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Summary: Optimality Theory is a constraint-based
theory of phonology which allows constraints to conflict
and to be violated. Consequently, implementing the theory
presents problems for declarative constraint-based proces-
sing frameworks. On the basis of two regularity assumpti-
ons, that sets are regular and that constraints can be model-
led by transducers, this paper presents and proves correct
algorithms for computing the action of constraints, and
hence deriving surface forms.

INTRODUCTION

Recent years have seen two major trends in phonology:
theories have become more oriented around constraints
than transformations, while implementations have come to
rely increasingly on finite state automata and transducers.
This paper seeks to build a bridge between these trends,
showing how one constraint-based theory of phonology,
namely Optimality Theory, might be implemented using
finite-state methods.

The paper falls into three main sections. The first de-
scribes Optimality Theory and its restriction to constraints
which can only make binary distinctions in harmony. The
second part covers the formalisation of the evaluation of
harmony, including the simplifying assumptions that the
set of candidate forms must initially be regular, and that
the action of each constraint in assigning harmony also be
regular. The third section presents algorithms for (i) de-
fining the product of automata modelling constraints, (ii)
finding the optimal level of harmony of a set of candidates
and (iii) culling suboptimal candidates. The last two algo-
rithms are proved correct, and some worst-case complexity
results are given. The paper concludes with a discussion
of the work.

OPTIMALITY THEORY

Optimality Theory (OT) is a constraint-based theory of
phonology, developed by Prince and Smolensky (1993)
(hereafter, this work will be referred to as P&S) and is now
being used by a growing number of phonologists (Ito and
Mester 1993, McCarthy and Prince 1993, McCarthy 1993).
It differs from declarative phonology (Bird 1994, Scobbie
1991, Bird and Ellison 1994) in that its constraints are vio-
lable and can conflict, with the conflicts resolved by an
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ordered system of defaults1. Declarative phonology eva-
luates candidate forms2 on a binary scale: whether they
are accepted by a constraint system or not. In contrast, OT
assigns a ranking to all of the candidate realisations of a
word, calling the scale a measure of harmony. All of the
candidates which show the maximal amount of harmony
are accepted by the constraint system, and others are rejec-
ted. A derivation in OT consists of an original candidate
set produced by a function called GEN, and the subsequent
application of constraints to reduce the candidate set, elimi-
nating non-optimal candidates and preserving those with
the greatest harmony. At no stage can a constraint elimi-
nate all candidates.

Each constraint assigns to each candidate a list of marks.
These marks may, for instance, tag segments as regular or
exceptional. The marks are values on the harmony scale,
and are totally ordered: for any two marks a and b, either
a is more harmonic than b (symbolically, a � b) or the
reverse. In the list assigned to a candidate, however, the
same mark may occur many times. To compare the har-
mony of two candidates with regard to a given constraint,
their respective lists of marks are sorted into increasing
order of harmony3. The lists are then compared first-to-
last componentwise. The more harmonic candidate has
the more harmonic value at the first point where the lists
differ. The empty list always has the same harmony as the
most harmonic mark on the harmony scale, common to all
constraints, which we will call the zero mark, and write
as ;4. Constraints which only use two different marks are
called binary constraints. For binary constraints, the eva-
luation of harmony is a simple affair. The candidate with
the fewest non-zero marks is preferred.

Consider, for example, the binary constraint
ONS(P&S:25). This constraint discourages nuclei without
onsets when selecting between different syllabifications.
Two syllabifications of the Arabic segmental sequence al-
qalamu are shown in (1), with syllables demarcated by
parentheses. The nuclei are always the vowels. The dishar-

1Ellison (1994) offers a formal analysis of the use of defaults in
Optimality Theory.

2In constraint-based theories, constraints impose limits on possible
realisations of objects, such as words or sentences. A candidate is a
tentative realisation which is yet to be tested against the constraints.

3Early in their technical report, P&S introduce one constraint, HNUC,
which requires sorting into the reverse order. Later in the same work they
replace this constraint with a number of binary constraints with the usual
ordering.

4The zero mark is not part of P&S’s account. They are not explicit
about comparison of lists of marks of unequal length except in the binary
case. In that case, their definitions have the same consequences as those
described here.



monic mark L indicates on onsetless nucleus, the harmonic
(zero) mark ; is used for other segments.

