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1. Introduction

Evaluation in OT adjudicates competitions between linguistic structures, but it cal culates only with
the array of violations that the structures incur under each constraint: their violation profiles.
Structures with the same profile are indistinguishable, and differences in structure only register to
the extent that they correlate with differencesin violation. General propertiesthat govern relations
between profilesin the space of al possible profiles will thus beinherited by any specific candidate
set, even though actual structures may be distributed sparsely or asymmetrically in violation space.

Shifting the focus of inquiry from candidates in the space of linguistic forms to violation
profiles in violation spaces will provide tools useful in analysis, computation, and learning. Of
particul ar significance are the principl es determining which profiles can never be optimal under any
ranking, given that certain other profilesare known to berealized in the candidate set. (These never-
optimal profiles we will call losers; by winners we mean the complement set of profiles optimal
under someranking.) The value of knowing the loser-vs.-winner status of a structureis manifestin
many applications, especialy (at the risk of paradox!) prior to conducting a specific competition.
Consider the procedures involved in constructing candidates to test for optimality: given the mere
existence of acandidate with acertain profile, knowledge of what it excludes under any ranking will
render unnecessary the labor of constructing and eval uating candidates that are always defeated by
it. Identifyingloser profileswill eliminateimproper learning targetsand hel p determinewhat abstract
structure ought be assigned to the observables; for example, we can avoid formally possible but
perpetually suboptimal foot-parses for observed sequences of stressed and unstressed syllables,
pruning subversive hypotheses(cf. Tesar 2000). Excludinglosersisal so essential totheanalyst, who
must know whether the set of competitors under consideration — inevitably finite — mistakenly
omits some potentially optimal structures. A precise characterization of the regions of profile space
defeated by the identified competitors will address this danger.

In Samek-Lodovici & Prince (1999) we show that every loser is harmonically bounded by
some non-empty set of candidates. Here we shift perspective and investigate how to characterize the
set L(A) of profilesturned into losers by agiven profile set A. A priori, this set contains any profile
bounded by any non-empty subset of A, included the potentially infinite set of losers collectively
bounded by profiles ganging together so asto each beat the loser on some of the possible constraint
rankingswhileleaving none uncovered. Wewill show that any set of losers collectively bounded by
aprofile set A is equivalent to the set of losers bounded by a single designated minimal profile
directly identifiable from our knowledge of A, and which will call the ‘bounding minimum’ of A.
Consequently, L(A) itself becomes determinable on the basis of simple harmonic bounding via
bounding minima alone, simplifying aspects of its computation. The result is fully general, and
appliesto any set of profiles A, independently of whether the membersof A areall winners, or some
of them are themselves turned into losers by some other fellow profiles.

* Acknowledgment. The authors would like to thank the Arts and Humanities Research Board (UK) for
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also grateful to the Faculty of Arts and Sciences of Rutgers University for additional support that greatly
facilitated our transatlantic collaboration.



We will start by laying out the basic properties of profile spaces and explaining how
collective bounding reducesto simpl e bounding through such bounding minima. Wethen generalize
thisbasic observation to any set of profiles A, showing how the corresponding set of losersL(A) can
be systematically characterized in terms of simple bounding. We conclude with observations on
computational complexity issues, and provideinthe Appendix theformal proof of acoupleof results
presented informally in the text.

2. Violation Spaces

We are used to thinking of optimization as selecting the structures that best satisfy aranked
set of constraints among an infinite set of competing structures. As noted, however, optimization
examines only the violation profiles of the competing structures, and not the structures themselves.
For example, the ‘perfect’ profile, with zero violations on all constraints, if realized, is aways
optimal, independent of the structure it may correspond to in any particular analysis.

The proper domain for studying optimization is thus the space of al possible violation
profiles rather than that of the corresponding structures. We will therefore represent a violation
profile, or ‘profile’ for short, as a vector o, where the i™" coordinate value ‘a(i)’ represents the
number of violations for o on thei™ constraint of some constraint set X. For example, if X consists
of two constraints C, and C,, the profile (0,2) satisfies C, and violates C, twice; the profile (1,1)
violates C, and C, once each; the profile (100,0) violates C, one hundred times while satisfying C..

(1) Def. Profile. For any X=(C,,C,,..C,), a profile « over ¥ is defined as the vector
oa=(t(1) ,..., a(n)), where c(i) records the number of violations for constraint C..

We may conceive profiles as points in the n-dimensional violation space V" —or V for
short— determined by the Cartesian product of the n constraints in 2. Each constraint constitutes
an axis of V, alowing from zero to any number of violations for that constraint; we will use the
terms‘ constraint’, ‘dimension’, and ‘ coordinate’ interchangeably. The vector representing aprofile
spells out the coordinates of the point representing the profile in the violation space. For example,
the figure below shows the position for the two profiles (0,2) and (1,1) examined above, aswell as
that for ageneric profile(i,j) violating C, exactly i timesand C, exactly j times.

(2) Violation space V2 for Z={C,, C,}.

C2A

J ...................... X <1’J>
3 /0,2>,
2% <1,1>

>C1



Optimization follows the lexicographic order that matches a chosen specific constraint
ranking. Profileswith lower coordinate values on high-ranked constraintsthus beat any other profile
with higher values on those same constraints, including those performing better on lower-ranked
ones. For example, when C, outranks C,, profile (0,2) precedes in the lexicographic order —and
hence‘ beats — profile(1,1), becauseit outperformsit on the highest constraint C,. Profile(0,1000)
would beat (1,1) too, again dueto itslower C,-coordinate, and for the samereasonthat ‘ az precedes
‘ba’ inthelexicographicorder usedindictionaries. Unlikedictionaries, however, OT allowsranking
permutation, and on the ranking C,>>C,, the profile (1,1) precedes both (0,2) and (0,1000), as well
asany profile (0, j) with j>1.

Before turning to our main goal, it is worth examining the relation between profiles and
actual competing structures generated by GEN in linguistic analyses. Every generated structure
necessarily correspondsto aprofilein V', namely the one recording its viol ations on each constraint.
Distinct structures may al so share the same profile when they viol ate the same constraints the same
number of times (see for example Grimshaw’'s analysis of optional complementizers, 1997).
Structures related in this way will share the same optimization fate under al rankings, sincethisis
determined by the profilealone. Someprofiles, on the other hand, may |ack acorresponding structure
generable by GEN. For example, in most analyses, the perfect profile 0=(0,0....,0), that satisfies all
constraints and hence forms the origin of the violation space V, has no structural correspondent
because constraints conflict with each other, and the satisfaction of one constraint entails the
violation of another.*

It follows that the set of competing structures from actual OT analyses amost aways
corresponds to a subset of the possible profiles represented within aviolation space. This provides
astrong reason for studying optimization and harmonic bounding within violation spacesrather than
the candidate sets provided by GEN, because any fundamental property of profile optimization in
V also holds of optimization within specific candidate sets, whereas the converse need not be true.

In the following, we will use properties and theorems from Samek-Lodovici and Prince
(1999). Although they do not mention violation spaces, they were established with respect to fully

! The scenario where every profile corresponds to a competing structure, requires constraints
with an infinite number of ordered strata, where each stratum isitself non-finite. For example, in V2 this
requires the two constraints shown below, with strata ordered by descending order as violations increase.
Each stratum isinfinite, yet each candidate has a distinct violation profile, shown in the subscripts. For
example, structure ¢, occursin thefirst stratum of C, and the second of C,, and corresponds to the
profile (01). Despite its complexity, the whole space has a unique winner which bounds all other
structures: the perfect profile c,, which satisfies both constraints.

