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1 Introduction

In a series of recent publications (most notably Boersma (1998); see also Boersma
and Hayes (2001)), Paul Boersma has developed a stochastic generalization of
standard Optimality Theory in the sense of Prince and Smolensky (1993). While
a classical OT grammar maps a set of candidates to its optimal element (or el-
ements), in Boersma’s Stochastic Optimality Theory (StOT for short) a gram-
mar defines a probability distribution over such a set. Boersma also developed
a natural learning algorithm, the Gradual Learning Algorithm (GLA) that
induces a StOT grammar from a corpus. StOT is able to cope with natural
language phenomena like ambiguity, optionality, and gradient grammaticality,
that are notoriously problematic for standard OT.

Keller and Asudeh (2002) raise several criticisms against StOT in general
and the GLA in particular. Partially as a reaction to that, Goldwater and
Johnson (2003) point out that maximum entropy (ME) models, that are widely
used in computational linguistics, might be an alternative to StOT. ME models
are similar enough to StOT to make it possible that empirical results reached
in the former model can be transferred to the latter, and these models have
arguably better formal properties than StOT. On the other hand, the GLA has
a higher cognitive plausibility (as can be seen from Boersma and Levelt (2000))
than the standard learning algorithms for ME models.

In this paper I will argue that it is possible to combine the advantages of
StOT with the ME model. It can be shown that the GLA can be adapted to
ME models almost without modifications. Put differently, it turns out that the
GLA is the single most natural on-line learning algorithm for ME models. Keller
and Asudeh’s criticism, to the degree that it is justified, does not apply to the
combination of ME evaluation with GLA learning, and the cognitive advantages
of the GLA are maintained.

2 Stochastic OT and the Gradual Learning Algorithm

I will give only a brief sketch of Boersma’s model here — the interested reader
is referred to Boersma and Hayes (2001) for a more thorough introduction.

StOT shares the generator component with standard OT. It also uses a set
of ranked and violable constraints as the basis for grammatical evaluation. The
constraints are not ranked on an ordinal scale though, but each is assigned a
real number on a continuous scale, its rank. This way it is possible to speak of
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the distance between two constraints in a meaningful way. In each evaluation
event, some random noise is added to each constraint rank. The ranking of a
constraint after adding the noise is called the selection point. The constraints
can be ordered according to the value of their selection points, and this ordering
can be used as ranking in the standard OT sense. However, adding the noise
value to the ranks of the constraint may change their ordering, so the ranking of
selection points may differ from evaluation to evaluation. In this way the ranking
on the continuous scale defines a probability distribution over ordinal rankings.
This in turn defines a probability distribution over the set of candidates — the
probability of a candidate to be optimal is the sum of the probabilities of all
ordinal rankings that make it optimal.

The noise that is added to each constraint rank is a normally distributed
random variable with mean 0 and standard deviation 1. The probability of a
constraint ranking C1 > C2 > · · · > Cn can thus be given by the following
formula (where ri is the rank of constraint Ci and N is the standard normal
distribution):

P (C1 > · · · > Cn) =

∫ +∞

−∞
dx1N(x1−r1)

∫ x1

−∞
dx2N(x2−r2) · · ·

∫ xn−1

−∞
dxnN(xn−rn)

A StOT grammar adequately describes a language if it assigns probabilities
to the linguistic signs (sentences, syllable structures or whatever) in the corpus
that match with their empirical relative frequencies in this language.

If the distances between the ranks of the constraints are very high, the prob-
ability of the ordinal ranking that matches the ordering of the ranks converges
towards 1. Standard OT, where there is only one ranking, can thus be seen as
a borderline case of StOT.

The GLA is an algorithm that takes an analyzed corpus as input and re-
turns a rank for each constraint. Learning is successful if the acquired ranking
adequately describes the language from which the corpus was drawn. The gen-
erator and the constraint set are known by the learner in advance. By analyzed
corpus I mean that both the input and the output (underlying form and sur-
face form for production and conversely for comprehension) are visible to the
learner. Likewise, the degree of violations that each constraint incurs on each
observation are accessible to the GLA. Each observation thus assigns a natural
number to each constraint (the number of stars, so to say), and this is the only
information that the GLA needs.

