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5: 

DERIVATIONAL SEQUENCES AND HARMONY SCALES 

 

 Derivational sequences and harmony scales are collections of relationships between 

phonological structures that are used to pick out a grammatical surface representation: a surface 

representation is the final form in a sequence in derivational phonology; it is the optimal form on 

a scale of relative harmony in optimality phonology. The two approaches would match still 

further if traversing along the steps of a derivational sequence to the end were consistent with 

traversing through increments in harmony up to the peak. 

We formulate this possible analogy between derivation and harmony in 5.1, and analyse 

the extent to which it holds in 5.2. In 5.3, we show that derivational steps which contradict 

harmony are ruled out by adding a strict economy condition on derivation length. However, this 

is too strong, ruling out other derivations for which there is evidence in Slavic languages, which 

do not contradict harmony. In an appendix, we examine how to foreclose the possibility of 

harmony scales with multiple optimal members, since sequences do not have multiple endpoints. 

 

5.1 The Derivation-Harmony Analogy 

5.1.1 Paths and Landscapes 

 It is noteworthy that in both derivational and optimality phonology, the relation between 

an underlying form and its surface form is mediated by some wider system of relations between 

representational structures. In the derivational framework, a sequence of representations is 

constructed starting from the underlying representation. The surface form is the final form of the 

sequence constructed. This is illustrated in (1). Representations are shown as a collection of �’s 

residing in some space, and a derivation is a path through that space, from representation to 
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representation, starting with the underlying representation (UR) and leading to the surface 

representation (SR): 

 

(1)   /�/ � � � � � � � � � � � [�] 

  UR      SR 

 

In the optimality framework, each underlying representation is associated with a harmony 

ordering of all structures under their possible correspondences, and the surface form is the 

optimal form, the maximally harmonic candidate. This is illustrated in (2). One might think of 

the space of all possible structures being ’landscaped’ by a rating of harmony, with the optimal 

form residing at the highest peak. 

 

(2)      [�]    SR 

     � �  �  

   � �  � �  �  

 �  � �   �  � 

� � /�/UR � � � � � � � � � 

 

We can compare these two pictures. The surface representation, for example, is in both cases 

found in a privileged position: the final member of the derivational path or the peak of the 

harmony landscape; the fact that there are no further members to the sequence after SR correlates 

with the fact that there is no form more harmonic than SR. When we superimpose the 

derivational path (1) and harmony landscape (2) pictures in (3), the result is a path which tends to 

rise towards the peak: 
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(3)      [�]    SR 
      � 

     � �  �  
      � 

   � �  � �  �  
      � 

 �  � �   �  � 
      �   

� � /�/UR � � � � � � � � � 

 

This presents us with an analogy between succession through the derivational sequence and 

incrementation up the harmony scale, and suggests the conjecture that a derivation P1�P2�... 

�Pn-1�Pn be matched by the harmonies P1�P2�...�Pn-1�Pn in a corresponding harmony 

evaluation. 

 Note that (3) is a comparison across two theories. Some have considered putting together 

derivation and harmony within a single theory: "a rule applies if and only if its effect is to 

increase the well-formedness of the representation" (Goldsmith 1995:7 my italics, cf. 

Sommerstein 1974, Goldsmith 1990:318ff, 1993). It is true that the comparison we are 

undertaking bears an anatomical similarity with such theories of "harmonic rule application", but 

in theory comparison, we have derivation and harmony as devices belonging to two separate 

theories, and we are testing an apparent similarity between those theories. Thus, our construal of 

a derivational path ’rising’ through a landscape resides in a metatheoretical frame, articulating a 

possible correspondence across theories. As far as we are concerned here, the fact that other 

phonologists have thought to place derivation and harmony alongside one another only lends 

additional support to the venture. In the next two sections, we undergird the analogy formally. 

 

5.1.2 Structures and Candidates 

 In order for the analogy to make sense in formal terms, we must take care over the 
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harmony relation. Strictly speaking, harmony discriminates between candidates, and it was 

shown in 2.3 that the candidates evaluated are not merely structures, but include a 

correspondence relation to the input structure. In this they differ from the members of a 

derivational sequence, which are structures. However, it is possible to resolve this difference. 

 To think of harmony as a relation between structures is a simplificatory move which is 

often useful because Markedness constraints - including ONSET, NOCOMPLEX, etc. - are 

constraints whose evaluation of the candidate focusses entirely on the potential output structure 

itself. Faithfulness constraints, however, do not focus entirely on the output structure, but 

evaluate the whole input-output relation. Thus in the tableau (4) below, input/output constraint 

MAX discriminates between candidates that share output .ba. if differing numbers of input 

elements have correspondents in the output, and similarly between candidates that share .a., 

while the output constraint ONSET evaluates all instances of .ba. identically, and all instances of 

.a. identically, though it does discriminate between different outputs .ba. and .a. . 

 

(4) 

/b1a2/ ONSET MAX 

.b1a2.   

.b a2.  * 

.a2. * * 

.a . * ** 

 

It is possible to think of markedness constraints as discriminating among structures themselves, 

.ba., .a. etc., as well as the candidates in which they are contained. This leads to the property of 

Harmonic Ascent (Moreton 1999): the optimal output structure is either equal to the input 

structure or is a more unmarked structure than the input structure when assessed against the sub-
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hierarchy of markedness constraints. For example, in (4), .a. is not a viable output from .ba., 

being more marked than .ba. itself. One way of abstracting away from the evaluation of the 

correspondence relation by Faithfulness constraints is to exclude from consideration all but the 

"best" correspondence for each structure. In tableau (4), for example, .b a2. and .a . have 

gratuitous MAX violations, but .b1a2. and .a2. do not, so are more natural. We use this notion 

here. For each structure we can choose whichever correspondence relation leads to greatest 

harmony according to the constraint hierarchy. Call this correspondence the most harmonic 

correspondence. For example, such possibilities as gratuitous lack of correspondents for some 

structural elements in the input and output, or gratuitous multiple correspondents for some 

elements in the input and output, are excluded because they lead to excessive violations of 

Faithfulness constraints. We now have the notion of structure harmony in (5): 

 

(5) Relative Harmony of Structures 

Let I be an input form, O1,O2 some structures. 