(1) Exhaustive scenario for V2. C, C,
Coo, Co1, Coz, -+ Coo, Ci0, Cop, -+
| |
Cy0,C13, Cip - Co1,Ci1 Cpy -
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abstract candidates allowing for any conceivable violation profile, and therefore concerning any
conceivable point in V. Unlike arguments concerning specific candidate sets, they thus
straightforwardly carry over to violation spaces, preserving their validity in full.

3. Harmonic Bounding in Violation Spaces

In this section, we define harmonic bounding, simplifying the definition of Samek-Lodovici
and Prince (1999). We then show that the set of losers collectively bounded by a set of profiles can
be characterized in terms of simple bounding by a designated profile whose coordinates are
immediately identifiable. This is a useful result, because unlike collective bounding, simple
bounding is particularly easy to test, as it only requires checking that the bounded profile be not
better than its bounder on any coordinate. With this, we take the first step toward a complete
characterization through simple harmonic bounding of theinfiniteloser set L(A) determined by any
set of profilesA.

3.1 Defeating Sets

Central to the characterization of bounding is identifying a set of profiles that collectively
preventsa bounded profile from being optimal under any ranking. Several ways of delimiting such
sets are available; here we put forth one that proves particularly useful. A profile set will be said to
constitute adefeating set for aprofile A if and only if it satisfies the property of ‘reciprocity’, which
holds whenever it is not possible for A to have less violations than a member of A on a constraint
without some other member of A coming to the rescue by posting lessviolationsthan A on that same
constraint. The name ‘reciprocity’ reminds us that the members of A may reciprocate the rescuing
action, with profiles acting as rescuers on one constraint while endangered by A on another. The
definition applieseven whenreciprocity is satisfied vacuoudly, and thereforealoser ssmply bounded
by each member of A counts as defeated by A. Note that reciprocity is also vacuously satisfied for
a singleton set A={ «} relative to its unique member. The condition that A be excluded from A
ensures in this case that a defeater « is never grouped with the profilesit defeats.

(3) Def. Defeating Set. Let A be anon-empty profile set, and A aprofileinV but notin A. Then A
isadefeating set for A if and only if A satisfies the reciprocity condition below:

Reciprocity: Vi, i<n, VaeA, [ A()<a(i) = Ja'eA, a'(i)<A() ].

Wealso definetheset D(A) of profilesdefeated by aset A. Theseareall and only the profiles
for which A acts as defeating set. We use the term *defeated’ rather than *bounded’ because aswe
will see shortly a profile might be harmonically bounded by a proper subset of A, and therefore be
defeated by A, and yet not be bounded by A itself. We will also write ‘A=A’ to indicate that A is
defeated by A, and ‘a=A’ to indicate that the singleton set A={ «} defeats A, in which case, aswe
will see, A issimply bounded by «.

(4) Def. D(A). Let A be aprofile set in V, then D(A) contains any profile A in V that has A as
defeating set.
D(A) ={A: AeV and AcA}.



Defeating sets constitute a superset of bounding sets, which according to the definition in (Samek-
Lodovici & Prince 1999:46) must satisfy reciprocity and strictness, with strictness requiring
bounders to beat a bounded profile A on at least one constraint. The definition of bounding set
adapted to violation spacesis provided below.

(5) Def. Bounding Set (Violation Spaces). A profileset B inV isabounding set for aprofilezin
V if and only if B has the following properties:
Strictness:  VBeB, Ji, i<n, B(i)<z(i).

Reciprocity: Vi, i<n, VBeB, [ z(i)<B(i) = 3P’'eB, P’(i)<z() ].

For example, the set A={(2,3)} isabounding set for A=(3,3), withitsonly member bounding
A viastrictness on constraint C, and reciprocity vacuously satisfied. It is also a defeating set for A,
because reciprocity is satisfied. However, the set A'={(2,3), (4,3)} is not a bounding set for A
because its second member does not satisfy strictness, even though A’ satisfies reciprocity and
therefore constitutes a defeating set for A.

Themost important property of bounding setsfollowsfrom the Bounding Theorem (Samek-
Lodovici & Prince, 1999:11,47), which tells us that any profile with a non-empty bounding set is
necessarily aloser, and any loser isnecessarily bounded by some non-empty bounding set. A version
of the theorem adapted to violation spacesis given below. Theterm ‘W(K, X)’ representswinners,
i.e. al the profiles within a profile set K that are optimal under some ranking of the constraintsin
%, and theterm ‘B(x)’ stands for ‘bounding set for x’.

(6) Bounding Theorem (Violation Spaces). Let 2 be aset of constraint coordinatesfor V. For any
profileset K and profile A inV, A issuboptimal in K under any ranking of the constraint-coordinates
Y iff thereisin K anon-empty bounding set B(A) for A.

AEW(K, B) = B(L)=2.

Crucidly, in spite of the weaker condition defining them, defeating sets inherit from
bounding setsthe crucial property of turning any profile that they defeat into aloser whenever they
are not empty.

That any loser isdefeated by somenon-empty defeating set follows by the bounding theorem,
becausetheloser must be bounded by some non-empty bounding set, and every non-empty bounding
Set is adefeating set because it satisfies reciprocity. Conversely, a non-empty defeating set A for
some profile A awaysincludes anon-empty bounding set B for A, thusturning it into aloser dueto
the bounding theorem. In this case, the relevant bounding set B for A can be built by collecting all
membersof A that post |essviolationsthan A on some constraint, thus satisfying strictness. Notethat
B is necessarily non-empty, since by definition A does not belong to A, and therefore must differ
from each member of A on some constraint C. If A beats one or more of them on some constraint
C, reciprocity on A ensuresthat some other member  beats A on C, and is collected in B. On some
constraint C’, the subset B might satisfy reciprocity vacuously, with A neither beating nor beaten by
them. Overal, B satisfies the definition for bounding set and thus ensures the loser status of A
through the bounding theorem, which is therefore inherited by A.



The properties of defeating setsjust illustrated areformally stated in thelemmaand theorem
below, whoseformal proof we postponeto appendix A in order to more speedily proceed toward our
main goal. The Defeating-Bounding Lemma expresses the fact that every non-empty defeating set
includes anon-empty bounding set and vice versa?, and the Defeating Theorem formally recordsthe
fact that a profile with a non-empty defeating set is necessarily aloser.

(7) Lemma. Defeating-Bounding. Let B beanon-empty boundingset for A inV, then B constitutes
adefeating set for A in V. Conversely, let A be a defeating set for A in 'V, then there exists a non-
empty subset B in A that constitutes a bounding set for A in'V.

a  VB#@,[B=B(A) — Bci].
b.  VA*@[AcA — IBcA, B#@, B=B(1)].

(8) Defeating Theorem. Let 2 be aset of constraint coordinatesfor V, and let K beaprofile setin
V and A aprofilein K. Then A4 issuboptimal in K under any ranking of X iff thereisin K adefeating
set A for A.

AeW(K, X) = JA, AcK, AcA.

By the defeating theorem, any profile defeated by aset A isaloser, becauseit is bounded by
some non-empty subset of A. Theset D(A) thus collectsthe profilesthat arelosers because defeated
by A.

3.2 Defeating via Simple Harmonic Bounding

We may now turn our attention to the set L(A) collecting all losers for a specific set of
profiles A, i.e. including al those profiles that are beaten across all available rankings by one or
more members of A. We will show that L(A) coincides with the union of all profiles defeated by
some subset of A. We will then study the relation between L(A), D(A), and simple harmonic
bounding in the case where A contains only one profile, which will later enable us to reduce the
computation of D(A), and therefore of L(A), to checking acollection of simple harmonic bounding
relations.

Consider the set L(A), defined below, collecting any profile turned into a loser when
competing against A, including those defeated by a subset of A but not by A itself.