Each constraint is a function from candidates to natural numbers (the num-
ber of violations it incurs). I’ll write these functions as c1, c2 etc. to distinguish
the function from the name of the constraints. A ranking is a vector of real num-
bers (the ranks of the constraints). Observations — input-output pairs — are
fed to the GLA in a sequence (i1, o1), (i2, o2), (i3, o3), . . . of independent trials.
At each point in the learning process, the learner assumes some hypothetical
ranking vector ~r that is possibly adjusted in each step. A ranking vector defines
a probability distributions over output candidates. For each observed output on,
the learner hypothesizes an output hn for the input in that is drawn according
to the probability distribution that corresponds to ~rn. (in, hn) is compared to
the observation (in, on), and the adjustment of ~r depends on this comparison.
All constraints that favor the observation over the hypothesis receive a higher
rank and vice versa. There is a positive constant η, the learning rate or plastic-
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ity, that determines the impact of a single learning event. So the update rule
for the GLA is

(~rn+1)i = (~rn)i + η · sgn(ci(in, hn) − ci(in, on))

(The sign operator “sgn” maps positive numbers to 1, negative numbers to
−1, and 0 to itself.) The initial grammar of the learner, ~r1, has to be given a
priori. If we simplify things further by stipulating that constraints are binary,
the sign operator can be omitted.

This formula involves two random variables that are drawn from different
distributions. (in, on) is drawn according to the empirical probability distribu-
tion pemp. The probability of a learner’s hypothesis depends on two independent
distributions — the empirical probability of an input follows from the empirical
distribution over input-output pairs and the structure of GEN:

pemp(i) =
∑

o:GEN(i,o)

pemp(i, o)

Each ~r defines a probability distribution over the possible outputs for a given
input, written as the conditional probability p~r(·|i).

(in, hn) is drawn from the product of these two distribution p~rn
. To keep

notation simple, I’ll use the convention

p~r(i, o) = pemp(i) · p~r(o|i)

The expectation values under the distributions pemp and p~r are written as
Eemp and E~r respectively. As long as all constraints are binary, the expected
adjustments of the constraints is then

(~rn+1)i = (~rn)i + η · (E~rn
[ci] − Eemp[ci]) (1)

So in effect the GLA compares the average degree of violations of each con-
straint in the training corpus with its expected degree of violations according
to the current grammar of the learner. The algorithm converges if these two
values coincide for each constraint.

There is, however, no general proof that the GLA will always converge to-
wards a correct constraint ranking, even if the training corpus is generated
by some StOT grammar, and the correct set of constraints is available to the
algorithm.1 This is a serious drawback, and it seems worthwhile to consider
alternative models of probabilistic generalizations of OT.

1 Keller and Asudeh (2002) criticize several aspects of StOT and the GLA. The fact that
there is no proof of convergence is the only serious one, I think. They give some examples for
languages that the GLA is unable to learn, but these cases involve harmonically bounded can-
didates with a non-zero probability. It is a general feature of OT that harmonically bounded
candidates are always ungrammatical, and it is thus no defect of the GLA that it is unable
to learn languages which behave otherwise. Also, I do not think that testing the GLA on
unseen data would reveal much about the GLA as such. Testing on unseen data is important
to detect over-training. Whether or not training a StOT grammar with some corpus using
the GLA leads to over-training depends mainly on the set of constraints and the size of the
training corpus; the training algorithm as such has little bearing on that.
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3 The maximum entropy approach

Goldwater and Johnson (2003) compare StOT with Maximum Entropy models
(or, as they are sometimes called, log-linear models) that are state of the art
by now in computational linguistics (see for instance Berger, Della Pietra, and
Della Pietra (1996) or Abney (1997)). Let me briefly explain what “maximum
entropy” means.

Suppose we know that a certain experiment has two possible outcomes, A
and B, but we don’t know anything else about it. Which probability should
we assign to A and B? The best answer seems to be: 50% probability for
each. Likewise, if there are five possible outcomes, A, B, C, D and E, the best
estimate is to assign 20% to each if we don’t have further information. Every
other distribution of the probability mass would represent a bias which is not
supported by knowledge. And if we also know that the outcome will be A or
B with a probability of 70%? Then the least biased estimate is to assign 35%
to both A and B, and 10% to each of the three other events. There is a clear
intuition that the least biased hypothesis is the most parsimonious one.

The information theoretic notion of entropy quantifies the bias of a prob-
ability distribution. The entropy H of a probability distribution p is defined
as

H(p) =
∑

x

p(x) log
1

p(x)

The least biased distribution has the highest entropy, and vice versa. If
we have partial knowledge about a stochastic process and we have to estimate
the underlying probability distribution, the best guess is to choose among all
distributions that are compatible with our knowledge the one with the highest
entropy.

