioned by the presence of adverbial XPs that occupy the preverbal position. This is because Mexican Spanish, like any other dialect of Spanish, allows for the preverbal position to be occupied by adverbial XPs. The contrast is illustrated by the following examples:

 a. El periódico lo compró Juan. (The newspaper John bought.)
 b. A Juan le gustan los chocolates. (Juan likes chocolates.)
 c. A María le regaló Juan un disco. (Juan gave a record to Mary.)
1.1.2 Language-internal word order variation

As described in detail in Costa (1998), language-internal word order variation corresponds to those instances where the canonical word order attested in a language is perturbed by some syntactic operation. Fronting operations, for example, can change the word order observed in the unmarked case. Wh-movement and topicalization in Spanish and many other languages are such operations. Some examples are provided below.

Example (10) can also have a reading where the post-verbal subject DP is in focus (i.e. a GIRL bought the records). Again, I will return to this issue in Chapter 4.

Consider in this respect the analysis of Rizzi (1997), one of the most influential works on left-peripheral word order. Rizzi argues that the relative word order of fronted XPs and of different types of complementizers on the left periphery of French XP, and of different types of complementizers on the left periphery of the infinitival word order of left-peripheral word order levels. Rizzi argues that the relative word order in (11) (the records, a girl bought them) is a GIRL bought the records.

When considered in isolation, the word order facts in (10) and (11) do not appear to be particularly problematic (or even interesting). Fronting of interrogative wh-operators and topicalization can be straightforwardly analyzed as operations that displace constituents from the position where they are generated in order to comply with some principle or parameter of the language in question (the Wh-Criterion of Rizzi (1996), for example). From this perspective, the importance of the resulting word order issues is understandably much less than the importance of defining such principles or parameters, on the one hand, and of characterizing the conditions under which displacement operations can take place (island contexts, accessibility, etc.), on the other.

However, since the late 1980's it has become increasingly clear that the language-internal word order facts resulting from displacement operations are not only much more complex across different types of sentences, but also that the complex nature of the phenomena that give rise to word order variation can be understood in terms of the principles and parameters that govern such phenomena.

Consider in this respect the analysis of Italian in Rizzi (1997), one of the most influential works on left-peripheral word order facts. Rizzi argues that the relative word order of fronted XPs and of different types of complementizers on the left periphery is not amenable to an analysis where there is a single functional projection (i.e. CP) above IP. His observations are based on an extensive amount of data, of which I reproduce just an illustrative sample here. In Italian, fronted topics necessarily precede fronted wh-operators, as shown in (12). When considered in isolation, the word order in (12) is in focus (i.e. a GIRL bought the records).
(12) a. [Il premio Nobel, [a chi lo daranno]?]

 'The Nobel prize, to whom will they give it?'

b. *[A chi, [il premio Nobel, lo daranno]?]

Fronted topics, however, do not seem to be located in Spec-CP (in the traditional sense), since they follow *che, the complementizer that introduces a finite subordinate clause. Furthermore, the relative order of topics and wh-operators in embedded interrogatives can be reversed, resulting in sentences like (14b), where the wh-operator precedes the topic.

(14) a. Mi domando, [il premio Nobel, [a chi lo potrebbero dare]].

'I wonder, the Nobel Prize, to whom could they give it.'

b. ?Mi domando [a chi, [il premio Nobel, lo potrebbero dare]].

Finally, relative clauses are something like the mirror image of matrix interrogatives. In this case, the relative operators must precede a focused topic.

(15) a. Un uomo [a cui, [il premio Nobel, lo daranno senz'altro]].

'A man to whom, the Nobel Prize, they will give it undoubtedly.'

b. *Un uomo [il premio Nobel, [a cui lo daranno senz'altro]].

To account for these and other facts, Rizzi (1997) proposes the exploded-CP structure reproduced in (16).