2 Not all supersets of bounding sets qualify as defeating sets. Consider for example the three
profiles «=(0,0), p=(1,0), and A=(0,1). The set B={ a} constitutes a non-empty bounding set for A, and
therefore also a defeating set for it, but its superset A={ «, } does not constitute a defeating set for A
because it cannot satisfy reciprocity on i=1 where A(1)<B(1) but «(1) ¢ A(1).
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(9) Def. L (A). Let A beaprofileset and A aprofileinthe space V determined by aconstraint set X.
Then A belongs to the set L(A) of losersfor A if and only if A does not belong to W(AU{ A}, X).

L(A) ={A: AeV and AeW(AL{ A}, Z)}.

The profiles defeated by some proper subset of A but not by A itself are not necessarily in
D(A). Consider for example the two profiles «=(2,0) and $=(0,2). The profile A=(0,4) is defeated
by B={3}, with reciprocity applying vacuously because A is never better than . Yet, A is not
defeated by A=(c, ) because reciprocity does not hold: on C,, A is better than o but not strictly
worsethan [3 asreciprocity requires. Thus A isnotin D(A) evenif itisin L(A) becauseit is defeated
by the subset B.

The appropriate relation between L(A) and D(A) thus requires L(A) to collect al profiles
defeated by the subsets of A. Thisrelation isformalized in the lemma below, and an example will
follow in the following section.

(10) Lemma. Loser Set. For any set A inV, itsloser set L(A) consists of theunion of al A defeated
by some subset A’ of A.
L(A) = uaca D(AY).

Pf. - LetusproveL(A)cu,...D(A’).

Let AeL(A). Since A isaloser against A, by the bounding theorem A includes a non-empty
bounding set A’ for A. Then by the defeating bounding lemma, A’ is a defeating set for A and
AED(A’).

- Let usnow prove u,.., D(A") c L(A).

By hypothesis 3A'cA, A’'cA and by definition of defeating set A’ #@. Therefore, by the defeating-
bounding lemma, there is a non-empty bounding set BcA’<A bounding A. It follows that there is
anon-empty bounding set B for A in A, and therefore A¢ W(AU{ A}, X). Therefore AeL(A). [J

Theonly caseinwhich L(A) and D(A) necessarily coincide occurswhen A isasingleton. Inthis
case, the only available subsets of A are the empty set @ and A itself. But defeating sets cannot be
empty by definition and henceonly A qualifies. All membersof L(A) will then becollected in D(A).

When adefeating set consistsof just oneelement o, reciprocity may only besatisfied vacuously,
as non-vacuous satisfaction always requires at least two membersin aset. However, it prevents any
defeated profile A fromincurring lessviolationsthan o on any coordinate, because thiswould violate
reciprocity, sinceno other profileisavailableto rescue «.. Furthermore since by definition adefeating
set does not include the profiles it defeats, A will also have to differ from o on at least one
coordinate. As aresult, o« will present less violations than A on at least one coordinate, and never
have moreviolationsthan A on any other. In other words, o simply harmonic bounds A inthe manner
first discussed in Prince & Smolensky (1993), and the defeating relation coincides with that of
simple harmonic bounding. The defeating singleton lemma below formalizes this result.

(11) Lemma. Defeating Singleton. Let o be aprofilein V. Then the set D(a) of profiles defeated
by the singleton set A={ a} coincides with the set of profiles ssmply bounded by A.



D(e)={A: A€V, Vi a(i)<A) and Jj a()<A()} .

Pf. Let E betheset of profilessimply bounded by «, i.e. E={A: A€V, Vi (i) <A(i), 3j a()<A(j)}-
EcD(w) istrivial, as any bounding set satisfies reciprocity and hence the bounding set for E,
whichis A, qualifies as defeating set for E aswell.
Asfor D(x)c<E, first note that D(«) #@, since aswejust showed A={ «} defeats E. Then by the
defeating bounding lemma, for any AeD(«) there is a non-empty set B in A that qualifies as a
bounding set for A, and since A isasingleton, B=A, and therefore D(A)=E. [

Simple bounding has a straightforward geometrical characterization in V2 The set D(«) of
profiles defeated — and hence simply bounded — by a singleton set A={«} covers the infinite
region delimited by two half-lines starting at o and parallel to the coordinate axes, as shown in the
figure below. The shaded region, with the exclusion of «, contains al the profilesin D(a), and in
thiscaseit aso characterizesthe loser set L (o), since with singletons the two sets coincide. Figure
(13) shows the region of defeated profilesin athree-dimensional system.

(12) D(e) in V2 for a=(i,j).
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(13) D(e) in V3 for a=(2,1,1).

-
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Simple bounding shows a series of important propertiesthat will later permit usto characterize
defeating setsintermsof simplebounding. To beginwith, simplebounding istransitive, asrecorded
in the lemma below. This property will later enable us to show that the defeating relation is itself
transitive and idempotent.

(14) Lemma. Bounding Transitivity. Let «, B, and y be profilesin V. Then, if y isin D() and 3
isin D(a), then y isin D(«) aswell.

Va, B, yeV [ a=p & Poy= acy ]

Pf. By thelemmaon defeating singletons, Vi a.(i) < (i) and Vi B(i) <y (i), therefore Vi a.(i) < (i) <y (i)-
Further, by defeating singleton 3j B(j)<y(j), therefore 3j a(i)<P(i)<y(i). It followsthat acy. O

Another important property of simple bounding is that the sum of the coordinates of each
defeated profileisalways greater than that of their defeater. Thisfollowsfrom the property —forced
by reciprocity in the way described above— that any defeated profile may at most equa the
coordinates of the defeater on all axes but one, eventually yielding a greater coordinate sum. The
converse does not hold; for example, the profile (0,100 is not bounded by the profile (1,0), even if
the latter has alower coordinate sum. The correct entailment is formalized below.

(15) Lemma. Coordinate Sum. For any o and B in V, if a=[3, then the sum of the coordinates for
B exceedsthat for o:
Ve, BeV, acf = X, B(i) > X a(i).

A third interesting property isthat when n profileslie on the n distinct axes of V, the union of
the sets D () projected by each profile coversthe entire space V except for afinite part of it. For the



two dimensional case, theresult isillustrated by the figure below: the only profiles not defeated by
either a=(i,0) or =(0,j) are those in the white region of the plane V2. In actual analyses, however,
it isunlikely that each axis hosts the profile of candidates generated by GEN, because lying on an
axisrequires a zero coordinate on all other axes, i.e. satisfaction of al other involved constraints.

(16) Union of D(«) by axis profiles
¢ A

N A
Simply
Simply bounded bounded by
by {B} {o} and also :
R by {B} |
5 Simply bounded
: by {a}
1 |
o —— -
1 2.

The profiles in the shaded regions belong to either D(c) or D(B) or both, and thus are also
included in L(A), where A={«, B}. However, they do not exhaust L(A), because the profiles
collectively bounded by o and 3 via non-vacuous reciprocity are still missing. These are examined
in the next section.

3.3 Collective Defeating through Reciprocity

When a defeating set A contains two or more profiles, the set of defeated profiles D(A) need
not match the union of the profiles defeated by each of its members.