 Let C1 be the correspondence relation C1�O1�I such that 

�C�O1�I, �I,O1,C1� � �I,O1,C�. Define C2 similarly. 

 �(structure) is defined as an ordering on structures such that 

 O1�(structure) O2 iff  �I,O1,C1� � �I,O2,C2� 

One structure O1 is less harmonic than another O2 if and only if the candidate 

containing O1 under the most harmonic correspondence is less harmonic than the 

candidate containing O2 under the most harmonic correspondence. 
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5.1.3 Formulating The Analogy 

 Now that a notion of relative harmony of structures has been properly derived from the 

harmony relation on candidates, the derivation/harmony analogy may now be expressed as in (6): 

 

(6) Derivation / Harmony Analogy 

 Let D=P1, ..., Pn be a derivation. 

Let H be a harmony scale in which Pn is optimal 

D and H are analogous to the extent that, for i=1,...,n-1: 

  if Pi is succeeded by Pi+1, then also Pi is less harmonic than Pi+1 

 

Of course, harmony relationships exist between many more pairs of structures than just those 

which also happen to be in the derivation, so the analogy between D and H is tested just for those 

specific structures that are in D, seeing whether the succession relationships will be matched by 

harmony relationships. 

A formally more thorough-going analogy can be achieved if we take into account the 

analogy between input-output correspondences and derivational-history relations which specify 

how structures in a derivation correspond with the original structure (chapter 3). The fuller 

analogy in (7) obtains between derivational sequences and harmony scales where the 

modifications to the underlying structure are the same for structures in the derivational sequence 

and in the harmony scale, i.e. that derivational histories are always equal to the most harmonic 

correspondence relations. 
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(7) Derivation / Harmony Analogy (advanced) 

Let D=P1, ..., Pn be a derivation; for each i, let 1Hi be the derivational history relation for 

Pi in the derivation. 

Let H be a harmony scale in which Pn is optimal; let Ci be the most harmonic 

correspondence between input and the possible output Pi, for each i. 

D and H are analogous to the extent that, for i=1,...,n-1: 

(i) 1Hi = Ci ; (ii) if Pi is succeeded by Pi+1, then also Pi is less harmonic than Pi+1 

 

A Duke of York gambit of deleting and re-inserting an element, for example, would always fail 

condition (7i) of this more thorough-going analogy since the equivalent MAX and DEP violations 

could never be the most harmonic correspondence (faithfully mapping the element is better). In 

typical cases (7i) is a reasonable demand, for, as shown in 3.3, derivational histories and input-

output correspondences take the same intuitively natural forms to the extent that violated 

Faithfulness constraints are ranked as low as possible ("Constraint violation is minimal") and 

derivations are as short as possible (Economy of derivation), except perhaps in a few formally 

subtle cases. 

 

5.2 The Extent of the Correlation 

 Having formulated the analogy between derivational succession and harmony 

incrementation in a formally defensible way, we now test the actual extent to which traversing 

along the steps of a derivational sequence to the end is consistent with traversing through 

increments in harmony up to the peak. 

Moreton (1999) has proven the key property of Harmonic Ascent for constraint 

evaluation systems, according to which the output form given by a hierarchy of Markedness and 

Faithfulness constraints is either identical to the input or more harmonic than the input – as a 
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result of satisfying high-ranking Markedness constraints. As far as comparison with derivations 

is concerned, this means that: 

�� if the output is identical to the input, then the analogous derivation is one with no steps at all, 

so the derivation-harmony correlation is vacuous; 

�� if the output is different and therefore more harmonic than the input, it follows that a 

derivation which takes a path from one to the other corresponds to an overall increase in 

harmony, ending on a more harmonic form than the one it starts on. 

The question now is whether or not this increase is distributed over each one of the individual 

steps of the derivation. 

 

5.2.1 Last Step as Increment 

 Whenever a derivational sequence and a harmony scale converge on the same surface 

form, the following result in (8) obtains: the last step in the derivational sequence always 

corresponds to a harmony increment, since the final form is also the optimal one on the harmony 

scale, whereas the penultimate form in the sequence is suboptimal on the harmony scale. 

 

(8) Last Step as Only Necessary Increment 

 Let D=P1,...,Pn, be a derivation; let H be a corresponding harmony scale converging on 

the same surface form as D.  

a. In the derivation, each structure except the last is immediately succeeded by another.  

 for i=1,...,n-1   Pi�� Pi+1 

b. Each structure that happens to take part in the derivation apart from the last is suboptimal on 

the harmony scale. 

 Assuming that D and H converge on the same surface form (Pn), then 

 for i=1,...,n-1 Pi � Pn 
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c. Derivational succession and harmony incrementation necessarily correlate in the last step, 

and this is the only necessary point of correlation. 

 The relational statements in a. and b. match iff i=n-1: 

 Pn-1 ��Pn & Pn-1 �  Pn 

  

The result follows on the assumption that a derivational sequence and a harmony scale converge 

on the same surface form. This assumption is not entirely trivial, on two counts. First, as was 

shown in chapter four, differences in output can be thrown up solely from the differences 

between rule interaction and constraint interaction, even when the rules and constraints 

themselves are strongly analogous. Second, as drawn attention to by Hammond (2000), it is 

possible to construct evaluation systems that have two or more optimal forms, with no constraint 

to discriminate between them. This contrasts with derivational sequences, since a sequence has 

precisely one final member. Scales thus depart from sequences in this essential respect. We 

consider how to restrict scales to a single optimal output in an appendix to this chapter. 

 The result in (8) opens up a difference between the last step, where the derivation-

harmony correlation is guaranteed, and other steps where it is not guaranteed, it is now inevitable 

that the correlation between derivational succession and harmony incrementation is limited. 

While some derivations may be entirely consistent with harmony increments, the possibility of 

troughs, plateaus, or peaks, as illustrated in (9), remains. 

 

(9)   Derivation �    

       [P6]  

  P2       P3  P5  	  Harmony 

 /P1/   P4    
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Such mismatches do indeed occur. This is illustrated from a simple example due to Prince and 

Smolensky (1993:206-207). Consider a rudimentary grammar which admits CV(C) syllables, and 

which delivers epenthesised forms for aberrant input sequences failing to comply with CV(C). 