(16) Force P

To account for these and other facts, Rizzi (1997) proposes the exploded CP structure. In (16), the word order facts presented in (12-15) are accounted for. Since exploded CP is not projected in (16), the proposal is not a restatement of the facts.
complements that take a finite IP (\(\text{che}\)), are generated in the head of the Force Phrase, the highest phrase in the structure. This is why they always precede fronted topics. Finally, relative pronouns move to \([\text{Spec, Force}]\), and this explains why they always precede fronted topics as well.

In a proposal like Rizzi's, the complexity of word order variation is accounted for by suggesting that the set of functional projections of a sentence is much more complex than would appear at first sight, an idea that originates in Pollock's (1989) work on the structure of IP. To account for the word order facts, this kind of analysis capitalizes on the larger number of head and specifier positions which it provides. Henceforth, I will refer to this general approach as the 'Functional Phrase Approach' to explaining word order variation.

It seems fair to point out, though, that this kind of proposal comes at a high price, though. The proliferation of functional phrases in the C-system is unappealing in any theoretical framework, for no other reason than Economy of Structure. But additionally, it seems to me that the specific form of Rizzi's (1997) proposal is almost determined \(a\ priori\) by the assumptions that Rizzi starts out with. If we assume, as Rizzi does, that different types of sentences have essentially the same template of functional projections, that movement of interrogative and relative operators is necessarily movement to a position in the CP system, and if we further assume that relative projections, their movement of interrogative and relative operators is functional projection, then movement of interrogative and relative operators is necessarily movement to \([\text{Spec, Force}]\), then it is straightforward to see how any account of word order variation would end up looking a lot like Rizzi's. The crucial point, of course, is that none of these assumptions is as innocent as it looks. The first is a theory-specific assumption characteristic of most transformational frameworks, but one that is not shared by other theories like LFG or OT-syntax. The second assumption, in contrast, is more standard, but may not be as well-founded as it appears to be. For instance, while it is true that \([\text{Spec, I}]\) plays a crucial role in the phenomenon of \(\text{wh}\)-movement, recent analyses of \(\text{wh}\)-movement in Spanish, for instance, have concluded that \([\text{Spec, I}]\) is the ultimate landing site of \(\text{wh}\)-operators in this phenomenon as well (Diaz 1991a, 1991b). In addition, the assumption that all fronting operations necessarily involve movement into a specifier position is even more controversial. At the very least, there is considerable evidence pointing to the conclusion that topicalization can involve adjunction, as discussed in Baltin (1982), Rochemont (1989), Saito (1989), Lasnik & Saito (1992), McCloskey (1992) and Vallduví (1992). Similarly, \(\text{wh}\)-movement has been argued to involve adjunction in some cases, as in Déprez (1991) and Rudin (1988).
If we start out with a different set of assumptions, a very different picture emerges. For example, in her work on the nature of sentential structure (the Extended Projection analysis), Grimshaw (1993, 1994, 1997, 2000) argues that sentential projections and many of the operations that take place in them are subject to well-formedness conditions that are defined in relation to the structure of the sentence as a whole and not in relation to some particular specifier or head position. Well-formedness conditions defined in this way can be satisfied in different ways in sentences with different structures. For the sake of illustration, assume that topicalization is triggered by a well-formedness condition that requires topics to appear in the sentence-initial position. Costa (1998), following work in the functionalist tradition, provides an informal definition of such a well-formedness condition, reproduced here in (17).

\[(17) \text{TOPIC-FIRST: Topics are sentence-initial.}\]

Crucially, topicalization satisfies this condition in all the structures in (18), even when the topic XP is in a different position in each one. In any given language, other considerations might ultimately rule out some of these options over the others, but in principle, they could all be attested in one and the same language. For example, a strict requirement on subjects to appear in [Spec, I] would rule out (18a) as a possible topicalization structure when the topic is not the subject. Notice that even in this case there would still presumably be at least two ways of satisfying the well-formedness requirements of TOPIC-FIRST, one condition replaced here in (17).
1.2 Optimality Theory

1.2.1 The architecture of OT

Optimality Theory (Prince & Smolensky 1993) is a theory of constraint interaction in generative grammar. In OT, Universal Grammar (UG) is conceived as a set of constraints on linguistic representation, CON, that is present in every language.