First of all, losersin L(A) sharing acoordinate value with some defeater o but not others might
be in D(«) while not being in D(A). Consider for example the two-dimensional case from the
previous section with A={ e, B} where a=(i,0), and p=(0,j)}. As we saw there, aloser 1,=(0,k) is
simply bounded by [=(0,j) whenever k is greater than j. Yet, A={«, B} does not qualify as a
defeating set for A, even if it includes . The reason is that A, beats «=(i,0) on C,, and hence
reciprocity kicks in, requiring A to host a profile that beats A, on that same coordinate. But A
includes none, because 3 shares the same value as A, on C,, namely zero. Any profile like A, will
thusbein D(f3) but not in D(A), even though 3 isamember of A. The same of course holdstrue for
the same reasons for any symmetric loser A, sharing the minimal C, coordinate value of «. Aswe
will show later, thisisafully general property: losersin L(A) sharing acoordinate valuev with some
membersof aprofile set A but not othersarenot in D(A) whenever visminimal acrossthe members
of A.
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(17) Profilesin D(A), with A={ ., B}

A1=<0k>® |
D(A)
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0O 2. 1

A second mismatch concerns the additional profiles defeated by A through non-vacuous
reciprocity, which are not necessarily defeated by any individual member. In the figure above, the
shaded region represents D(A) and includes all the profiles defeated by A={ «,[3}. The profilesin
the lower ‘interior’ box are not simply bounded by either « or 3, but only collectively by the two
profiles together through reciprocity. This region includes profiles such as(1,1), which beats « on
C,, and 3 on C,, and hence could not be simply bounded by either o or 3 alone. The interior thus
constitutes the profile contribution made by D(A) to the loser set L(A) that isnot already available
through the profiles simply bounded by the distinct members of A.

Some interesting properties of interiors already emerge from the above figure. First of all,
the coordinate valuesi and j of o and [ could be arbitrarily large and they would still defeat any
profilein theinterior, including (1,1). This because optimization selects the profiles with the least
violations according to thelexicographic order imposed by each constraint ranking. Evenwithi and
j set to 1000, optimization on the ranking C,>>C, selects profile 3 over any profilein the interior
because 3 is minimal on constraint C,, where it has zero violations. Symmetrically, optimization
over C,>>C, selects o because it posts zero violations on C,.

Furthermore, ganging together permits o and 3 to defeat profiles whose coordinate sumis
lower than theirs, making inroads toward the origin O=(0,0). This occurs because for every
coordinate C the only valuethat mattersisthe minimal one availablewithin A={ «, }. Any profile
with higher values will lose to the member of A with the minimal C-coordinate on any ranking
placing C highest. The profilesin the interior can have low coordinates across the board, yielding
an overall lower coordinate sum than their defeaters, but will crucially be always worse than some
defeater on any coordinate, as dictated by Reciprocity.

Note that although theinterior isfinitein this specific example, it need not be in the general
case. To seethis, we have to moveto V2 or higher spaces. Consider for example the bounding set
A={«, B}, where 0=(0,2,5), and p=(2,0,5). Any profile A=(1,1,5+i) with i>0 beats « on C, and [
on C,, and therefore it is simply bounded by neither o nor 3. Yet, it is defeated by A when o and
B cooperate viareciprocity, with A beaten by o on any ranking with C, highest, and by 3 on those
with C, highest . Profile A thus belongsto theinterior, and thisremainstrue whatever thevalue of i.
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Therefore the interior in this case contains infinitely many profiles.

The most important property concerns the entire set of defeated profiles D(A). This set
always alowsfor aminimal element with the least coordinate sum that turns out to simply bound
any other profilein D(A), andishenceforth called the* bounding minimum’ . Inthetwo-dimensional
case shown in figure (17) above, the bounding minimum is u”*=(1,1), and can be seen to simply
bound the whole of D(A).

We may now exploit bounding minima to reduce the set of defeated profiles D(A) to that
simply bounded by the bounding minimum of A, whichinturniscollectively defeated by A. Aswe
will see shortly, the coordinates of the bounding minimum follows straightforwardly from those of
themembersof A. Thisresult will in turn ease the computation of the overall loser set L(A), which
will match the union of all D(B) built from some subset B of A, with each D(B) easily computable
in terms of simple bounding via its corresponding 2. This will free us from the need to ever
compute the collective defeating relations based on reciprocity. For example, in the two-
dimensional case examined so far, the set L(A) coincides with the union of the profile set smply
bounded by u*, plus the sets simply bounded by the minima of the proper subsets of A, whichin
this case coincide with the sets of profiles ssimply bounded by « and . The loser set L(A) thus
coincides with the union of the three infinite regions originating at «, B, and u* shown below,
matching the entire shaded region in the figure below with the exclusion of « and 3.

(18) L(A) for A={a, B}

C2A
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3.4 Bounding Minima

Let us now examine the propertiesillustrated above from a more formal point of view, providing
the associated theorems and demonstrations.

We start considering an important partition induced on the set of coordinates by any profile
set A. For every coordinate, the membersof A may or may not share the same number of violations.
Therefore A induces apartition into asubset M* of ‘minimal’ coordinates containing those whose
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value is shared across al members of A and is therefore minimal in A, and the set R* of
‘reciprocity’ coordinatesformed by all other coordinates, i.e. those for which at least two members
of A disagreein their value. Incidentally, notethat if A isasingleton, all coordinatesarein M*, and
R* is necessarily empty. The definition of M* and R* is provided below.

(19) Def. Minimal and Reciprocity Coordinates. Let V be determined by a set of constraints X,
and let A be a set of profiles in V. Then the corresponding sets M* and R* of minimal and
reciprocity coordinates are respectively defined as (i) the set of coordinatesinV whereal members
of A are order-equivalent, and (ii) its complement.

(i) Minimal coordinates: MA={i:ieX, Va,BeA, a(i)=p(@)},
(ii) Reciprocity coordinates: RA=Z-MA={i:icXZ, ieM*"}.

We may now build the bounding minimum p* for aset A on the basis of M* and R*. The
minimum isthe profilewith minimal coordinate sum collectively defeated by the membersof A via
reciprocity,® and simply bounds any other profile defeated by A. Aswe will see shortly, this latter
property requires that p* shares any minimal coordinate value shared by all members of A on
M-coordinates, and any other minimal valueavailable acrossthe membersof A incremented by one
for R-coordinates. For example, if A consists of #=(0,7,5) and p=(4,2,5), then p* will share with
the members of A the five violations on C,, and post one more violation than the minimal value
available in A for C, and C,, yielding u* =(1,3,5). The coordinate values for the bounding
minimum are recorded in the definition below.*

(20) Def. Bounding Minimum. Let A be aset of profilesinV, and M* and R* the corresponding
coordinate partition. The corresponding bounding minimum p.* isthen defined as follows:

VieM? pA(i)=a(i) for any acA,
VieRA pt(i)=0,,,()+1, where «,,,€A and Vo' €A o ;,(1) <’ (i).

As mentioned, the virtue of p” isthat any profile A defeated by A other than p* itself is
guaranteed to be simply bounded by u”. This is proven in the following theorem, which also
clarifieswhy u* has the coordinates defined above. Intuitively, if a defeated profile A beats some
o in A on some R-coordinate i, then by reciprocity some other o’ in A must beat A oni. In
particular, if o, isthe member of A with the minimal value for i, then A(i) must be higher than
«,..(i), else reciprocity would be violated. The minimum p?, set to «,;,(i)+1, thus presents the
minimal possiblevalueon any R-coordinatei compatiblewith reciprocity, and thereforeno defeated

% The bounding minimum of aset A is collectively defeated but not always collectively bounded
by A. The set A isin fact guaranteed to meet reciprocity relative to p* but not strictness. See appendix A
for an example.

* From an order-theoretic perspective, profiles form alattice under the coordinate-wise order,
where a<p if and only if Vi, a(i)<p(i) and for somej, e.(j)<B(j). The bounding minimum p* can then be
defined in terms of the greatest lower bound of A, or meet of A, expressed as‘/AA’. In particular,
p*(@i)=AA(i) on M-coordinates, and u*(i)=1+/A(i) on all others.
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profile A can beat p” on thei™ coordinate . If on the other hand i is a shared M-coordinate, then any
defeated profilein D(A) cannot be lower than the shared o(i) value. Thiswould in fact once again
violate reciprocity because no other member of A could better A on i. Since p* shares the same
minimal vaue, no defeated A can beat u* on M-coordinates either, and therefore A is simply
bounded by p*.