Thus, given the input /V/, the grammar will derive a syllable consisting of the V augmented with 

an epenthetic consonant to provide the necessary onset: .cV. . A rule-based system might achieve 

this by a syllable formation rule and an onset-consonant epenthesis rule, but an alternative OT 

grammar would have constraints ONSET (syllables have onsets), NOCOMPLEX (each syllable 

subconstituent contains just one segment), and PARSE (segments must be parsed into syllable 

structure). These constraints are undominated, but FILL (constituents must be filled by underlying 

material) is crucially ranked below them so that epenthetic positions may be admitted so as to 

comply with the requirements of syllable structure. The following table (10) cites the rule 

applications deriving .cV. from .V. from V (entered to the left of the forms) opposite the 

constraint violations of the same forms given by the OT grammar (to the right of the forms), 

presenting a “history” of constraint violations for structures that are found in the derivational 

sequence. 

 

(10) Constraint Violation History (Prince and Smolensky 1993:207) 

Stage Rule Representation ONSET PARSE FILL 

1  V  *  

2 Nucleus Formation .V. *   

3 Onset Epenthesis .cV.   * 

 

As anticipated, the last step corresponds to a harmony increment. The last step is .V.�.cV. and 
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.cV. is more harmonic, by satisfaction of ONSET at the expense only of FILL. However, the 

previous step V�.V. does not correspond to a harmony increment, since each registers one 

violation from an undominated constraint. Hence, a move from stage 1 to stage 2 along the 

derivational sequence constitutes a harmony plateau. 

 We could, of course, remedy this artificially by ranking the constraints arbitrarily. We 

could rank PARSE above ONSET, so that the ONSET-violating form .V. is more harmonic than the 

PARSE-violating form /V/ (though still not better than .cV.). Equally, however, we could rank the 

other way - ONSET above PARSE - so that the relation between stages 1 and 2 corresponds to a 

drop in harmony (though the relation between stages 2 and 3 still necessarily corresponds to a 

rise in harmony). In this case, then, the succession from stage 1 to stage 2 is ambivalent to 

harmony. 

 

5.2.2 Postconditions and Restraints 

 We can further the analysis by considering the general properties of constraints that 

would be relevant to the two structures involved in a derivational step. A derivation is made up 

of steps containing two minimally-different representations, one of which is subject to the 

application of a rule and the other of which is the result of applying the rule. In an evaluation, 

representations are partitioned by each constraint according to how many violations they incur. 

So whether a derivational step corresponds to harmony incrementation or not depends on 

whether the constraint violations accruing to the second of the two structures are fewer, or belong 

to lower-ranked constraints, than those of the first. 

Harnessing terminology due to Prince and Smolensky (1993:206), a constraint according 

to which the succeeding structure is more harmonic than the structure it succeeds we may call a 

postcondition, and a constraint according to which the succeeding structure is less harmonic 

than the structure it succeeds we may call a restraint, as in (11). A recurrent 
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postcondition/restraint contrast is between a markedness constraint demanding some change to 

the representation versus a faithfulness constraint disfavouring the change, though the concept is 

general enough to take in other contrasts (the postcondition/restraint “contrast” may constitute a 

constraint conflict - but not necessarily, as we will show). 

 

(11)            rule 

 P1 � P2 � ... � Pi � Pi+1 ...�� Pn 

         *        
 ‘postcondition’ 

         
        * ‘restraint’ 

        discriminating constraints 

 

A constraint may express generalisations of a subtlety different form than the rule to which it is a 

postcondition, or restraint. The requirement that syllables have onsets represents a postcondition 

to the rule of onset formation. Yet, while the representation resulting from onset formation on a 

<C>.V.<C>.V.<C>.V. string produces .CV.CV.CV with no ONSET violations, exhaustive 

application of onset formation on .V.<CC>.V.V.<C>V gives .V<C>.CV.V.CV. which has fewer 

ONSET violations but still retains some. The difference arises because the ONSET constraint is a 

constraint on syllables whereas the onset formation rule is a rule about phonemes. As Roca 

(1994:145) observes, the principle of disallowing onsetless syllables is only satisfied by onset 

formation in the presence of suitable segmental material. In fact, many constraints formulated in 

Optimality Theory either require or are predicated over syllable structure and higher prosodic and 

metrical structure. Postconditions and restraints thus make more sense if applied to the 

syllabification - or for that matter, prosodification - of the output of each rule. This accords with 

the proposal in rule-based theory that syllabification re-applies to the output of each rule 

throughout the derivation (McCarthy 1979, Itô 1986). If we assume this, then each step Pi,Pi+1 
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in the sequence itself contains a mini-sequence containing the application of some rule plus rules 

assigning prosodic structures. 

 It is clear from the diagram (11) that postconditions are consistent with the analogy 

between derivational succession and harmony incrementation, while restraints are directly 

contrary to it. But the most highly ranked constraint is always decisive in optimality theory. So 

the analogy will hold to the extent that for each pair of representations Pi, Pi+1 there is some 

postcondition that dominates all restraints. Now constraint ranking is settled by discriminating 

between the optimal form and every other form, as in (12). Only at the last step will it always be 

the case that a postcondition dominates. Postcondition/restraint analysis thus recapitulates the 

result of the previous section 5.2.1. 

 

(12) Dominant Postcondition for Last Step 

Constraint Ranking Logic: 

If Popt is the surface form and Psubopt another form, then there must be a constraint C which rejects 

Psubopt in favour of Popt, which dominates all constraints Cx which reject Popt in favour of Psubopt. 

(Without C, Popt will not be optimal.) 

 C >> Cx 

Popt   * 

Psubopt * 

 

Corollary 1: Among those forms involved in a derivational sequence P1,...,Pn, where Pn is the 

surface form, then for i=1 to n-1, there must be a constraint Ci which rejects Pi in favour of Pn, 

which dominates all constraints Cx which reject Pn in favour of Pi. 