Crucially, these constraints are interpreted as violable, and the architecture of OT is such that every grammatical construction in a language will still violate a considerable number of constraints. The postulation of violable constraints comes from the observation that many of the well-formedness requirements in any given language seem to be in conflict with one another, but: a) different languages prioritize the satisfaction of different well-formedness requirements, and: b) given a conflict between well-formedness requirements A and B, prioritizing the satisfaction of A over B does not necessarily result in a state of affairs such that the effects of B are no longer observed elsewhere in the language.

OT accounts for this fact by postulating that constraints are hierarchically ranked with respect to one another. This amounts to saying that languages differ with respect to how constraints are prioritized when there is such a potential conflict. Accordingly, in OT the grammar of a particular language is a particular ranking of universal constraints. Constraint rankings are represented as in (19). The connective \gg means dominates (or outranks).

(19) LANGUAGE A: $C_\alpha \gg C_\beta \gg C_\gamma ...$

LANGUAGE B: $C_\alpha \gg C_\gamma \gg C_\beta ...$

LANGUAGE C: $C_\beta \gg C_\gamma \gg C_\alpha ...$

In this way, OT provides a simple mechanism for accounting for cross-linguistic diversity, and for deriving it from a universal set of well-formedness conditions.

Here it is worth clarifying an important point. Optimality Theory is not a syntactic theory. Despite differences across theories, the majority of syntactic analyses in OT agree that the input does not contain any form of phrase-structural representation. The input to OT is an abstract representation of the linguistic structure that corresponds to the (non-structural) properties of the surface representation.

14 Despite differences across theories, the majority of syntactic analyses in OT agree that the input does not contain any form of phrase-structural representation.
two different processes. In the first process, a universal function \(GEN \) (for Generator) takes the input and generates a set of possible outputs or parses (the candidate set) for that input. Once again the precise characterization of the candidates generated by \(GEN \) depends on the linguistic theory we adopt, but for the time being we can think of them as some form of surface structure.

In the second process, one of the candidates in the candidate set is selected as the optimal output for the input under consideration by evaluating how it fares with respect to the ranking of constraints that constitutes the grammar of the language. The winning candidate is the candidate that is most harmonic with respect to the constraint ranking. This selection process is carried out by the function \(EVAL \), which takes the candidate set and returns it as a partial order, with its most harmonic member at the top (McCarthy 2002).

\(EVAL \) does not select the most harmonic candidate based on the number of constraints that it violates, but rather on the relative ranking of the constraints it violates. Given a specific ranking, an optimal candidate is the candidate that satisfies the highest ranked constraint on which competing candidates conflict (Grimshaw 1993). It is of no importance if the optimal candidate fares worse than losing candidates with respect to lower-ranked constraints, as long as it abides by the highest ranked constraint that other candidates fail to satisfy.

The mapping of an input into an output can be represented in a tableau like the one in (20). The input is typically represented in the top left-hand corner of the tableau. The constraint ranking of the language is represented to the right of the input. Solid lines dividing the columns for each constraint symbolize a strict ranking, dotted lines symbolize an undetermined ranking.

The candidates generated by \(GEN \) are represented in the cells in the column below the input. When a candidate incurs a violation of a constraint, the violation is represented by an asterisk in the cell where the row that corresponds to the candidate and the column that corresponds to the constraint intersect.

Informally, evaluation of the candidates in the candidate set proceeds as follows.

1. All candidates are evaluated with respect to \(C_\alpha \), the highest-ranked constraint.

2. Strictly speaking, OT requires a strict ranking for every constraint in the grammar. It is very often the case, however, that the relative ranking between two or more constraints cannot be determined solely on the basis of the data that one is analyzing. It is in these cases that a dotted line is used. It has also been suggested extensively in the OT literature that constraints may be "tied" in some cases. Tied constraints will not be crucial for the analysis to be developed in what follows, and so I will not go into details about their formalization.