(1) syllabification marks sorted
(al)(qa)(la)(mu) L;;;;;;; L;;;;;;;
(alq)(al)(am)(u) L;;L;L;L LLLL;;;;

In this example, the sorted lists of marks differ in the
second position with the first candidate, (al)(qa)(la)(mu),
being the more harmonic of the two.

When there is more than one constraint, we must con-
sider not only the ordering of marks assigned by one con-
straint, but the ordering of marks from different constraints.
In OT, constraints are placed in a total order (C1 �� C2),
and all non-zero marks of higher-ranked constraints (C1)
are less harmonic than all non-zero marks of lower-ranked
constraints (C2). In effect, this means that higher-ranked
constraints have priority in eliminating candidates. For all
constraints, however, the zero mark has the same, maxi-
mally harmonic, value.

binarity

So far we have considered a general class of constraints in-
cluding non-binary constraints. As it happens, non-binary
constraints can often be replaced by binary constraints.
Binary constraints are those which only assign two marks:
the zero mark, and one other.

In the simplest case, restating a constraint in a logically
equivalent form can transform a non-binary constraint into
a binary constraint. The constraint family EDGEMOST is
defined by P&S(p35) as (2).

(2) EDGEMOST(�; E; D).
The item � is situated at the edge E of domain D.

This definition covers a family of constraints depending on
the instantiations of the arguments: E is either left (L) or
right (R), domain may be syllable, foot or word, and � can
be any phonological object, such as stress or an affix.

According to P&S, constraints of this form are non-
binary, returning as their marks the distance of their ob-
jects from the designated edge of domain. The greater
the distance, the less harmonic the mark. Constraints of
this kind can, however, be replaced by logically equivalent
binary constraints (3).

(3) NOINTERVENING(�; E; D).
There is no material intervening between � and
edge E of domain D.

This form of constraint assigns a disharmony mark to each
item intervening between � and edge E. The more material
lying between � and E, the greater the number of marks
and so the lower the harmony value.

Other types of non-binary constraints can be conver-
ted into hierarchies (ordered sequences) of binary con-
straints. Suppose a constraint C produces N different kinds
of marks. Applied to a candidate form c, this constraint
produces a list C(c) of marks. Now define a function f

which takes a list of marks, l, and a mark type m, and

replaces all marks in l which are different from m by the
zero mark ;, and then re-sorts the list. So with the marks
2 � 1 � ;, then f(221;; 2) is 22;; and f(221;; 1) is1;;;.
If the marks generated by C are ;= m1 � m2 � :: � mN ,
then C can be replaced by constraints Ci;i=1::N�1 such
that Ci(c) = f(C(c); i) subject to the ordering Ci��Cj if
i > j.

To see the equivalence of the single non-binary con-
straint with the family of binary constraints, let us look at
the comparison of some candidate forms. Using the three-
valued constraint of the earlier example, suppose candi-
dates M, N and P are assigned mark lists 1;2, 21;12 and
;122 respectively. Sorted, these lists become 21;, 2211;
and 221;. Comparing these lists, we arrive at the harmony
ordering M � P � N.

Now, let us apply the corresponding binary constraints.
The first and dominant constraint preserves only 2s in the
mark list, the second preserves only the mark 1. The two
lists of marks for M, N and P are 2;; and 1;;, 22;;; and
11;;;, and 22;; and 1;;;, respectively. By the orderingof
the constraints, we know that 2 � 1 still, and so merging
the two lists of marks for each candidate gives 21;;;;,
2211;;;;;; and 221;;;;;. Apart from the trailing ;s,
these are identical to the marks assigned by the single
constraint, and so lead to the same ordering: M � P � N.

So all constraints which use a finite alphabet of marks,
and some which do not, such as EDGEMOST constraints, can
be translated into binary constraints or a finite sequence
of binary constraints. Consequently, formalising binary
constraints and their interaction will be enough to capture
the bulk of constraints in OT.

FORMALISATION

The formalisation of OT developed here makes uses three
idealising assumptions (4).

(4) 1. All constraints are binary.

2. The output of GEN is a regular set.

3. All constraints are regular.

We have already seen that most non-binary constraints
can be recast as binary constraints or families of binary
constraints. Unfortunately, P&S are not explicit about
whether there are other unbounded non-binary constraints
(like EDGEMOST) — there may be some which cannot be
recast as binary constraints. Assumption 1 is, therefore, an
idealisation imposing a slight limitation on the theory.

regular gen

The second assumption requires that the output of GEN be
regular. Recall that GEN is the function which produces
the initial set of candidate forms which is reduced by the
constraints. In other words, the set of candidates must
be initialised to a set which can be defined by a regular
expression, or, equivalently, by a finite-state automaton
(FSA).