Corollary 2: There must be a postcondition which rejects Pn-1 in favour of Pn, which dominates 

all restraints which reject Pn in favour of Pn-1. (From corollary 1, with i=n-1) 
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5.2.3 Typical Derivational Sequences 

 When we consider postconditions and restraints at any step in a derivational sequence, 

not just the first, there are two kinds of histories that postconditions may have. The first, 

represented in (13a), is where a postcondition is violated throughout an initial portion of the 

forms in the sequence P1,...,Pi, but satisfied by the remainder. The second, represented in (13b), 

is where a postcondition is satisfied by forms in an initial portion, but violated by a further form 

or forms, and satisfied by the remainder: 

 

(13) Unfed rules and Fed rules 

a. P1 � P2 � ... � Pi � Pi+1  ...���� Pn 

 * *       *        �  � ‘postcondition:i+1’ 

 � �       �        *  * ‘restraint:i+1’ 

 

b. P1 �  ... ���� Pi�� Pi+1 � Pi+2 ...���� Pn 

 *  * � �  � ‘postcondition:i+1’ 

 �        � * �  � ‘postcondition:i+2’ 

 �  � � *  * ‘restraint:i+2’ 

 

Whereas (13a) reflects a rule whose structural description is met at the outset of a derivation, 

(13b) reflects a rule whose structural description is fed by another rule in the derivation. In (13a), 

succession corresponds to harmony incrementation, since a postcondition must dominate all 

restraints by comparing their violations for Pi and Pn, shown in (14a): 
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(14) Ranking Arguments 

a. No feeding interaction in derivation 

 postcondition:i+1 >> restraint:i+1 

Pi  * � � � � 

Pn  ��    * 

 

b. Feeding interaction in derivation 

 postcondition:i+1 >> restraint:i+2 

Pi  *� � � � � 

Pn  �    * 

 postcondition:i+2 >> restraint:i+2 

Pi+1  * � � � � 

Pn  �    * 

 

For the feeding interaction, however, no ranking argument can be formulated between the two 

postconditions because they do not actually conflict: both are equally satisfied by the optimal 

form. This despite the fact that at the step (i,i+1), one (postcondition-1) is a postcondition and 

one (postcondition-2) is a restraint. The only ranking arguments that can be made are between 

these constraints and constraints which are violated by the surface form, as given in (14b). This 

includes the application of a “repair”-rule to the output of another rule, which is one use of the 

feeding interaction in rule theories. So, as  Prince and Smolensky (1993:205ff) observe, the 

postcondition of the rule whose output is to be “repaired” (e.g. nucleus formation for a ‘V’) and 

the postcondition of the repair rule (e.g. onset epenthesis) do not conflict, since both are satisfied 

in the surface form. 

 It is also possible that a derivation may fail to converge on the harmony peak determined 
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by the constraints which act as postconditions and restraints on the derivational steps. The path 

may overshoot or undershoot. Overshoot describes a case where there are more disparities 

between the final form in the derivation and the underlying form than between the optimal form 

and the underlying form, and undershoot describes a case where there are fewer disparities 

between the final form in the derivation and the underlying form than between the optimal form 

and the underlying form. These possibilities stand outside the assumption made in 5.2.1 that the 

derivational sequence and the harmony scale converge on the same surface form, but if we relax 

this assumption and examine the postconditions and restraints at each step of overshooting and 

undershooting derivations, we find in (15) that counterbleeding derivations positively correlate 

with the harmony scale, even though the path circumnavigates the most harmonic form and fails 

to converge on it. 

 

(15) Undershoot and Overshoot 

a.  Undershoot: counterfeeding  (feeding alternative) 

  P1 � P2   P1 � P2 � P3 

  * �   * � � ‘postcondition-2’ 

  � *   � * � ‘postcondition-3’ 

  P1 �� P2  ( �  P3)  P1 �� P2   �  P3 

b.  Overshoot: counterbleeding  (bleeding alternative) 

  P1 � P2 � P3  P1 � P2’ 

  * � �  * �  ‘postcondition-2’ 

  * * �  * �  ‘postcondition-3’ 

  P1 �� P2 �� P3 (��P2’) P1 �� P2’  
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In a counterfeeding interaction (15a), just as one rule applies but the other fails to apply 

afterwards, so also one postcondition is alleviated while another postcondition is left violated. By 

contrast, when one rule feeds the other, both postconditions are satisfied. In a counterbleeding 

interaction, portrayed in (15b), two constraint violations are alleviated over two steps, both 

matching with harmony increments. Although the counterbleeding derivation is consistent with 

harmony incrementation it does not lead to the harmony maximum, but rather skirts it. The output 

obtained by the bleeding derivation (P2’) will be more harmonic than the end-point of the 

counterbleeding derivation (P3), because when one rule bleeds the other, removing the need for it 

to apply, both constraints are alleviated in one step, a more faithful alternative. Overshoot and 

undershoot offer a mixture of advantages and disadvantages empirically (see chapter four and 

chapter six): overshooting derivations provide the correct results in “overapplication”, but 

precisely the wrong results in cases of “default” effects; undershooting derivations fail to derive 

“mutual interdependence” effects, though they allow “underapplication” effects to be described. 

 

5.2.4 A Duke-of-York Derivation: Irreducible Harmony Drop 

 At steps caused by rules which feed, where there is no conflict between postconditions 

and restraints, there is no basis for a derivational step which necessarily leads to a less harmonic 

form. It remains to ask whether there are any such cases among derivational sequences and 

harmony scales which converge on the same surface form. This possibility is found in Duke-of-

York derivations. In the Duke of York Gambit, some structural change A�B is followed in the 

derivation by the reverse change B�A. An illustrative example in (16) is from Nootka (Pullum 

1976:94, from an unpublished paper by Campbell). 
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(16)  ...ok 

    �  Labialisation k�kw / o__ 

  ...okw 

    �  Delabialisation  k�kw / __# 

  ...ok 

 

Nootka has labialised and unlabialised dorsal stops. Labialisation is always removed word-

finally, but dorsal stops are always labialised following an o. But in the overlapping context  

o__# dorsal stops are not labialised, so Delabialisation must be ordered after Labialisation to 

ensure this. Then, given an underlying form ending in ...ok#, both rules apply in turn to leave the 

stop unlabialised at the end. 

 On a harmony scale, the form  ...ok  will be optimal, and hence more harmonic than  

...okw . This is supported by the following tableau: 

 

(17) 

/...ok/, /...okw/ No final kw No k after o 

�...ok  * 

�...okw *!  