Let us assume that the unknown probability distribution is a language L in
the StOT sense, i.e. a probability distribution over a set of input-output pairs.
We know the set GEN of possible elements of the language (the generator)
and a set of constraints. We also know how many violations each constraint
incurs on each candidate, the marginal probabilities of the different inputs, and
— crucially — we know how often each constraint is on average violated in the
language in question. This may be the result of investigating a large sample of
L, but the only empirical facts we are able to observe are the inputs and the
number of constraint violations of each observation. So we are looking for a
relative probability distribution over the potential output for each input which
predicts the correct average degree of violation of each constraint, and among
all distributions with this property, we will choose the one with the highest
entropy. It can be shown (see Della Pietra, Della Pietra, and Lafferty (1995)
for a proof) that this distribution takes the following form:

p~r(o|i) =
1

Z~r(i)
exp(

∑
j

rjcj(i, o))

where Z~r(i) is a normalization constant which ensures that the probabilities
of all candidates sum up to 1. It holds that

Z~r(i) =
∑

o:GEN(i,o)

exp(
∑

j

rjcj(i, o))
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Taking the logarithm on both sides yields

log p~r(o|i) =
∑

j

rjcj(i, o) − log Z~r(i)

So the logarithm of the probability of a candidate is a linear function of its
constraint violations. (Therefore these probability distributions are called “log-
linear”.) Of course there are infinitely many log-linear distributions, depending
on the values of the rank parameters rj . Della Pietra, Della Pietra, and Lafferty
(1995) also show that among all these log-linear distributions, the one which
maximizes the likelihood of the language L is the one which assigns the correct
average degree of violations to each constraint. In other words, the unique
log-linear distribution which assigns maximal likelihood to L is at the same
time the unique distribution with the empirically correct predictions of average
constraint violations that maximizes entropy.

There are several learning algorithms available for ME models. Della Pietra,
Della Pietra, and Lafferty (1995) developed improved iterative scaling specifi-
cally for this application. Besides, standard machine learning algorithms like
gradient ascent or conjugate gradient ascent are applicable as well and guaran-
teed to converge towards the correct distribution.

The general setup of a maximum entropy model is very similar to a StOT
grammar. The main difference between StOT and ME is the evaluation com-
ponent, i.e. the way in which constraint ranks are interpreted as a probability
distribution. Like StOT, ME models can be seen as a generalization of standard
OT. (In the ME context, constraint violations have to be interpreted as nega-
tive numbers in the ME context and as positive integers in StOT to facilitate
comparison. I will tacitly do this from now on.) If the ranks (or “weights”, as
the parameters ~r are usually called in the ME tradition) of the constraints are
very high and spread far apart, the probabilities of candidates that would be
sub-optimal in classical OT converge towards 0 in the ME interpretation.

The models differ slightly in their treatment of cumulativity of constraint
violations. Both StOT and ME diverge from classical OT in admitting ganging-
up effects. By this I mean that violations of several lower-ranked constraints
may jointly outweigh a violation of a higher ranked constraint. ME furthermore
predicts counting cumulativity. This means that a higher degree of violations
of one constraint always reduces probability, no matter what other constraints
and other candidates do. In StOT only the relative strength of a constraint
violation of a candidate in comparison with other candidates matters. In the
present paper I will restrict attention to binary constraints, and thus such effects
are excluded by definition.

Goldwater and Johnson (2003) repeat all experiments from Boersma and
Hayes (2001) but use ME and conjugate gradient ascent instead of StOT and
GLA. They show that the results of both approaches are very similar. So for
all we know, there are no clear empirical reasons to favor the one model over
the other. From a theoretical point of view ME seems to be superior though
because the available learning algorithms are guaranteed to converge.

On the other hand, Paul Boersma (personal communication) mentions two
advantages of StOT/GLA over the standard learning algorithms for ME models.
First, all these algorithms are off-line algorithms, while the GLA works on-line.
This means that improved iterative scaling or (conjugate) gradient ascent needs
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to “know” the average degree of violation of each constraint before the actual
learning starts. In practice this means that first the training corpus has to be
analyzed in its entirety before learning can take place. The GLA, on the other
hand, works gradual. It processes the observations one at a time and gradu-
ally approaches the target distribution. Human language acquisition obviously
works on-line. Therefore the GLA is prima facie cognitively more plausible.
Furthermore, the study Boersma and Levelt (2000) demonstrates for a certain
empirical domain that the GLA actually predicts the correct order of acqui-
sition. An off-line algorithm is by its very nature unable to make predictions
about acquisition order.