As an example, (5) shows a regular expression giving a
subset of the candidate syllabifications of alqalamu accor-
ding to the syllabification rules of P&S(p25). The set does
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not include all candidates; for clarity I have omitted partial
syllabifications in which segments have not been assigned
a syllabic role, and completely empty syllables. The set
does include syllabic slots which do not correspond to seg-
ments. In such slot-segment pairs, the empty segment is
written as 0.
(5) �
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The brackets cover disjunctions of terms separated by
vertical bar j, while concatenation is expressed by juxtapo-
sition. The vertical pairs of symbols are the complex labels
used on arcs in the corresponding automaton. The three
syllabic slot types are onset (O), nucleus (N) and coda (C).
As a regular expression, (5) captures 64 different possible
syllabifications of the sequence alqalamu. For example,
the syllabification (al)(qal)(am)(u) is accepted by the (5),
while (alq)(al)(am)(u) is not.

regular constraints

The third assumption imposes regularity on constraints. A
constraint is regular if there is a finite-state transducer5

(FST) which assigns the same list of marks to a candidate
form that the constraint does. Since we are only dealing
with binary constraints, the transducer will associate with
each component of the candidate one of the two harmonic
values � � ;. Such transducers can be expressed as regular
expressions over pairs of phonological material and marks.

P&S (p25) use two constraints, FILL (6) and ONS (7), to
account for the limits on epenthesis in Arabic. Epenthetic
material arises when syllabic slots which are not occupied
by segments are realised. Here the marks are given on the
right hand side of the colon in each pair. Here � is the
disharmonic mark, and ; the more harmonic zero mark.

(6) FILL. Syllable positions are filled with segmental
material.

(7) ONS. Every syllable has an onset.

These two constraints can be readily translated into re-
gular expressions, using the abbreviatory notations: N for
onset or coda, 0 for segmental material and � for anything.
The transducers for FILL and ONS are defined by the regular
expressions in (8) and (9) respectively.

(8) 8<
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?

This transducer marks with � every syllabic slot associated
with an empty (0) segment.
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5A finite state transducer is an FSA which is labelled with pairs of
values. In this case, the pairs will combine phonological information with
constraint marks.

This transducer is non-deterministic, producing more than
one sequence of marks for a given input. All nuclei prece-
ded by an onset are marked with ; and with �. All other
segments segments are marked as ;. The multiple evaluati-
ons of candidates is not a problem: candidates will survive
so long as their best evaluation is as good as the best of any
other candidate.

linearity

The reader may be concerned that the regularity constraint
imposes undue restrictions of linearity on the candidate
forms, and, in doing so, vitiates the phonological advan-
tages of non-linear representations. This is not the case.
Bird and Ellison (1992,1994) have shown that it is possible
to capture the semantics of autosegmental rules and repre-
sentations using FSAs. The output of GEN, therefore, may
correspond to a set of partially specified autosegmental
representations, and still be interpreted as a regular set.

candidate comparison

For single binary constraints, the harmony of candidates
is compared as sorted lists over the alphabet containing �

and ;, where ; has the higher harmony, the same, in fact,
as the empty list. Consequently, the results of comparing
lists of these marks is identical with comparing #�:h(�)
where #� is the number of times � occurs in the list, and
h(�) is the constant quantity of harmony assigned to �.
As ; has the same harmony as the empty list, h(;) must
be zero. As � � ;, comparison is preserved if h(�) <

0, so we set h(�) = �1. If the arcs in the transducer
are labelled with �1 and 0 instead of � and ;, then the
harmony of a candidate can be evaluated by just adding
the numbers along the corresponding path in the constraint
transducer. The greater the (always non-positive) result,
the more harmonic the candidate.

Just as we can measure harmony relative to a single con-
straint with a single integer, we can measure the harmony
relative to an ordered hierarchy of constraints with an or-
dered list of integers. The list of integers corresponds one-
to-one to the constraints in decreasing order of dominance.
Each integer maintains information about the number of
� values of the corresponding constraint in the evaluation
of the candidate. A candidate with the list (�2;�1) vio-
lates the first constraint twice and the second once: the
corresponding sorted list of harmony marks is 221.