There are different ways in which candidate evaluation can be formalized in a tableau. One is the method of Mark Cancellation (Prince & Smolensky 1993), where all candidates are compared with respect to the highest-ranked constraint. The winning candidate is the candidate that satisfies the highest-ranked constraint on which competing candidates conflict. The candidate with the highest number of constraints that it satisfies is then the winner. Another method is the method of Samek-Lodovici & Prince (1999), where constraints are functions from sets of candidates to sets of candidates, such that a constraint
Candidates A and B satisfy this constraint, but candidate C violates it. Since this is the highest ranked constraint, candidate C is immediately ruled out of the competition: it incurs a fatal violation (represented as *) which necessarily makes it sub-optimal (i.e. less harmonious) vis-a-vis the other two candidates, which do satisfy C. Notice that in fact candidate C violates less constraints than either of the other candidates, but this is inconsequential, since satisfaction of constraints is evaluated hierarchically and not quantitatively. The candidate set is now reduced to candidates A and B, and they are evaluated against the next highest ranked constraint, C.

Since candidate B violates C but candidate A does not, candidate B's violation of C is fatal and it is dropped out of the competition. With this we have exhausted the candidate set, and so candidate A is selected as the winner, which is represented by the symbol F. The procedure outlined here helps to clarify what is meant in OT when we say that an attested surface representation (i.e., the output) is simply optimal. In a state of affairs where every potential output is going to violate a certain number of constraints, the attested output corresponds to the one possibility that best satisfies the hierarchical ranking of constraints that corresponds to the grammar.

OT considers two basic types of constraints, faithfulness constraints and markedness constraints. Faithfulness constraints govern the identity relations between the input and the candidates generated by GEN. In contrast, markedness constraints take a set of candidates and return the subset of those candidates that best satisfy that constraint. Since a lower ranked constraint in turn takes the subset given by the higher ranked constraint, EVAL can then be understood in terms of function composition. See McCarthy (2002) for further discussion.

Before laying out the more specific assumptions that I will adopt in the OT framework, a few notes on terminology are necessary. Markedness in the descriptive sense and markedness constraints are different things. The former is a property of a structure, and the latter is a property of a function. To avoid confusion, the terms structural markedness and markedness constraint are used to refer to these concepts, respectively. It is important to distinguish between these two concepts because my proposal to drop the phrase "markedness violations" (McCarthy 2002: 171) for discussion is important. In particular, markedness constraints are a property of the grammar and not the candidates. Therefore, it is necessary to make a distinction between these two concepts. An important part of the concern that candidates A and B satisfy the constraint C is immediately ruled out of the competition is the assumption that these constraints are part of the grammar.
like GB, where the definition of conditions on representation has to be, in comparison, fairly complex. Otherwise, the range of empirical facts accounted for by these conditions would be minimal. Furthermore, the predictive power of these simple, violable constraints is considerable indeed. Even though OT allows for the possibility of constraints to be violated, it is crucial to remember that in OT the grammar of a particular language is considered to be a particular ranking of universal constraints. As a result, for every constraint postulated to be part of UG, in principle it should be the case that such a constraint appears at the top of the constraint ranking in some particular language. This means that in such a language, the conditions determined by the constraint are met without exception, because the constraint is undominated. In other words, we still expect "soft" constraints to display the behavior of "strong" principles or parameters in some cases. This is a powerful and concrete prediction that results from the specific architecture of OT, and it is also a fundamental empirical shift in the constraint on linguistic structure, since in principle there will be languages where this constraint will never be violated. Summing up, interpreting a constraint on linguistic structure as a violable constraint in OT does not make the constraint empirically vacuous.