The theorem also shows the reverse property: that any profile A bounded by p* is defeated
by A as well. This follows because A always satisfies reciprocity relative to u*, because the
minimum can beat a member of A only on R-coordinates, but on these coordinates some o, iS
always guaranteed to beat it. The same holdsfor any other A in D(u*), since by hypothesisthey are
simply bounded by p”*. Therefore A is defeated by A and thus belongs to D(A).

Thetheorem must however distinguish the caseswhere A isasingleton containing aunique
profile o from the others, because in the singleton case u* isidentical to « itself, and thus should
not be part of D(A), whereasin all other cases u” is collectively defeated by the members of A and
hence belongsto D(A).

(21) Thm. Bounding Minimum. Let A be any set of profilesinV, and let u* beits corresponding
bounding minimum, and A aprofilein V. Then A is defeated by A iff it is simply bounded by p*
or, when |A[>1, either it is simply bounded by p* or it coincides with it.

AlF1 D(A)=D(p")

AL D(A)=D(n*)u{p"}.

Pf. Let A be adefeating set for A and p* its bounding minimum.
If A={«}, then all coordinates are M-coordinates, therefore by definition of minimum p*=a. It
follows D(u*)=D(c)=D(A).
Let us now assume |A[>1.
- Let usfirst prove D(A)=D(u*)u{ n?}.

1.Let i bean M-coordinate shared acrossA. Then VaeA, A(i)> o (i)=p” (i), € sereciprocity would
require the existence of some «:’cA, such that o’ (i)<A(i), against the hypothesis that icM*.

2. Let i be anon-shared R-coordinate, and let «,,, be the member of A with the minimal value
fori.

2.1. Then A(i)>a,;,(i), else sincei is not shared there would necessarily exist some ceA
such that A(i)<o,,;,()<a(i), and then by reciprocity some o'ceA, such that o'(i)<A(i)<w(i),
contradicting the hypothesis that o,,;,,(i) isminimal across A.

2.2. It followsthat A(i)>p”(i), because p(i)=c.;,(i)+1 is the lowest available value above
OCmin(i)'

3. Since M* and R* partition the set of coordinates, it followsthat Vi, A(i)>pA(i).

4. Either A=p?, or 3j, A(j)>pA(j) and therefore AcD(u”), proving D(A)=D(pu*)u{ p?}.
- Let us now show D(u*)u{ "} <D(A).

1. Let AeD(u*)u{ "}, then by the defeating singleton lemma, Vi A(i)>pA(i).

2. Let i be an M-coordinate shared across A. Then, by the definitions of u* and of M-coordinate
and by point 1, VaecA «(i)<A(i), and therefore reciprocity is vacuoudly satisfied on i.

3. Let i be anon-shared R-coordinate, and let «,;,, be the member of A with the minimal value
fori.
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3.1. Then, by 1 and by definition of p?, o, (i)<u”(i)<A(i) and therefore reciprocity is
satisfied on i because o, will rescue any profile & where A(i)<a(i).
4. Since no other coordinates are given, and A satisfiesreciprocity on A, it follows AeD(A), and
hence D(u*)u{p*}cD(A). [

Asaconcrete example, consider athree-dimensional casewhereaprofile A=(1,4,5) sharing
with o and [ the C,-vaue is nevertheless collectively bounded by «=(0,7,5) and f=(4,2,5) via
reciprocity on C, and C,, with « beating A on C, and  on C,. The minimum p*=(1,3,5) simply
bounds A, because it beats it on C, and equalsit on C, and C,. Furthermore no arbitrary defeated
profile A can beat the minimum on any coordinate. For example, A cannot be lower than 5 on C,,
because then reciprocity would require some member of A to have avalue lower than 5 on C;, but
A contains no such profile. For the same reason, A cannot be lower than 1 on C,, since reciprocity
would again require some member of A to beat A on this coordinate, and none is available. The
arbitrary bounded profile A thus has as lower bounds on each coordinate precisely the coordinate
values assigned to u*, which therefore simply bounds it.

4. Reducing Defeating to Simple Bounding

Wenow proceed to our first maingoal, i.e. characterizing L(A) intermsof simple bounding
alone. Thisresultisstraightforward asan abstract property of profile sets, whileit givesriseto some
interesting issues and solutions when we try to use it to provide an agorithm determining L(A).

4.1 Subset Driven Reduction

Theloser set L(A) can be completely computed in terms of simple bounding by therelevant
bounding minima. By the bounding theorem, every loser in L(A) must be bounded by some subset
B of A, and since every bounding set is also a defeating set, it must be simply bounded by the
corresponding minimum u®, or possibly coincide with it when B is not asingleton. In either case,
theloser isin D(B), and the union of all D(B) associated with all possible subsets of A will match
L(A). The theorem and its proof are provided below.

(22) Thm. L-Decomposition. Let A be a profile set in the space V determined by the constraint
coordinate set ¥ and A aprofilein L(A), then A iseither defeated by or identical to some bounding
minimum p® for some B in A.

L(A) = Ug_a D(B) = [Ug_n D(®)] U [Ugea, |B|>1{|J’B}]'

Pf. Let AbeanysetinV,and A aprofileinL(A). By theloser set lemmaL(A) = ug_, D(B) with
B+@ by definition of defeating set. Thereductiontotheexpression‘[Ug_, D(°)] U [Ug_a gpa { K}
then follows by replacing each D(B) with its equival ent decomposition spelled out in the bounding
minimum theorem. [
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The above theorem presents two important properties and one drawback.

The most important property is this: whether a profile is turned into a loser by a set A
reduces to testing whether it is simply bounded by some bounding minimum, the coordinates of
which we can derive as soon aswe know A. Therelated drawback isthat each bounding minimum
isassociated to asubset of A, and thusL(A) in principlerequires computing 2*! minima. Aswewill
see in the next section, this inherent complexity can be brought down considerably once other
properties of minima are exploited.

The second positive property of the above reduction is its independence from the
winner/loser status of the members of A, which was aways left undetermined and unconstrained.
In particular, the set could contain profiles which are themselveslosersin A, i.e. defeated by some
proper subset of A, and yet the above theorem would still include them in L(A), while properly
excluding all those profilesthat are winnersin A, i.e. cannot be defeated by any of its subsets.

Consider for example the set A={a, B, A,, A,} with a=(2,6), B=(6,2), A,=p*(3,3), and
A,=(2,7). Note that the profiles A, and A, are defeated by the subset B={ «, 3). L€t us now compute
L(A) through theformulain thetheorem on L-decomposition. Profile A, would beincluded because
it coincides with u®, which is part of D(A), and therefore L(A), whenever A is not a singleton.
Likewise, A, would enter L(A) becauseit is simply bounded by «, and thusit isincluded in D(p.?)
when B={ «}, in which case u® coincides with « itself. The profiles « and {3, on the other hand,
would never enter L(A). They infact are not bounded by any .2, and they coincide with aminimum
only when they form their own singleton, but minima are not part of L(A) when B isasingleton,
see the bounding minimum theorem. The formulathus properly discriminates between losers and
winners within the original set A. Thisresult is recorded in the corollary below.

(23) Corollary. Losersin A. Let A be aprofile set in the space V, and A aprofilein A, then A
belongsto L(A) iff A isdefeated by some non-empty subset of A.

VAEA, [ AEL(A) = JA'cA, A'+@, A'c A].