Lists of this form can be compared just like lists of
harmony marks. The first integer is the most significant
and the last the least. The greater of two lists is the one with
the higher value at the most significant point of difference.
For example (�10;�31;�50) is more harmonic than (>)
(�10;�34;�12). Lists of integers can be accumulated
like single integers using componentwise addition.

We can generalise transducers from denoting single con-
straints to denoting hierarchies of constraints: from trans-
lating candidates into sequences of f;; �gor f0;�1gmarks
to transducers from candidates to sequences of lists of inte-
gers, each integer drawn from f0;�1g. Summing the lists
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along a path gives a harmonic evaluation of the correspon-
ding candidate.

Let us call the length of the integer list the degree of the
transducer. The output of GEN is an automaton — a trans-
ducer without marks — and so corresponds to a transducer
of degree 0. The transducer for a single constraint needs
only a single binary distinction for its marks, so a degree
1 transducer suffices. In general, the number of binary
constraints that a transducer encodes will equal its degree.
The next section looks at how transducers of single con-
straints or small hierarchies can be combined into single
transducers for larger hierarchies.

ALGORITHMS

product

We have seen how a single constraint can be regarded as
a transducer from candidate segments into a singleton list
of integers, and further that multiple constraints can be
evaluated using longer lists of integers. Combining these
two notions into an extended version of the automaton pro-
duct operation allows us to build up transducers capturing a
hierarchy of constraints from single constraint transducers.

The product operation is easier to describe when tran-
sducers are thought of in terms of automata rather than
regular expressions. For brevity, then, the algorithms will
be phrased in terms of the states and arcs of an automa-
ton, while, for clarity, regular expressions will be used to
present the inputs and outputs of examples.

The pseudocode for the standard automaton product ope-
ration appears in (10). As the initial states of any automaton
can be identified with each other without affecting the lan-
guage recognised, and similarly the final states, we will
assume that there is only a single initial state (I) and final
state (F) in each automaton. In this pseudocode, semico-
lons are followed by comments.

(10) Product(A,B):
1 make (IA,IB ) initial in A�B
2 make (FA,FB) final in A�B
3 for each arc from x to y in A labelledM
4 for each arc from z to t in B labelledN
5 ifM\N6= ;
6 then add arc from (x,z) to (y,t) toA�B
7 labelledM\N

The pseudocode in (10) applies to two automata A and B,
over the same alphabet, and constructs their productA�B,
an automaton which accepts only those strings accepted
by both A and B. Each combination of arcs, one from A
and one from B, which could be traversed while reading
the same input, that is, an input in the intersection M\N
of the labels of the two arcs, defines an arc in the product
automaton.

To make the product mimic the combination of con-
straints in OT, we need to introduce an asymmetric ope-
ration on the lists of marks: concatenation. Each arc in
each automata passed to this product operation is labelled
not only with a set of possible phonological segments, but

also a list of harmony marks. When two arcs are combi-
ned, these lists are concatenated. The pseudocode for this
augmented product operation appears in (11).

(11) AugmentedProduct(A,B):
1 make (IA ,IB) initial inA�B
2 make (FA,FB) final in A�B
3 for each arc from x to y in A labelledM:�
4 for each arc from z to t in B labelledN :�
5 ifM\N 6= ;
6 then add arc from (x,z) to (y,t) toA�B
7 labelledM\N :�:�

�:� is the concatenation of � and �.

Because concatenation is not a symmetric operation, the
augmented product does not commute: A�B does not as-
sign the same marks to candidate forms as B�A. The
difference in interpretation is that A�B regards all con-
straints in A as higher priority than all constraints in B,
whereas B�A instantiates the reverse ordering.

The augmented product operation provides a way of
combining two constraints into a single transducer. As
an example, (12) is the product of the transducers corre-
sponding to the constraints ONS (9) and FILL (8) in that
order.
(12)
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The product is the crucial operation for implementing
OT. The product of the regular expression or automaton
produced by GEN with all of the constraints in order pro-
duces a transducer encoding the harmony evaluations of
all candidates. Let us call it the surface transducer. To
evaluate the harmony of any fully specified candidate, we
need only follow the corresponding paths in the surface
transducer accumulating the integer lists associated with
each arc. The path with the greatest total harmony is the
crucial one for deciding whether the candidate is optimal
or not.