 

As ever, the final step of the derivational sequence ��


okw , ...ok � corresponds to a harmony 

increment, but since the preceding step ��


ok , ...okw � is the inverse of the last step, it inevitably 

corresponds to a harmony drop. 

 In general, a derivational step leads to a less harmonic form whenever there is some 

restraint that dominates all postconditions at that step. Assuming that the derivational sequence 
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and harmony scale converge on the same output, this happens when the surface form Pn violates 

one of the postconditions, so that some restraint must dominate that postcondition to guarantee 

the optimality of Pn. 

 

(18) Harmony Drop 

a. P1 �  ... � Pi �� Pi+1  ...���� Pn 

    * �  * ‘postcondition’ 

   � *  � ‘restraint’ 

b. 

 restraint  >> postcondition 

Pi+1 *  � 

Pn �  * 

 

This means, as the derivation (18a) illustrates, that if there is a derivational step corresponding to 

a drop in harmony, it must be that the remainder of the derivation contains changes that reverse 

the effect at that step. A Duke of York gambit does this. 

 

5.2.5 Summary 

 Unlike the other derivational patterns we have examined, a simple Duke of York gambit 

involves a step that necessarily contradicts harmony. Feeding interactions involve a step that is 

ambivalent to harmony, depending exactly on how the constraints are (arbitrarily) ranked. Other 

derivations – even derivations that overshoot the result given by the constraints that are 

postconditions and restraints for the steps of the derivation – correspond to increments in 

harmony. 
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5.3 Restricting Sequences 

 In 5.2.4, it was shown that where a step corresponds to a harmony drop, the change at that 

step is reversed later in the derivation. If we excluded derivations with such reversals we would 

eliminate all derivational steps that correspond to a harmony drop, achieving a closer match 

between derivation and harmony. We begin by considering a ban on Duke-of-York derivations, 

but the derivation-harmony mismatch goes deeper: we soon show that sequences themselves are 

mathematically different from scales. 

  

5.3.1 Excluding Duke-of-York Derivations 

Pullum (1976) observed that generative phonologists have often expressed misgivings, 

somewhat inchoately, about Duke-of-York derivations and attempted to avoid them. Reviewing 

this phenomenon in chapter three, we argued that Duke-of-York derivations are unexplanatory 

and generally unsupported empirically. They fail to explain the similarity of surface forms to 

their underlying forms, and in crucial cases of languages with both vowel deletion and insertion, 

where deletion-insertion derivations would be detectable by impoverishment of the vowel 

inventory, they fail to occur. 

 Excluding Duke-of-York derivations would eliminate a class of derivations which have a 

step that goes down the harmony scale instead of up. And it would force us to re-analyse putative 

cases - labialisation in Nootka (5.2.3.) need not apply word-finally where it would be reversed if 

it is confined to dorsals in syllable onset, or to prevocalic dorsals whose release phase is more 

amenable to carrying labialisation audibly. However, as well as excluding some Duke-of-York 

gambits that do not have a step that goes down the harmony scale (see 5.3.3 below), the move 

would fail to exclude other derivational sequences that do. In simple Duke-of-York derivations, a 

structure is repeated in two steps when one structural change is immediately reversed by the 

opposite change, but a structure could conceivably be repeated under different conditions, as the 
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hypothetical derivations in (19) demonstrate.  

 

(19) 

a. pai 

 pii  Raising a 

 pi:  Vowel Deletion in presence of identical vowel 

 pai  Diphthongisation 

 

b. prar 

 parr  Liquid/Vowel Metathesis 

 parar  a-Epenthesis 

 prar  Vowel Deletion between Stop and Liquid 

 

Neither of the hypothetical derivations in (19) employs a Duke-of-York gambit. The first ends in 

a fissure of one vowel into two, re-creating a diphthong of which one half was deleted. The 

second has contrary structural changes, insertion and deletion of a, but these apply in different 

positions and a third rule, a metathesis, completes the re-creation of a previous structure. A 

structure might be repeated by some even more convoluted set of changes. Excluding Duke-of-

York derivations only deals with the more obvious cases. 

Yet all sequences that have a repeated member, Duke of York gambit or not, necessarily 

contain a step which corresponds to a drop in harmony, conforming to the scheme given in (18). 

In the harmony evaluation corresponding to the derivation prar � parr � parar � prar (19b), 

the constraint requiring metathesis of a and r (a postcondition at the first step) is violated by the 

final form, so must be dominated by a conflicting constraint that is satisfied in the final form. 

The constraint requiring metathesis is violated when it would create rr, so is dominated by a 
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constraint against rr. Then the step prar � parr is a drop in harmony because it creates rr. For 

all repetition after two or more steps, the situation is as in (20) (illustrated for repetition after 

three steps for concreteness): 

 

(20) Structure Repeated in Sequence 

P1  � ...��� Pi  � Pi+1� Pi+2� Pi ...��� Pn 

   * � � *  * postcondition:i+1 

   � * � �  � postcondition:i+2 

   � � * �  � postcondition:i+3 

 

At the step which moves away from the structure which is eventually repeated, any postcondition 

is eventually violated again. Assuming the rule which changes the repeated structure does not 

apply second time round (nor does any other rule change any part of its structural description, 

which would create an overshoot), then the constraint violation will persist among subsequent 

members of the sequence, including the final surface form. This leads to a ranking argument: 

some other conflicting constraint must be satisfied at the expense of postcondition:i+1. A 

postcondition at the second step after the structure to be repeated is such a constraint, being both 

a restraint at the first step and satisfied by the surface form. 

  

(21) Ranking Argument for (20) 

postcondition:i+2    >> postcondition:i+1 

Pi+1  *    � 

Pn  �    * 

 

 This takes care of repetition after two or more steps. Repeating a structure in one step can 
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only happen with a rule capable of producing an output identical to its input. Out of the usual set 

of operations (see 3.1), the only possibility is a rule of metathesis that sometimes interchanges 

identical elements, e.g. priarj�prjari. This would correspond to a drop in harmony since the 

input and output would violate constraints identically except that the output has an additional 

violation of a faithfulness constraint (LINEARITY, in the case of metathesis; and if it happened 

twice in a derivation, the second time would correct the LINEARITY violation but the first time 

would still correspond to a harmony drop). 