1.2.2 Optimality Theoretic Syntax

As previously mentioned, OT is not a linguistic theory, but rather a theory of constraint interaction. Accordingly, research in Optimality-theoretic syntax has been undertaken in a variety of theoretical frameworks, including functional-typological syntax (Legendre et al. 1993; Aissen 1999a, 2000), Lexical-Functional Grammar (Bresnan 2000a, 2000b; Choi 1999; Sells 2001, inter alia) and Minimalist-derivational syntax (Pesetsky 1998; Broekhuis 2000; Heck & Müller 2000). The analysis in this dissertation is developed in the OT representational framework that has stemmed from the work in Grimshaw (1993, 1997), Legendre et al. (1995, 1998), Samek-Lodovici (1996), Costa (1998), Grimshaw & Samek-Lodovici (1998), among many others. The theoretical constructs of this framework share some assumptions with Government and Binding Theory (Chomsky 1980, 1986), but strictly speaking they constitute a very different linguistic theory, whose characteristics have been shaped to a considerable extent by the specific architecture of OT. With respect to the characterization of inputs, I follow Grimshaw (1993, 1997), Legendre et al. (1995, 1998), Samek-Lodovici (1996), and others in assuming that inputs are predicate-argument structures, consisting of a lexical head and its argument structure, an assignment of lexical heads with government and binding traces. Arguments are kept apart from the lexical heads by the overt material that fills in the gap. In this dissertation, I assume that inputs also include adjacent elements such as adjuncts. Following the notation in Legendre et al. (1998), arguments are kept apart from the lexical heads by the overt material that fills in the gap. In this dissertation, I assume that inputs also include adjacent elements such as adjuncts.
adjuncts by a semi-colon ";". I further assume, following Legendre et. al. (1998), that arguments and adjuncts in the input are specified with syntactically-relevant features like \[\text{wh}\], \[\pm \text{referential}\], etc. Accordingly, a sentence like (21a) would have the input illustrated in (21b).

(21)a. John bought the newspaper in Brussels.
b. \(<\text{buy}(x, y; z), \text{Past}, x=\text{John}, y=\text{the newspaper}; z=\text{in Brussels}>\)

Following Legendre et. al. (1998), I also assume that the scope of certain operators and other scope-taking elements is specified in the input. The input of a sentence showing sentential negation, for example, would be represented as in (22b).

(22)a. John didn't sleep.
b. \(<\neg (\text{sleep}(x)), \text{Past}, x=\text{John} >\)

However, in contrast with Legendre et. al. (1998) I do not assume that the scope of topics and \text{wh}-operators is specified in the input. This is an issue that will be addressed in detail in Chapter 4 of this dissertation.

I further assume that elements in the input are specified with features relevant to information structure, such as \[\text{topic}\] and \[\text{focus}\] (see Samek-Lodovici 1996, Costa 1998, Grimshaw & Samek-Lodovici 1998). An instance of subject focus like (23a) would have (23b) as its input.

(23)a. John bought the newspaper.
b. \(<\text{buy}(x, y), \text{Past}, x=\text{John}, x=\text{[focus]}, y=\text{the newspaper}>\)

Lastly, I assume that the semantic role of the arguments of a predicate is specified in the argument structure that is part of the input, as illustrated by (24).

(24)a. John bought the newspaper.
b. \(<\text{buy}(x, y), \text{Past}, x=\text{John}, x=\text{agent}, y=\text{the newspaper}, y=\text{theme}>\>

Including semantic role labels as in (24) is in a sense redundant, since such information is already part of the lexical entry of a predicate. However, since reference to such semantic roles will be crucial in the analyses that follow, it will be useful to specify them in each tableau for expository purposes.

My assumptions with respect to \text{GEN} are the following. I assume that the candidates generated by \text{GEN} are annotated S-structures which, roughly, combine both surface syntax and LF information (see Williams 1986, Brody 1995, Legendre et. al. 1998). The semantic role labels to be used in what follows are just labels that encapsulate finer semantic distinctions, such as those in Dowty (1991). Except for the discussion in §3.4, these finer distinctions will not be crucial for the analysis, and so I will use the standard semantic role labels for convenience.
Since this dissertation does not concentrate on the interpretive or prosodic properties of the annotated S-structures generated by GEN, I will only lay out my assumptions with respect to their syntax.