The surface transducer which is the product of the candi-
date syllabifications of alqalamu with the constraints ONS

and FILL, in that order, is shown in (13).
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harmony of substrings

In OT, only the candidates with maximal harmony survive
to the surface; non-optimal candidates are eliminated. To
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implement this part of the derivation, we need to remove all
paths from the surface transducer which do not accumulate
optimal values of harmony. The algorithms in this section
and the next are designed to achieve this task, and will be
proven to do so.

The first algorithm (14) assigns to every state N the
harmony value of the optimal path to it from the initial
state, storing this value in the field harmony(N). Since
there is only a single final state, F, harmony(F) will contain
the harmony evaluation of all optimal candidates.

(14) LabelNodes(transducer):
1 for each state n in transducer
2 harmony(n) undefined
3 harmony(I) 00...0 I is the initial state
4 list { I }
5 while list is not empty
6 expand m begins
7 m most harmonic state in list
8 delete m from list
9 for each arc a:m!n from m

10 if harmony(n) < harmony(m) + harmony(a)
11 delete n from list
12 harmony(n) harmony(m) + harmony(a)
13 insert n in list
14 else if harmony(n) undefined
15 harmony(n) harmony(m) + harmony(a)
16 insert n in list

The algorithm sets the harmony of the inital state to zero,
and places the initial state in an otherwise empty list. The
most optimal member in the list is expanded (lines 6-15)
and removed from the list. When a state is expanded,
all of the arcs from it are examined in turn. If any of
them point to states with undefined harmony values, the
harmony of the state being expanded, and of the arc, are
used to calculate the harmony value of the other state and
it is added to the list. If the arc points to a state with a
defined harmony value, the harmony value of the better
path is retained by that state, and its position in the sorted
list adjusted appropriately.

If the list is kept sorted, inserting each new state in order
of the value of its harmony field then, in the worst case,
o(log jstatesj) comparisons of harmony values will need
to be done for an insertion into the list where states is
the set of states in the transducer and arcs the set of arcs.
As each state is expanded only once, each arc is examined
only once. So jarcsj forms an upper bound on the number
of insertions that need to be done. The single comparison
on line 9 is insignificant in relation to the comparisons
used in insertion. So an upper bound on order of the worst
case execution of this algorithm is o(jarcsj log jstatesj)
comparisons.

It is not obvious that this algorithm will, in fact, label
each state with the harmony of the optimal path to it, so a
proof follows.

(15) Lemma. When state M is being expanded (lines 6-
15), the true harmony value of the optimal path to M,
namely h(M), and the computed value, harmony(M),
are equal, if the same is true for all previously expanded
states.

Proof. Case �. Suppose the lemma is false, and that
h(M)>harmony(M). Then there is an optimal path p:a:q

where p is a (possibly null) path, a is an arc from an al-
ready expanded state R to an unexpanded state S and q is
another (possibly null) path. There will always be such a
path as M is reachable from the initial state, and the initial
state is the first one expanded. This path is optimal, so
h(M) = h(R) + h(a) + h(q) which in turn is less than or
equal to h(R) + h(a) as h is always non-positive. Putting
this inequality together with the supposition of the lemma
that harmony and h match for all expanded nodes, gives
the following inequality:

harmony(S) � harmony(R) + harmony(a)

= h(R) + h(a)

> harmony(M)

A lower bound for harmony(S) was set when R was expan-
ded. As R is already expandedh(R)=harmony(R), and con-
sequently harmony(S)>harmony(M) which contradicts the
minimality of the choice of M (line 6 of algorithm (14)).
Thus h(M)�harmony(M).
Case �. If M is in list, then harmony(M) must be defined
and set at a value � h(M).
Thus the equality of harmony(M) andh(M), and the lemma.
When M is the initial state I, the result follows immediately
from line 3 which sets harmony(I) to zero. 2

(16) Theorem. After the application of LABELNODES,
for all states N on which harmony(N) is defined,
harmony(N) is the harmony of the optimal path to
N.

Proof. By the lemma and induction on the sequence of
expansion of states. 2

We can mimic the labelling of nodes in the transducer
with harmonic evaluations by labelling disjuncts in regular
expressions with harmonic values. The value of a whole
disjunction is most harmonic value amongst the disjuncts.
As before, the harmonic evaluations are added during con-
catenation. The evaluations for the surface transducer (13)
of alqalamu are shown in (17).
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The evaluation of the optimal path in the transducer is
(0,-1).

pruning

Having determined the harmony value of the optimal path
to the final state, and others, it only remains to remove
suboptimal paths. As it happens, this can be easily done
by removing all arcs which cannot occur in an optimal path
(18).