 

5.3.2 Sequences are not Ordered Sets 

 It is possible for a sequence to contain a member that is repeated in the sequence, but this 

does not happen in harmony scales, for each entity in a scale has its own place in the scale. This 

sets sequences apart from scales mathematically. 

 An ordering is a relation that is irreflexive, asymmetric and transitive, whose definitions 

are given below: 

 

(22) Let A be a set. Let R be a ordering relation in A. The following are true of R: 

a. Irreflexivity: �a�A, it is not the case that aRa. 

No element is ordered before itself. 

 b. Asymmetry: �a1,a2�A, if a1Ra2 then it is not the case that a2Ra1. 

  A pair of elements can only be ordered one way. 

 c. Transitivity: �a1,a2,a3�A, if a1Ra2 and a2Ra3 then a1Ra3. 

The order of two elements is settled if there is an intermediary ordered between. 

  

The relation “less harmonic than” is an ordering: (a) no representation is less harmonic than itself 

(irreflexivity), since it only has one set of constraint violations; (b) one representation cannot be 
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both less harmonic and more harmonic than another (asymmetry), since the highest-ranked 

constraint on which they differ settles one way or the other; (c) if one representation is less 

harmonic than another, it is less harmonic than representations that the other is less harmonic 

than (transitivity), because the one representation has more serious violations than the other, and 

these are more serious than still less costly representations.1 

 It would likewise seem initially plausible to suggest that derivational sequences are 

ordered sets, albeit smaller, finite ones. One can recognise on sequences a relation of immediate 

succession e.g. ‘P2 immediately succeeds P1’ and from it a general relation of succession e.g. 

‘P5 succeeds P1’. These properties fail, however, in sequences that have a repeated member, 

because a repeated member of the sequence succeeds itself. For example, in two steps a Duke-of-

York gambit gives A�B�A giving rise to the relations for each step ‘B succeeds A’ and ‘A 

succeeds B’ (failing asymmetry) and then overall ‘A succeeds A’ (failing irreflexivity). This 

shows that sequences are not the same as ordered sets. 

 Sequences still make formal sense even if they are not ordered sets. Members of a 

sequence have a “place” in the sequence; repetition is when a member of the sequence has more 

than one place in the sequence. The places in the sequence are ordered, even if the members are 

not. It is often convenient to think of the “places” as numbers - as we do when we cite a 

derivational sequence as P1,P2,P3,...,Pn . This leads us to a definition of sequences, as given in 

(23). 

                                                           
 
1 Other essential properties of the “less harmonic than” relation include that: (i) it has a greatest element (there is at 
least one optimal element); (ii) it defines a partition into equivalence classes, whose members are characterised by 
the same degree of violation and which share the same ordering relations to members of the other classes; (iii) it is 
not connected, since there are pairs of structures that are not ordered by harmony one way or the other (i.e. any pair 
in the same equivalence class). 
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(23) Definition: Sequences 

a. A sequence is a triple �M,P,A� where  M  is a set of members,  P  is a set of places, which is 

well-ordered with a least element (e.g., the set of natural numbers), and  A  is a function from P 

onto M. 

Each place in a sequence starting from the first is assigned a member. 

b. A sequence is ordered if A is a one-to-one correspondence. 

If each member of the sequence occurs only once, members will be ordered incidentally along 

with their respective places. 

c. A sequence is finite if the domain of A in P is finite. 

If only a finite number of places are assigned members, the sequence terminates. 

 

In a derivational sequence where there is no repeated member, the members and places are then 

in one-to-one correspondence, so that particular derivation at least is ordered. Derivational 

sequences are always finite, because they terminate after a finite number of places (i.e. stages), 

although derivations are not bounded by any particular limit (e.g. “10”, or “99”). The finiteness 

of derivations is significant in connection with derivations that contain a repeated member, for it 

means that rules cannot re-create a structure again and again indefinitely. Unconstrained re-

application of rules must be prevented either by strict ordering or by the constraint that rules 

cannot apply in interrupted sequence (Ringen 1976), and by the regularity constraint that rules 

cannot re-apply to the new configuration in their own output (Johnson 1972, Karttunen 1993). 

We return to the differences between sequences and scales in an appendix to this chapter. 

For while sequences exceed the orderedness of scales in general, scales exceed the connectedness 

of sequences in general. 
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5.3.3 Derivational Economy 

 Following (23b), derivational sequences with repeated members may be excluded directly 

by the condition of orderability given in (24a), which admits only sequences whose members 

have just one place in the sequence. Alternatively, the economy condition (24b) which minimises 

the length of derivations, also excludes these sequences. Economy of derivation has been 

explored as a principle of Minimalist linguistic theory (Chomsky 1995, Calabrese 1995). 

 

(24) Conditions that exclude sequences with repeated members 

 a. Orderability: Derivational sequences are ordered. 

b. Economy: Derivational sequences are of the minimum length possible to derive their 

final member from their initial member.  

 

If a structure is repeated in a derivation, P1, ... Pi, ... Pi, ... Pn, then the derivation is replaceable 

with a shorter one which lacks the portion of the sequence Pi, ..., Pi that comes between the 

repeated tokens. This excludes not only Duke-of-York gambits (which exceed the minimum 

length possible by precisely two steps), but any other collection of rules which re-create a 

structure found earlier in the sequence. In fact, the economy condition is stronger than the 

orderability condition. The economy condition, but not the orderability condition, would select 

the derivation in (25b) over the one in (25a): 

 

(25) a. *{���� � ���� � ��� � ���} 

b. wati � wat 

 

In the eliminated derivation (25a), the final step re-creates a /t/ removed at an earlier step. There 

is no repeated structure, but it is not the shortest possible derivation. The economy condition also 
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inveighs against some other derivations (e.g. � � +F � -F exceeds the shorter � � -F). 