I adopt the following assumptions about the syntactic trees generated by GEN. I will assume throughout that GEN generates all and only those structures that conform to X-bar theory (Grimshaw 1997). In other words, I assume that GEN does not generate tree structures that violate other formal restrictions on trees such as the Single Root Condition, the Exclusivity Condition and the Nontangling Condition (see Partee et al. (1987) for relevant definitions). On the other hand, I assume that GEN does not generate the structures that violate the directionality of a maximal projection with respect to its complements and its specifier (see Grimshaw 2001 for a recent proposal). However, I do assume that GEN does not generate the structures that violate the constraint that militates against multiple specifiers (Harris 1999). For the sake of simplicity, I also assume that a constraint requiring strict binary branching is undominated in Spanish, although this assumption will not be crucial for the analysis in any way. In terms of the Single Root Condition, I will assume that the annotated S-structures are generated by GEN. I also assume that the annotated S-structures are generated by GEN, but I do not assume that the annotated S-structures are generated by GEN, because GEN does not generate the structures that violate the Single Root Condition. Therefore, I assume that GEN does not generate the structures that violate the Single Root Condition, but I do not assume that the annotated S-structures are generated by GEN, because GEN does not generate the structures that violate the Single Root Condition. Therefore, I assume that GEN does not generate the structures that violate the Single Root Condition, but I do not assume that the annotated S-structures are generated by GEN, because GEN does not generate the structures that violate the Single Root Condition.

Example (25) is a structure where a maximal projection is a sister to a head, but where the head dominates both constituents, as in (25a). Example (25a) is a structure where a maximal projection is a sister to a head, but where the head dominates both constituents, as in (25a). However, I do not assume that the annotated S-structures are generated by GEN, because GEN does not generate the structures that violate the Single Root Condition. Therefore, I assume that GEN does not generate the structures that violate the Single Root Condition, but I do not assume that the annotated S-structures are generated by GEN, because GEN does not generate the structures that violate the Single Root Condition. Therefore, I assume that GEN does not generate the structures that violate the Single Root Condition, but I do not assume that the annotated S-structures are generated by GEN, because GEN does not generate the structures that violate the Single Root Condition.

(25) a. \[X_0 \quad [X_0 X] \quad YP \]

b. \[YP \quad [XP X] \]

(26) XP ZP X' YP

Lastly, I assume that the annotated S-structures that constitute the candidate set can be different from the input in their feature content and interpretive properties (i.e. that they can be unfaithful to the input with respect to these properties). There is considerable debate in OT-syntax as to whether GEN can generate candidates whose interpretive properties and feature content differ from the ones specified in the input. However, I do not deal with these issues in this dissertation. One of the main reasons is that GEN is not part of a framework that associates the interpretive properties of the annotated S-structures generated by GEN with the possibility of these properties in the candidate set. This is because GEN is not part of a framework that associates the interpretive properties of the annotated S-structures generated by GEN with the possibility of these properties in the candidate set.
with a head and one more violation of a chain with two consecutive violations of

Legendre et al. (1998) and McCarthy (2002) note that serious problems arise if this possibility is not allowed, such as ineffability and problems with characterizing ungrammaticality in a meaningful way.

With respect to Thematic Theory, I assume that the locality of \(\theta \)-marking is regulated by the constraint in (27), from Grimshaw (1997: 374).

\[
(27) \text{LOCAL-} \theta\text{-MARKING} \quad \text{(Makal}}
\]

I assume that this constraint is undominated in Spanish, which amounts to saying that all of the arguments of a verb must be \(\theta \)-marked within the VP. In relation to this, I also assume that candidates that omit any of the arguments specified in the input are ruled out by the PARSE constraint (Prince & Smolensky 1993, Grimshaw & Samek-Lodovici 1998), which requires all elements specified in the input to be realized in the output.