(18) Prune(transducer):
1 for each arc a:n!m of transducer
2 if harmony(a) + harmony(n) < harmony(m)
3 then delete a

If the sum of the harmony of an arc, and the harmony of
the optimal path to the state it comes from, is less than the
harmony of the state the arc goes to, then that means that
there is a more optimal path to the second state which will
always be preferred. Consequently this arc can never be
part of an optimal path. It is, therefore, safe and appropriate
to delete it.

The complexity, in the number of comparisons perfor-
med, of this algorithm is identical to the number of arcs
in the transducer. This is of lower order than the worst-
case complexity for LABELNODES, so the complexity of
the combined algorithm is still o(jarcsj log jstatesj) com-
parisons.

It is not immediately obvious that the only paths which
can be formed by the remaining arcs are optimal. This is,
however, the case.

(19) Theorem. After the application of LABELNODES

and PRUNE there are no non-optimal paths from
the start state to any state.

Proof. By induction on the length of the path.
P (n) =After the application of LABELNODES and PRUNE

there is no non-minimal path of length n from the
initial state to any other state.

Base case. P (0) is trivially true, as there is only a unique
path of length zero.
Step. Assume P (k) is true. Suppose we have a non-
optimal path of length k + 1. By the assumption, this
must consist of an optimal path of length k followed by
a non-optimal arc a from M to N. a would have been de-
leted unless harmony(M)+harmony(a)�harmony(N). But,
by theorem (16), harmony(N) is the harmony of the optimal
path to N. So harmony(M)+harmony(a)�harmony(N), and
the path must be optimal. This contradicts our supposition,
and so P (k+ 1) is true.
The theorem follows by induction. 2

Consequently, the only paths from the initial state to the
final state will be optimal and define optimal candidates.

The regular expression corresponding to the culled auto-
maton describing the syllabifications of alqalamu appears
in (20). It includes only a single candidate syllabification
of the sequence.

(20) 01
O

0

00
N

a

00
C

l

00
O

q

00
N

a

00
O

l

00
N

a

00
O

m

00
N

u

Discussion

The work described in this paper was based on the Optima-
lity Theory of Prince and Smolensky (1993), making three
additional assumptions:

1. All constraints are binary, or can be recast as binary
constraints. This seems to be true of all constraints
used by P&S.

2. That the initial set of candidates, the output of GEN,
is a regular set which can be specified by a finite-state
automaton.

3. Each constraint can be implemented as a regular tran-
sducer which determines the list of marks for each
candidate.

On the basis of these assumptions, the following deve-
lopments were made:

� Transducers were defined which computed not just
a single constraint, but an ordered hierarchy of con-
straints.

� An algorithm for a product operation on these tran-
sducers was given. With this operation transducers
representing constraints could be applied to sets of
candidates, and also be combined into transducers re-
presenting collections of constraints.

� Algorithms were presented for

– finding the harmony of the optimal candidate in
a transducer, and

– culling all non-optimal paths from a transducer.

� These algorithms were proved to fulfill their goals.

� The worst-case complexity of the combined algorithm
in terms of harmony comparisons was found to be less
than o(jarcsj log jstatesj), for a given transducer.

Using the assumptions and algorithms given here, there
are three stages to computing a derivation in OT:

1. Specify the regular class of candidates as an automa-
ton.

2. Build up the product of this automaton with the tran-
sducers of each constraint in decreasing order of pri-
ority.
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3. Cull suboptimal paths.

There are a three more points worth noting. Firstly, the
constraints in a hierarchy can be precompiled into a single
transducer. Each application to a set of candidates then
only requires a single product operation followed by a cull.

Secondly, casting the output of GEN and all constraints
as regular means that, at all stages in a derivation, the set
of candidates is regular. This is because the output of the
product and culling operations are regular — both return
automata.

Finally, this specification of OT in terms of regular sets
and finite-state automata opens the way for more rigorous
exploration of the differences between OT and declarative
phonological theories, such as One-Level Phonology (Bird
and Ellison 1994), which is a constraint-based phonology
that defines inviolable constraints with automata.
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