 Duke-of-York derivations, and derivations in which a structure is repeated, typify a 

certain family of derivations. There is some configuration within a structure that is altered and 

subsequently reconstructed (by Duke-of-York gambit, or some other way) in the course of a 

derivation (possibly with other rules making other changes). This is always technically 

uneconomical. Furthermore, derivational steps that necessarily correspond to a harmony drop 

always fall within this family: for as found in 5.2.3, any derivational step that necessarily 

corresponds to a harmony drop must be reversed in a subsequent part of the sequence (assuming 

that the sequence converges to the same surface form as the harmony scale). Since the economy 

condition (24b) excludes this family, it follows that it also eliminates all derivations that 

necessarily contradict harmony (feeding interactions can be made to contradict harmony by an 

arbitrary ranking of the constraints, but do not necessarily contradict harmony). This gives us 

(26): 

 

(26) Derivation/Harmony Correlation under Derivational Economy 

Economical derivations that converge to the same output as a harmony scale do not flatly 

contradict the harmony scale at any step. 

 

The condition that derivations and harmony scales converge to the same output makes this a very 

basic kernel of patterns, of course, excluding overshoot and undershoot but including bleeding 

and feeding effects (as shown in 5.2.3), and mutually-contrary processes if they are prevented 

from creating an uneconomical Duke-of-York derivation. It also excludes the more complex 

Duke-of-York derivations where the initial change feeds an intervening rule before the reverse 

change is made, which McCarthy (2003) has argued are unattested. 

 However, although derivational steps that necessarily correspond to a harmony drop 
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always fall within the family of uneconomical derivations that alter and re-construct part of a 

structure, there are some within this family that do not contradict harmony scales. Some Duke-

of-York derivations are simply a series of feeding interactions, as Pullum (1976) discovered. He 

offered the following hypothetical data and rules: 

 

(27) Pullum (1976:89-90) 

 

  káti  'wallaby' 

  katínlu  'wallabies'/wallaby-PL 

  katenlóma 'by wallabies'/wallaby-PL-ERG 

 

A. Penultimate vowels are stressed. 

 B. High vowels become mid in unstressed, closed syllables. 

 C. Final n deletes after mid vowels. 

 D. Final mid vowels become high. 

 

The forms can be derived as follows: 

 

(28) 

   A   B 

a. /katin+lo+ma/ � katin ló ma � [katenlóma] 

 

  A   D 

b. /katin+lo/ � katín lo  �� [katínlu] 
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  A  B  C  D 

c. /katin/ �  kátin �  káten � káte � [káti] 

 

The last derivation (28c) uses a Duke-of-York gambit in regard to the height of the second 

vowel. The vowel begins high, is lowered by rule B, and is then raised again by rule D. There is 

no repetition of any structure, because rule C intervenes between the gambit-rules B and D, so 

the final form is not the same as the form prior to B. Furthermore, the rules apply simply when 

their structural description is met, each feeding the next. It is even the case that all the rules are 

transparent: no rule alters the structural description of any previous rule. This Duke-of-York 

gambit may be replicated by a harmony evaluation: 

 

 

(29) Constraints 

 A Stress is penultimate. 

 B No high vowels in unstressed, closed syllables. 

 C No word-final n after mid vowels. 

 D Word-final vowels are high. 

/katin/ A B C D IDENT([high]) MAX(C) 

   katin *!      

   kátin  *!     

   káten   *!  *  

   káte    *! * * 

�káti      * 
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Even though the derivation (28c) does not contradict harmony as tableau (29) shows, it would be 

excluded by the economy condition. Of course, it is not positively consistent with harmony 

either. Comparison to the tableau shows that the derivational steps prior to the last correspond to 

harmony plateaus (unless some arbitrary ranking of the constraints is made), in accordance with 

the pattern for feeding interactions observed in 5.2.2. This shows that the possibility of feeding 

initiates open-endedly complex derivations that provide increasingly serious mismatches with 

harmony: 

 

(30) 

Seriousness of Mismatch Derivations 

Ambivalence to harmony Feeding derivations – including those uneconomical 

derivations where the rule recreating structure changed 

by an earlier rule is fed by an intervening rule 

Flat contradiction of harmony All other uneconomical derivations in which structure is 

re-created after being altered – including all unorderable 

derivations. 

 

 Derivations partly similar to Pullum’s example occur in the Slavic languages Slovak 

(Rubach 1993:267) and Polish (Rubach 1984:101), where Depalatalisation undoes the effect of 

Palatalisation when Depalatalisation is fed by the intervening rule of yer deletion. In Slovak, the 

derivation of vodný ’watery’, adjective from voda ’water’, runs as follows: 
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(31) 1 vod+En+ý 

 2 vod´+En+ý Palatalisation 

 3 vod´+n+ý Yer Deletion 

4 vod+n+ý Depalatalisation 

 

The latent "yer" vowel, in this case a front vowel capable of palatalising the root-final consonant, 

does not vocalise in this context, leaving a consonant cluster. This removes the conditioning 

environment for palatalisation - an overapplication effect. Because of yer deletion, the d´ is now 

in the preconsonantal environment of Depalatalisation (as opposed to the prevocalic environment 

of Palatalisation), a feeding effect. As sketched in (32), this derivation too may be replicated on a 

tableau: 

 

(32) 

 /vod+En+ý/ Palatal 

(__FrontVowel) 

No Vocalisation 

 

No Palatal 

(__CoronalCons) 

   vodený  *! *  

   vod´ený  *!  

   vod´ný   *! 

�vodný    

 

The Slavic pattern has in common with Pullum’s hypothetical example the feature that 

the reversal rule is fed by an intervening rule. As tableaux (29) and (32) indicate, this 

corresponds to a case where constraints do not conflict since they trigger the contrary processes 

under disjoint conditions. This differs from examples of Duke-of-York derivations with 

intervening rules studied by McCarthy (2003). In the examples which McCarthy inveighs 
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against, the intervening rule does not feed the reversal rule, but rather the original rule feeds both 

the intervening rule and the reversal rule. Those cannot be replicated by constraint interaction. 

The result is that Duke-of-York derivations that are consistent with harmony have 

empirical currency, as in Slavic Depalatalisation. Other Duke of York derivations (i.e. all those 

which flatly contradict harmony) are unattested, a claim supported both by the universal absence 

of vowel deletion-and-insertion derivations (see 3.4.4, 4.4.2), and by the arguments in McCarthy 

(2003) against other putative Duke-of-York derivations with intervening rules. Hence, economy 

of derivation is just slightly too strong a condition, and instead it is consistency with harmony 

that emerges as the property that matches the empirical record. 