4 GLA = Stochastic Gradient Ascent

One of the standard machine learning algorithms that is applicable to ME mod-
els is Gradient Ascent. This algorithm finds a local maximum of a real-valued
function f in an n-dimensional Euclidian space provided f is continuous and
differentiable. For ME learning, we have to find the ranks that maximize the
likelihood of the training corpus. Since the logarithm is a monotonically increas-
ing function, we can as well maximize the average log-likelihood, i.e. we have to
find the parameters ~r that maximize the empirical average of the log-likelihood
according to p~r. It is given by the formula

f(~r) = Eemp[log p~r(i, o)]

which is a continuous and differentiable function of the rank vector ~r. The
log-likelihood has the desirable property of being convex, which means that it
does not have local maxima. Gradient Ascent is thus guaranteed to find the
global maximum. The gradient of a function f at a point ~r is the vector pointing
from ~r in the direction where f grows steepest. Gradient Ascent is an iterative
algorithm that, starting from some initial point ~r1, moves small steps in the
direction of the local gradient. Since each step increases the value of f , this
process is bound to approach the global maximum.2

The jth component of the gradient of a function g(~r) is the partial derivative
∂

∂rj
g(~r). For log-likelihood in a ME model it holds that

∂

∂rj
f(~r) = Eemp[cj ] − E~r[cj ] (2)

Note that this gradient is exactly the direction of the update in the GLA
(1), modulo the convention that constraint functions take non-negative values
in StOT and non-positive values here. The update rule for gradient ascent is
thus identical to the expected effect of the GLA update rule.

Gradient ascent is still an off-line algorithm though. The expectation val-
ues of the constraints have to be known in advance. However, it can easily be
transformed into an on-line algorithm. The on-line version is known as Stochas-
tic Gradient Ascent (SGA for short) and is a standard technique for training
connectionist networks. Here one observation is processed at a time, and the

2 Provided the function is convex. In the general case only convergence towards a local
maximum is guaranteed.
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empirical expectation value of each constraint is replaced by the observed value.
Adapted to ME, the update rule thus is

(~rk+1)j = (~rk)j + η · (cj(ik, ok) − E~r[cj ])

Recall that the distribution p~r is a product of the theoretical conditional
probability distribution p~r(o|i) and the marginal empirical probabilities of the
inputs pemp(i). The latter cannot be calculated analytically. Therefore E~r[cj ]
has to be estimated as well. We thus replace it by a random variable that has
E~r[cj ] as its expected value. This can be done by drawing a sample hk from
the distribution p~r(·|i) corresponding to the current rankings ~r. This leads us
to the revised update rule

(~rk+1)j = (~rk)j + η · (cj(ik, ok) − cj(ik, hk))

For the special case that all constraints are binary, this is the Gradual Learn-
ing Algorithm, and for the general case it is very closely related to it.

Let us consider the consequences of this finding. Both the GLA for StOT
and SGA for ME are on-line algorithms. They both converge iff the empirical
and the acquired expectation value for each constraint coincide, i.e. if for all
constraints Cj :

Eemp[cj ] − E~r[cj ] = 0

Under the ME interpretation, among all distributions sharing this property,
the learning algorithm finds the one with the highest entropy. If the GLA
under the StOT interpretation converges towards a different distribution for the
same training corpus, it will be one with lower entropy, i.e. a less parsimonious
hypothesis.

5 Order of acquisition

Boersma and Levelt (2000) report an experiment where the acquisition of Dutch
syllable structures was simulated using StOT and the GLA. I repeated the
experiment with a ME model and SGA and obtained almost identical results.

The attested frequency of Dutch syllable types in child directed speech is as
in table 1 (taken from Boersma and Levelt (2000) who attribute it to Joost van
de Weijer, personal communication).

CV 44.81% CCVC 1.98%
CVC 32.05% CCV 1.38%
VC 11.99% VCC 0.42%
V 3.85% CCVCC 0.26%

CVCC 3.25%

Tab. 1: Frequency of syllable types in Dutch

Following the optimality theoretic acquisition study Levelt and van de Vi-
jver (1998), Boersma and Levelt (2000) assume the following five constraints
pertaining to syllable structure:
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• *Coda: “don’t produce codas” (violated by -C and -CC syllables)

• Onset: “don’t produce vowel-initial syllables” (violated by V- sylla-
bles)

• *ComplexCoda: “don’t produce complex codas” (violated by -CC
syllables)

• *ComplexOnset: “don’t produce complex onsets” (violated by CC-
syllables)

• Faith: “don’t add or delete material”

The set-up is speaker oriented. Both input and output are assumed to be (or
to specify) syllables structures. The first four constraints are markedness con-
straints and only apply to the output. The last constraint is violated whenever
input and output differ.

Boersma and Levelt’s experimental setup is as follows. Each of the nine
syllable types can be both input and output. There are thus 81 potential input-
output pairs. Faith is never violated in the adult language — in the training
corpus input and output always coincide. The corpus frequencies given above
are taken to represent the empirical probabilities.