When an argument surfaces in a position outside the VP, \(\theta \)-MARK is satisfied by establishing a chain between an argument displaced outside the VP and a VP-internal trace, as in (28).

\[
(28) \text{John} _t _i \text{might VP} _t _i \text{buy the newspaper}. \]

This does not imply that the chain < John, \(t \), i > in (28) is derived by movement. In the OT-syntax framework adopted here it is taken to be a purely representational chain in the sense of Brody (1995), which means that chains are syntactic objects inserted as such in the structures in order to express relations between discontinuous positions (see Grimshaw 1993, 1997; Legendre et al. 1995, 1998; Costa 1998). In Optimality-theoretic terms this means that GEN can generate S-structures like (28) directly.

\[
(29) \text{S-TAY Trace is not allowed.} \]

The precise interpretation of this constraint depends on whether one adopts a representational or a derivational model for the OT analysis as a whole. In a derivational model, S-TAY is violated once for every movement operation. In a representational model, S-TAY is violated once for every movement operation in a transformational model.

Of course, GEN can also generate an S-structure like (28) without a trace as part of the candidate set. Such a candidate, however, would violate \(\theta \)-MARK because there would be no link between the subject DP and the lexical projection of the verb that assigns it its semantic role. Since I assume that \(\theta \)-MARK is undominated in Spanish, I will not consider such candidates, though.
The S_TAY constraint guarantees that displacement will only take place when required to satisfy a higher ranking constraint. In other words, candidates displaying gratuitous displacement chains will lose to candidates that do not because of their unjustified violations of S_TAY. In this respect, S_TAY is the OT equivalent of Economy of Movement in transformational frameworks. For the most part, S_TAY does not play a crucial role in my analysis, though, and for simplicity I will mostly leave it out of the tableaux and the evaluation of candidates in the following chapters. With respect to surface grammatical relations, I assume that they are determined by constraints that map the thematic properties of the arguments of a verb into such relations, as in Aissen (1999a) and Asudeh (2001). However, my analysis is equally compatible with frameworks where grammatical relations are instead primitives, as in Relational Grammar. A final issue concerns ungrammaticality. In a framework like Principles and Parameters, violation of a principle or the value setting of a parameter leads to ungrammaticality. Clearly, this is not possible in OT, since every S_TAY constraint violation of a parameter will lead to a higher ranking constraint. Nevertheless, violation of S_TAY in the present study is the OT equivalent of Economy of Movement violations of a parameter. Therefore, violations of S_TAY will lose to candidates that do not because of their gratuitous displacement chains. As mentioned above, candidates displaying gratuitous displacement chains will lose to candidates that do not. In order words, candidates displaying gratuitous chains of any size to represent syntactic displacement, and strictly speaking, every constituent is generated in the same position where it appears in the annotated S_structure that corresponds to the output. Since both my analysis and the OT analyses under discussion here are strictly representational, I will henceforth adopt the latter interpretation of this constraint.

Although there is considerable murkiness about this issue in the literature, it is worth pointing out that these interpretations of S_TAY are not necessarily equivalent. Consider the case of Clitic left-dislocation (CLLD) in Romance languages, which according to Cinque (1990) corresponds to an instance of base-generation (\(ec\) stands for empty category).

\[
\begin{array}{l}
\text{(i) } [XP \text{ \{} VP \text{ \}}]
\end{array}
\]

In a derivational model, (i) never violates S_TAY, since there is no movement involved. In a representational model, however, the evaluation of (i) depends on how we define a chain. For example, if we define a chain as a syntactic object that has any null category (whether a trace, pro, or PRO) as its foot, then (i) would indeed violate S_TAY. This is the definition of chains that I will assume throughout this dissertation, and consequently, I take all instances of CLLD to violate S_TAY. This assumption is not crucial to the analysis in any way.
pragmatically infelicitous in some instances is taken to be ungrammatical in those contexts where it is perceived to be ill-formed by native speakers, but grammatical otherwise. Still, one cannot help but have the strong intuition that there is a fundamental difference between sentences that have been labeled "ungrammatical" in traditional terms and sentences that just happen to be semantically ill-formed or infelicitous under certain pragmatic conditions. Accordingly, throughout this dissertation I will adopt the characterization of ungrammaticality proposed in Gutiérrez-Bravo (2000b), where an ungrammatical sentence is a sentence that, given a specific ranking of constraints, will never surface as an optimal candidate, no matter what the input is. In other words, an ungrammatical sentence is a candidate that is suboptimal for every input.