 

5.4 Conclusion 

 The analogy between derivational sequences and harmony scales has real but limited 

currency. The succession-incrementation correlation holds solidly for the last step of a derivation 

that converges with a harmony maximum, but recedes as sequences and scales themselves recede 

from the mathematical properties held by the other. For sequences and scales are mathematically 

different, as demonstrated in 5.3.2 and in the appendix to this chapter. 

 Some derivations (those with feeding interactions) contain a derivational step that is 

ambivalent to harmony; others (most Duke of York derivations) flatly contradict harmony. 

Derivational steps which flatly contradict harmony are eliminated by the condition of 

derivational economy. However, this would exclude other derivations which do not flatly 

contradict harmony, and hence would exclude the palatalisation patterns in Slavic languages. 

Whereas the economy condition is too strong, it appears that derivations which are consistent 

with harmony should be admissible, but derivations that contradict harmony should not. 
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Appendix: Scales Are Not Connected Sets 

Sequences differ mathematically from scales in that sequences are not ordered sets 

(5.3.2), but also in that harmony scales are not connected sets: constraints do not necessarily 

discriminate between every last pair of representations. By contrast, the property of succession 

differentiates between every pair of members in a sequence. Hammond (2000) points out that it 

is possible to construct evaluation systems that select several outputs as optimal. There could be 

two candidates a,b that are maximally harmonic with respect to the available constraints, and no 

constraint that further discriminates between a and b. Sequences intrinsically have just one final 

member, so always provide one unique output (caveat: assuming rules are "obligatory" rather 

than "optional"). We pursued our comparison of sequences and scales that have the same 

final/optimal output, but harmony scales are only comparable with sequences to the extent that 

they have a unique optimal form. This being so, we consider how to foreclose the possibility of 

multiple optimal forms. 

Successive constraints in a hierarchy pare down the candidate set’s most harmonic forms, 

but ending up with just one depends on "enough" of the "right" constraints. Individual 

phonologists can always propose constraints to get the single output they want in a particular 

case, but if we consider the conditions under which multiple outputs could logically arise, we can 

see what is required to deliver only one optimal output in general. We now show that there are 

two definitive possibilities for generating multiple outputs, in evaluation systems that employ 

markedness and faithfulness constraints. 

Suppose two candidates a and b are both optimal. Either they have identical output 

structures under different correspondence relations, or they have different output structures - if 

they have identical output structures this presents no problem - they still give a unique output, 

however subtle and unusual this might be. Suppose instead, then, that a and b have different 

structures. Either (i) they have different faithfulness-constraint violations or (ii) they have the 
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same faithfulness violations. 

 Suppose first they have (i) different faithfulness violations. On (at least) one constraint F, 

b is less faithful than a (say). If b is still equally optimal, it must be more harmonic than a 

according to another constraint C ranked equally with F: 

 

(A1)  F C  

a  * 

b * 

 

In this scenario, however, the constraints F and C do at least discriminate between the possible 

outputs. A unique output may be obtained simply by ranking them. F>>C selects a uniquely; 

C>>F selects b uniquely. This can be resolved in one of two obvious ways. Either (i) we require 

that rank order of constraints is total, so we remove the possibility that two outputs can emerge 

from the equal ranking of two normally conflicting constraints, or (ii) we state as an added axiom 

the requirement that only one output be accepted, and this axiom will force constraints that 

favour alternative outputs to be ranked one way or the other. 

 Suppose next that two outputs have the same faithfulness violations - case (ii). Since a 

and b are different structures, there must be (at least) one faithfulness constraint that is violated at 

two different positions - two different disparities of the same type on the same tier. 

Schematically, we can present a and b as containing the following structures, disparities of the 

form p�q in contexts x_y_z: 

 

(A2)  input: xpypz 

  a: xpyqz 

  b: xqypz   
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If the disparity is motivated in both contexts x_y and y_z, why are both not carried through?: why 

is xqyqz not optimal? It may be that one change is enough, for example if p�q is an insertion of 

an epenthetic vowel into a cluster of consonants CCC�CVCC, CCC�CCVC, then one 

epenthesis may be enough to create an acceptable syllable structure of consonants and vowels. 

But if there is still motivation to instantiate a disparity p�q in two places, there must be some 

dominant constraint blocking xqyqz. This could conceivably be a constraint *...q...q... creating a 

dissimilation effect, e.g. ruling out successive identical vowels or consonants. Or if the p�q 

disparity is in fact one of deletion p��, e.g. vowel deletion CVCVC�CVCC,CCVC,CCC, 

there could be limitations *xyz on the resulting strings such as unacceptable consonant clusters. 

 If we wish to rule out the possibility that multiple outputs arise by violation of one 

Faithfulness constraint at different positions, we must distinguish between a and b by constraints 

which distinguish different positions in a structure. Such constraints are necesssary, for example 

to place epenthetic vowels correctly into CiCC rather than *CCiC in Yokuts (McCarthy 

2002:58), recapturing what in rule theory would be achieved by indexing the structural change 

��i to the correct place in the structural description C_CC. We might, for example, adopt a 

constraint which awards a violation for every segment separating a vowel from the left edge of 

the word. This follows the NOINTERVENING constraint family (see 2.4.2). In general, process 

placement can be achieved in one of two ways. Either (i) we assume that all constraints that 

would ever be needed to distinguish alternative sites are present in all grammars, or (ii) we state 

as an added axiom the requirement that only one output be accepted, and this axiom will force 

the construction of constraints as required that eliminate all but one output. 

 The available options do not explain why there would be only one output from a 

grammar. An axiom would be essentially stipulative. Alternatively, the necessary constraints 
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must be both already present and totally ranked to get the right results. Perhaps instead the 

maintenance of a unique output where multiple outputs would be possible is explained by 

functional considerations of simplicity of expression and communication. If these considerations 

apply loosely, we would predict that the specific kinds of variability in grammatical forms 

predicted by evaluation systems – both optional processes and variable placement of a process in 

structure – will be frequent in language variation. 