Pf. (=) Let SSA-{ A}, then by the bounding theorem 3A’ <ScA, A’#@, and A’ abounding set
for {A}. Then by the defeating bounding lemma A’ is a defeating set for A , hence A'c A.

(=) Let AcA and JA’ cA, A'#@, A'c A. Then by the defeating bounding lemma A’ includes
some non-empty set B constituting abounding set for A, and since BcA'cA it followsAeL(A). [

4.2 Complexity of Bounding Reduction

How many bounding minima are needed to completely characterize the loser set L(A) in
terms of simple bounding alone? Excluding the null set, a set A contains 2"- 1 subsets, each
determining its corresponding minimum. While this is a finite figure, and hence better than
attempting to list the infinite set of losers one by one, it grows exponentially with the size of A,
yielding, for example, 1,048,575 minimafor asimple set of 20 profiles.

Most of these minima, however, are copies or smply bound each other, and hence are not
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really necessary. Consider for example the set A={(1,1,2),, (3,6,1);, (6,3,1),} . Although these are
all winner profiles, the minimum for B={ e, B} isidentical tothat for B'={ a, y}, namely u=(2,2,2),
which is also the bounding minimum for the superset A. The reason is that in both cases, o
determinesthefirst and second coordinates of thethree minima, becauseitisminimal in A for these
two coordinates, while 3 and y only determine the value for the third one. on which they coincide.

Obvioudly, we are only interested in the minimawhich are necessary to compute L(A). We
may begin to exclude unnecessary minima by noticing that for any set A, the only subsets worth
considering are those whose minimum is not already bounded by the minimum of A, i.e. those
whose minimum besats the minimum for the entire A on at least one coordinate. The following
theorem shows that this may occur if and only if on some R-coordinate of A al members of the
subset coincide with the minimal value in A for that coordinate, giving us atool to identify the
relevant subsets.

(24) Thm. Relevant Minima. Let A be a profile set in the space V, and B a subset of A. Then p®
isnot harmonically bounded by u* iff thereisacoordinatei in R* (hence not shared by the members
of A) whichisalsoin M® (hence shared by all members of B) such that for any member 3 of B, (i)
isminimal in A, (and hence pB(i)=P(i)=c;(i)).

VA,BeV, BcA [pBeD(RA)u{p?} < Ji, ieR?, ieMB, VBeB, B(i)= o, (i) ]

Pf. (=) By hypothesis: VA,BeV, BcA uPeD(pu*)u{u”}. By the defeating singleton lemma:
3i, pP(i)<p”().
1. ThenieR*. Assume thiswere not the case and icM*. Then by definition of minimum and M#
it follows that
VaeA, 3PeB, Bi)<pB@i)<u(i)=a(),
hence VaeA, BB, B(i)<a(i), which is contradictory because by definition of M” B(i)=c(i).
2. Moreover, icMB. Assume this were not the case and icR®. Then by definition of minimum:
EIOcmine'b" EIBminEB’ Bmin(i)-l_l:p*B(i)<MA(i):O‘min(i)+1'
It follows that
EIOcmine'b" EIBminEB’ Bmin(i)<(xmin(i)’
which is contradictory because BcA, and hence «.,;,, isminima oni in B aswell.
3. SinceicM®, and icR*, by definition of minimum and of M- and R-coordinates, it follows for
i that
EIOcmine'b" VBEB’ B(i):HB(i)<p‘A(i):O‘min(i)+1’
which holdsif and only if VBeB, B(i)=c,,.(i) because «,;,isminimal oniin B aswell.
(=) By hypothesis,
VA,BeV, BcA, Ji, ieR", ieM®, VBeB, B(i)=c,;(i).
By definition of minimum and of M- and R- coordinate it follows that
E'i, EIOcmine'b" VBEB’ IJB(|): B(i)<‘xmin(i)+1:|J'A(i)
and therefore that 3i, u8(i)<u”(i) and hence u¢D(PA)u{pr}. O

A useful corollary followsby replacing the minimawith the corresponding subsets, showing
that the only relevant subsets for defeating those losers not yet defeated by A are those that share
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among their members some coordinate value minimal across A. Intuitively, if asubset B defeats
some more additional losers than A, then its minimum cannot be defeated by the minimum of A,
else by transitivity of bounding anything bounded by it would a so be bounded by the minimum for
A. This condition meets the condition for the relevant minima theorem above, forcing B to share
some minimal coordinate value from A.

The reverse entailment holds too, but only in multidimensional violation spaces, telling us
that any subset sharing some minimal value of its superset will defeat some additional profiles not
defeated by the superset. The demonstration istrivial, as any subset B with minimal value minin
A for some coordinatei will defeat any profile equally minimal oni and non-minimal on any other
coordinate. This profile is not defeated by A, whose bounding minimum is necessarily equal to
min+ 1 on coordinatei.

One-dimensional spaces consisting of a single coordinate i, on the other hand, allow for
degenerate caseswhere onemember o of the superset necessarily simply boundsthe other members.
The subset B then collects ¢ asits unique el ement. Asaconsequence, the minimum p* for theentire
set is one violation away from p®, with p*(i)=p8(i)+1, where u8(i)=c.,,(i). The minimum u® thus
remains undefeated by u”, as required by the theorem on relevant minima, but D(B) becomes
identical to D(A) because of the different definitions of D(S) for asingleton and anon-singleton set
S. For example, let A={(1), (3)} and B={(1)}. By the bounding minimum theorem the set D(A) is
equivalent to D(u*)u{ u”}, and since p*=2 it includes any A>2. Since B is a singleton, D(B) is
equal to D(u®) alone, and since p®=1, it includes all profiles A>1. The two sets thus coincide, and
hence B adds no new defeated profiles. The relevant minima theorem however remains valid,
because u® isnot in D(u”).

(25) Corollary. Relevant Subsets. Let A beaprofile setinthe spaceV, and B asubset of A. Then
the set of profiles defeated by B isnot a subset of those defeated by A only if there is a coordinate
i in R* and M® such that for any member  of B, (i) isminimal in A. When X has two or more
coordinates, the reverse entailment holds as well.

(=) VA,BeV,BcA [D(B)zD(A) = Ji,ieR?, ieM®, VBeB, B(i)= e,(i) ]
(<) VI, [ZP1 VA,BeV, BcA [ D(B)eD(A) « Ji,ieR?, ieM®, VBeB, B(i)= e,.(i) ]

Pf. (=) By hypothesis, 3 AcD(B) and A¢D(A). Hence B#A, and since B is a defeating set and
hence non-empty by definition, and in addition B<A, it follows |A[>1.
1. By the bounding minimum theorem applied to sets A and B, AcD(u®) and A¢D(p*)u{ u*}.
2. It followsthat B¢ D(pu*)u{ n”}, because otherwise by bounding transitivity D(u®)<D(u*), and
therefore A eD(u*) contrary to 1.
3. From uB¢D(u)u{ u”}, by relevant minima, it followsthat 3i, ieR?, ieM®, VBeB, B(i)= ttyy(i).
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(<) By hypothesis, Ji, ieR?, ieMB, VBeB, B(i)= a;,(i). Let B={a,;.} .
1. By definition of bounding minimum it holds that u*(i)=0c;,(i)+1 and p2(i)=c,;(i).
2. Consider any profile A such that A(i)=a,,(i) and Vj#i A(j)>a,,,(j)- Obviously AcD(B).
Note that j exists, because by hypothesis |X|>1, and therefore A exists too.
3. Since a,,;,(i)= A®)<p”(i)=c,,,()+1, it follows that A¢D(u*)u{p*}=D(A), and therefore
A¢D(A). O

The theorem and its corollary provide a powerful tool to examine how many minima are
necessary to compute L(A). Since only subsets sharing some minimal coordinate matter, we may
construct them in a systematic fashion, finding for every coordinate i the minimal value a.,,(i) in
A and then checking the subsets sharing thisminimal value acrossits members. Consider again the
case where A={(1,1,3),, (3,6,1);, (6,3,1),} with p*=(2,2,2). According to the corollary, the sets
B,={(1,1,3),, (3,6,1)3} and B,={« (1,1,3),, (6,3,1),} areirrelevant, because their members do not
share any minimal value for A. These are indeed two sets whose bounding minima u®* and p®?
coincide with the minimum u”=(2,2,2), and hence cannot defeat any additional profiles. The only
relevant non-singleton setisB={(3,6,1);, (6,3,1), }, which sharestheminimal value*'1’ onthethird
coordinate C,. The corresponding minimum, u®=(4,4,1) is not bounded by p* and addsto L(A) all
the profilescollectively bounded by  and y that share their minimal value on C,, and hence are not
defeated by A because reciprocity could not be satisfied on C.,.