An unfelicitous sentence, in contrast, is a sentence that for a certain number of inputs may not emerge as the optimal candidate, but there will be at least one input for which this sentence will be the optimal output (and thus correspond to a felicitous utterance). This distinction will be further clarified and discussed in the chapters that follow, and plays a crucial part in the analysis in chapter 4.

1.3 Spanish

1.3.1 Basic Assumptions

My basic assumptions about Spanish sentential structure are fairly standard, and are mostly based on the analysis in Suñer (1994). I assume that all arguments and adjuncts of a verb are generated in a VP shell, such that adjuncts and adverbials are the most deeply nested constituents of the VP (Larson 1988). Following Suñer (1994), I assume that external argument is governed in [Spec, V], whereas in the VSO order the subject remains in base position (Suñer 1994). Following Pollock (1989), I further assume that accusative and dative clitics in Spanish are instances of morphological agreement. More detailed assumptions about sentential structure in Spanish will be introduced as they become relevant for the discussion.

As mentioned in the previous section, I assume following Dowty (1991) and much previous and subsequent work (especially Grimshaw 1990, Aissen 1999a, and Asudeh 2001), that the grammatical relations of the arguments of a predicate are determined by the semantic properties of the predicate and not by the structural position that these arguments occupy at some level of representation. In this respect, I assume that Case and subject-verb agreement in Spanish are governed by well-formedness conditions that target the subject as defined by these semantic properties or entailments, instead of being associated with specific structural positions. The reason for adopting these assumptions will become clear in the chapters that follow. The discussion will be further clarified and discussed in the chapters that follow
1.3.2 A note about the data

Unless otherwise noted, the data used throughout this dissertation corresponds to Mexican Spanish, the variety of Spanish with the largest number of speakers (approximately 90 million). The literature on Spanish syntax usually makes reference to "standard Spanish", under the assumption that this corresponds to some dialect or register of Spanish that is mostly homogeneous across different Spanish speaking countries. I depart altogether from this assumption, and will make reference to different varieties of Spanish according to the geographical area where they are spoken.

The speakers of Mexican Spanish consulted are all from several states in central and western Mexico (Mexico City, Aguascalientes, Jalisco, and Nayarit). No claim is made that the syntax of this variety of Mexican Spanish is different from varieties spoken in northern, southern, and south-east Mexico. These other varieties, however, are clearly perceived as distinct by native speakers of the "central-west" variety, and make them the speakers of the variety of Mexican Spanish that differ from the others. Hence, the speakers of Mexican Spanish consulted are all from areas in central and western Mexico (Mexico City, Aguascalientes, Jalisco, and Nayarit). No claim is made that the speakers of Mexican Spanish consulted are all from areas in central and western Mexico.

The focus of this dissertation hence does not align perfectly with the focus of previous work on the word order phenomena that will be the object of study. The differences between Mexican Spanish and other varieties of Spanish make the differences between the word order phenomena that will be the object of study. The differences between Mexican Spanish and other varieties of Spanish that different varieties of Spanish that do not correspond to some dialect or register of Spanish under the assumption that this corresponds to some dialect or register of Spanish (approximately 90 million). The literature on Spanish syntax makes reference to "standard Spanish", under the assumption that this corresponds to some dialect or register of Spanish that is mostly homogeneous across different Spanish speaking countries. This dissertation, however, depart from this assumption, and will make reference to different varieties of Spanish according to the geographical area where they are spoken.

The speakers of Mexican Spanish consulted are all from several states in central and western Mexico (Mexico City, Aguascalientes, Jalisco, and Nayarit). No claim is made that the syntax of this variety of Mexican Spanish is different from varieties spoken in northern, southern, and south-east Mexico. These other varieties, however, are clearly perceived as distinct by native speakers of the "central-west" variety, and make them the speakers of the variety of Mexican Spanish that differ from the others. Hence, the speakers of Mexican Spanish consulted are all from areas in central and western Mexico (Mexico City, Aguascalientes, Jalisco, and Nayarit). No claim is made that the speakers of Mexican Spanish consulted are all from areas in central and western Mexico.