In the initial state Faith is ranked low and the markedness constraints high
(a standard assumption in the OT literature). The GLA gradually lowered the
markedness constraints and simultaneously raised Faith until it became the
strongest constraint. The algorithm converges towards the following ranking:

Faith � *ComplexOnset � *ComplexCoda � Onset � *Coda

The final relative ranking of the markedness constraints emerges early during
the learning process. Faith outranks the markedness constraints thus not all at
once but one by one, starting with *Coda and ending with *ComplexOnset.
The intermediate stages correspond to rankings where the learner would produce
some, but not all syllable types faithfully. Furthermore, during the phases
where Faith and some markedness constraint have similar ranks, the learner
would assign different outputs for the same input substantial probabilities, i.e.
the learner is predicted to pass stages of optionality before complex syllable
types are firmly acquired. This effect does in fact occur during human language
acquisition.

In Boersma and Levelt’s simulations, the GLA learned the Dutch syllable
types most of the time in the following order:

CV < CVC < VC < CVCC < CCVC < CCVCC

In about 30% of the experiments, the order of CCVC and CVCC was re-
versed. The author report no results on the other three syllable types.

According to Levelt and van de Vijver (1998), Dutch children acquire the
syllable types in one of the following two orders, where types enclosed in curly
brackets are acquired more or less simultaneously.

• CV < CVC < V < VC < {CVCC, VCC} < {CCV, CCVC} < CCVCC

• CV < CVC < V < VC < {CCV, CCVC} < {CVCC, VCC} < CCVCC
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The simulation results do in fact fit rather well with the empirical acquisition
data.

I repeated Boersma and Levelt’s experiment using a ME model and Stochas-
tic Gradient Ascent (SGA). I used a learning rate η = 0.1. In the initial state,
Faith had a rank of 0.0, and all other constraints a rank of 10.0. The constraint
rankings as a function of time is given in figure 1.
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Fig. 1: Learning of constraint ranks

The ME learning algorithm acquires the same constraint ranking as the
GLA, and it does so with a qualitatively similar trajectory. This fact, as well as
the order of acquisition to be reported shortly does not depend on the learning
rate and the precise initial ranking of the markedness constraints as long as they
are initially ranked above Faith and the latter is initially ranked at 0.

Since the probability of a candidate is a continuous function of the constraint
rankings both in Boersma’s and in the ME model, the acquisition of syllable
types is predicted to be gradual in both theories.

In the experiments I conducted, the syllable types where consistently ac-
quired in the following order:

CV < CVC < V < VC < CVCC < {CCV, CCVC} < VCC < CCVCC

This is very close to the empirically observed acquisition orders, except that
CVCC is acquired too early or VCC too late. It is also consistent with Boersma
and Levelt’s results. From the available information it is hard to tell whether or
not their results are closer to the empirical data than mine, but the difference
is certainly small.

6 Conclusion

In this article I compared two stochastic generalizations of Optimality Theory,
names Paul Boersma’s Stochastic Optimality Theory and Maximum Entropy
models that are frequently used in machine learning contexts. As pointed out
by Goldwater and Johnson (2003), the empirical predictions of the two models
are rather similar. The latter is advantageous from a formal point of view
because there exist provably correct learning algorithms for Maximum Entropy
models while the learnability problem for Stochastic OT is still open. On the
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other hand, Boersma’ Gradual Learning Algorithm for Stochastic OT has been
successfully applied in many contexts, and it is arguably a better model of
human language acquisition than the off-line training algorithms for ME models
that are standardly used.

I demonstrated that the Gradual Learning Algorithm is not confined to
StOT. It can be applied to ME models as well. In this context it is actually
a variant of the Stochastic Gradient Ascent training algorithm that is well-
established for other machine learning problems. The insights about language
acquisition that the GLA offers are maintained if it is combined with the Max-
imum Entropy approach to constraint evaluation.
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and Östen Dahl, editors, Proceedings of the Stockholm Workshop on Varia-
tion within Optimality Theory. Stockholm University, pages 111–120.

Keller, Frank and Ash Asudeh. 2002. Probabilistic learning algorithms and
Optimality Theory. Linguistic Inquiry, 33(2):225–244.

Levelt, Claartje and Ruben van de Vijver. 1998. Syllable types in cross-
linguistic and developmental grammars. manuscript. available from the
Rutgers Optimality Archive.

Prince, Alan and Paul Smolensky. 1993. Optimality theory: Constraint inter-
action in generative grammar. Technical Report TR-2, Rutgers University
Cognitive Science Center, New Brunswick, NJ.