Singletons can berelevant subsetsaswell. Profilea=(1,1,3), for example, poststhe minimal
values for C, and C,, and thus forms a relevant subset. Its relevance is easily assessed once one
considersthat o simply boundsinfinitely many losers of thekind A=(1, 1+i, 3+k), withi,k>0, none
of which are bounded by p*=(2,2,2) which istoo high on C,.

The corollary also hasanimportant recursive aspect: it can be applied again to each relevant
subset. For example, let A={(0,1,1,3),, (0,3,6,1), (0,6,3,1), (9,9,9,0);}. A first relevant subset is
B={(0,1,1,3),, (0,3,6,1)3, (0,6,3,1),} whichisminimal on C,. The minimum u?=(0,2,2,2) ensures
that |osers sharing the same minimal value on C, will be bounded. We may now apply the corollary
again to this subset, and notice that within B, the subset C={(0,3,6,1);, (0,6,3,1),} forms an
additional relevant subset sharing two minimal coordinate valuesfor the superset B, namely C, and
C,, and yielding the minimum u=(0,4,4,1), which will collectively bound those |osers posting the
same minimal valueson C, and C,. For example, theloser 1=(0,5,5,1) isbounded by ¢, but neither
by uf=(0,2,2,2) nor p*=(1,2,2,1).

It follows that we may systematically seek relevant subsets by applying the corollary
recursively. Let A beaset of profilein VM. At level zero, we build all the N largest subsets sharing
the first, or second, or third, ..., or n™ coordinate value minimal in A. For each discovered subset
S, werepest the procedurefixing one of the n-1 coordinates not yet fixed, creating further relevant
subsets. The procedure applies recursively until all coordinates are fixed and all subsets are
singletons formed by the single profiles. By the above theorem and corollary, every new subset so
discovered is relevant, adding new defeated profiles to L(A) via ssmple bounding by the
corresponding bounding minimum. Consider for example once again A={(0,1,1,3),, (0,3,6,1);,
(0,6,3,1), (9,9,9,0),} . The computation of the subsets proceeds as shownin thefigurebelow. When
arelevant subset contains only one profile, no further branching occurs, because all coordinates of
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asingleton are shared, albeit only vacuously so, therefore they are not R-coordinates and no new
relevant subset can be built.

Thetree starts at level 0, where no coordinate is yet fixed; thisisthe root node of the tree,
and the associated subset is the entire A, with p*=(1,2,2,1). The maximal subsets sharing one
minimal coordinate yield the four subsets shown at level 1. The only non-singleton subset occurs
when minimizing C,, allowing for further subset searches. All other subsets contain only one
profile: the corresponding p isidentical to the candidate, and no further search is conducted. Note
that the same profile may occur in multiple branches of the tree: this happens whenever a profile
contains more than one minimal coordinate for some of its supersets. For example, ®=(0,1,1,3) is
minimal on C;, C,, and C; in A, and again on C, and C, on the leftmost level-1 subset.
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(26) Recursive tree of relevant subsets:

Level 0
Shared coord: 0

Level 1 0 I __ ___0
Shared coord: 1
0113 0113 0113 9990
0361
0631 p=0113 p=0113 p=9990
p=0222
o1 __ 0 1_ 0 1
Level 2
, 0113 0113 0361
Shared coord: 2 0631
p=0113 pu=0113
p=0441

Level 3 03 1 0 31
Shared coord: 3 0361 0631
u=0361 u=0631

In the following, we formalize the procedure for building relevant subsets by first defining
the tree of relevant subsets T(A) for aprofile set A, and then demonstrating how the setsin T(A)
are sufficient to defeat any loser in L(A). We will then use the tree to establish an upper bound on
the number of minima required to compute L(A). A priori, this would seem to be as high as the
number of available subsets, i.e. 2~ 1 for any set of size K. But not all subsets are relevant and
when this factor is taken into account the final number is considerably lower. For example, the
examplein the abovefigure requires only seven distinct subsets—and hence only seven minima—
to simply bound any loser in L(A), rather than the fifteen suggested by the number of possible non-
empty subsets .

The tree of relevant subsets T(A) for a profile set A is defined recursively level by level

starting from level 0. First we defined a minimal-coordinate subset relative to some profile set A
and coordinate ¢ as the subset ‘c(A)’ of profiles posting the minimal value available in A for
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coordinate c. This definition permits us to track which coordinates get recursively fixed. For
example, in the above case, the four subsetsfor level 1 would be characterized as 1(A), 2(A), 3(A),
and 4(A), asin figure (30) below. The first subset shown for level 2 would be 2(1(A). This aso
records at once for each subset which coordinates have already been fixed and in what order. The
order is crucial, because each relevant subset is only sensitive to the minimal coordinates of its
immediate superset. For example, 4(1(A)) fixesas minimal for the fourth coordinate the value‘1’,
i.e.theminimal valueavailablein 1(A), rather thanthevalue‘0’ availableon A. In contrast, 1(4(A)),
withthereverse order, doesnot correspond to any relevant set, because 4(A) fixesthe 4" coordinate
to ‘0’ forming the singleton subset containing (9,9,9,0).

(27) Def. Min-coordinate Subset. Let A be a profile set, and ¢ a coordinate in the set of
coordinates X, then the subset ‘c(A)’ with minimal coordinate c relative to A is defined as the set
of profilesin A with minimal c-coordinate across A.

C(A)={a:aeA, Va'eA, a(c)<a’(c)}

As an auxiliary tool, we define the set Fixed(A) which returns the set of coordinates that
have aready been fixed for some minimal-coordinate subset A. Thiswill help us prevent fixing
again a coordinate that has already been fixed.

(28) Def. Fixed Coordinates. Let B be arecursively determined min-coordinate set of the form
B=c,(..(c,(A)), then the set Fixed of fixed coordinates for B includes all the fixed coordinates ¢
determining B.

B=c,(..(c,(A))) = Fixed(B)={c,,..,C;}

We may now introduce the definition of T(A), which collects together all the relevant
subsets determined by each level of the tree. Thefirst level, L, contains the initial set of profiles
A, where no minimal coordinate value has been fixed yet. Then, any successive level L; is defined
in terms of the immediately precedent level L, , as collecting any new subset that can be formed
fromthosein L, by fixing aminimal value among one not yet minimal R-coordinate. Note that as
soon asasingleton isformed, no further subsets are sought, because all coordinates become shared
M-coordinates.

(29) Def. T(A). Let X be the set of constraints determining the coordinates of V, and A a set of
profilesin V. Then the tree of relevant subsets is built level by level according to the following
recursive steps, with each level L, collecting all the relevant subsets determined on the basis of the
immediate preceding level. The tree of relevant minimal subsets T(A) for A isthen defined asthe
union of all levels.

T(A) =y, L;, where each L, is defined as follows:
Step O: L={A}.
Stepi: L={B :B=c(B’), B’cL, ,, ccR®, ceX, c¢Fixed(B)}.
The example considered above is reexamined in the figure below with the corresponding subsets
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and levels used in the above definitions.
(30) Recursive tree of relevant subsets:

T(A)={A, 1(A), 2(A), 3(A), 4(A), 3(1(A)), 3(1(A)), 4(L(A)), 2(4(1(A))), 3(4(L(AN}

0113 p=1221
Li={Aj 0361
0631
9990
Li={1(A), 2(A), 3(A), 4A)}  1(A) 2(A) 3(A) 4(A)
0113 0113 0113 9990
0361
0631 u=0113 u=0113 1=9990
B=0222
2(1(A)) 3(1(A)) 4(1(A))
L={3(1(A)),
3(1(A)),1 0113 0113 82?}
HIAY;] u=0113 u=0113
u=0441
L=(204(1(A). 341 AN} 0d@y - el
0361 0631
u=0361 u=0631

We now need to demonstrate that the relevant subsets in T(A) are sufficient to compute
L(A). That each profile defeated by some set in T(A) isaloser in L(A) follows trivially from the
L-decomposition theorem (22) on p. 15, because L(A) collects any profile defeated by any subset
of A. Any loser in L(A) is defeated by some subset in T(A): thisfollows from the relevant subsets
corollary in (25) above applied recursively to the setsin T(A): by L-decomposition, each loser is
defeated by some subset B, and by the corollary the members of B must share some value minimal
in A. The subsets of level L, within T(A) are the largest possible subsets satisfying this condition,
therefore B is either one of them, proving the theorem, or it isasubset of one of them. In thislatter
case the same reasoning applies again, level by level in arecursive fashion. We are guaranteed to
discover B, because each application reduces the size of the sets being considered eventually
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reaching thesingletonsin T(A). For B to differ fromall setsin T(A) isnot possible, asthe corollary
on relevant minimaforcesit to be asubset of somesetin T(A), and oncethe singletonsin T(A) are
reached the only additional possible subset isthe empty set, but this contradicts L-decomposition,
which requires B to be non-empty.

A possible cause of confusion arises from the fact that aloser in L(A) could be defeated by
some set B’ not in T(A) whose members do not share any coordinate value. A loser, however, can
be defeated by many distinct sets, and the theorem simply asserts that one of these setsis certainly
in T(A), and thisis the subset which the demonstration focuses on.

(31) Thm. Sufficiency of T(A). Let A be a set of profiles and T(A) its corresponding tree of
relevant subsets. Then aprofile A isaloserin L(A) if and only if it is defeated by some subset B in
T(A) (i.eiff A issimply bounded by u® for some subset B in T(A) or even coincides with it if
B|>1).

AeL(A) = IBeT(A), BcA.

Pf. (<) By hypothesis, IB€T(A), B=A. By definition of T(A), BcA and B#@. By
L-decomposition, AeL(A).
(=) Let AeL(A) and let L; be determined according to the definition for T(A).

1.By L-decomposition 3BcA, B#@, BA. Since T(A)=y; L,, al we need to show isJi, BEL,.

2. Weassumethisisfase, i.e. 4i, BeL,, and derive a contradiction.

3. Aswe show in 3.1 and 3.2 below by induction on L,, it holds: VL,, 3B’¢eL,,,, BcB'.

3.1Consider L,={ A}. By hypothesisAr A, else B=A against 2. By thecorollary on relevant
subsets, B sharesaminimal value .,,; (i) on some coordinatei in R*. Therefore, by definition of L,
dB’eL,, BcB’, and since by 2 above B¢L 4, it holds IB’eL,, BcB’, proving the property for i=0.

3.2 Let the property hold for L; and let usderiveit for L,,,. Becauseit holds of L,, it follows
3SeL,;, BeS and also SrA, else B=S against 2. By the corollary on relevant subsets, B shares a
minimal value o,,,(i) for 0.,,6S on some coordinate i in R®. Therefore, by definition of L,
JB’cL,,,, BcB’, and since by 2 above B¢L,,, itholds3B’eL,,;, BeB'.

4. Each subset Sin L, isaproper subset of someset S’ in L, because by definition of T(A) the
coordinate whose value o,,,,(i) is shared across S must bein R®, and therefore 3o€S’ a(i)>0,,,(1)-
It followsthat VSeL,,, 3S'eL; |S<|S'|.

5. Let max be the highest level in T(A). By 4 level max is defined and finite because |A|isfinite.
Then by 3, 3B’¢cL ..., BcB’, contradicting the hypothesisthat maxismaximal.  [J

5. Preliminary Observations on the Complexity of Bounding Reduction

A bounding minimum is necessary when it is not defeated by some other setin T(A). Here
we examinethefollowing question: given aset of winner-profilesA of sizeK, how many necessary
minimaare therein the corresponding T(A)? For simplicity, we assume throughout that A consists
of winners only. More general sets should be reducible to this case via ssmple bounding, and via
their bounding minima, whose definition makes no similar assumption about the original set. Also
recall in thefollowing discussion that the members of A arethemselvesrelevant bounding minima,
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and hence eventually contribute to the total number of minima.

Thefirst section examinesthe conditionsfor necessary minima. The next considers how the
number of dimensionsrelative to the size of aset affectsthe availability of necessary minima. The
last one presents some interesting cases, either because they maximize coordinate sharing, or
because they minimize it.

5.1 Conditions on Necessary Minima:

The bounding minimum for a set A is necessary only if required to defeat via simple
bounding at least one profile not defeated by any of the relevant subsets of A, asin the definition
below.

(32) Def. Necessary Minima. Let A be aset of profiles corresponding to some nodein T(A), and
B one of the relevant subsetsfor A in T(A). Then p” isnecessary if and only if it is not defeated by
any of its relevant subsets.

u? is necessary < VBcA, BET(A), Brp®.

Not all minima of the relevant subsets composing T(A) are necessary, because some are
simply bounded by others. The subset-superset relation between anodein T(A) and its daughters
doesnot entail necessity. If wereplace each nodewith the u for the corresponding set, we can easily
build examples where the p of one node is necessary even though the p’s of al its daughters are
bounded by some daughter of their own, asin case (a) below, or vice versawhere the . of a node
is unnecessary even though the minima of all its daughters are necessary, asin (b) below.

(33) Necessary p's.

a) [ (necessary) b) p (unnecessary)

M B B M (unnecessary) M B B M (necessary)

An example of case (b) occurs for S={(8,2,2), (2,8,2), (2,2,8)}. The minimum p.5=(3,3,3)
is bounded by the minimum of any pair of members, e.g. B={(2,8,2), (2,2,8)} with minimum
u8=(2,3,3), simple bounds p.°. Note that u® isitself necessary, asit is not bounded by any of the
members of B. The sameistrue for any other pair of members of S.

Case (a) is more complex, and has the above example as a component. Consider set A
bel ow. Each column groupstogether the profileswith the sameminimal coordinate, thusidentifying
the 4 relevant subsets B,=1(A), B,=2(A), B;=3(A), and B,=4(A). Note how on any unshared

25



coordinate each subset has the same structure as the set S from the previous example. The
corresponding minima, given below, are thus bounded by their daughter subsets in T(A), each
including two of their members. For example, pu®=(0,3,3,3) is bounded by u°©=(0,2,3,3)
corresponding to the subset C={(0,2,8,2), (0,2,2,8)} of B1. Nevertheless, evenif al minimafor the
subsets B,-B, are bounded, the global minimum p*=(1,1,1,1) isnot, nor isit defeated by any other
minimum among A’ s relevant subsets.

(34) B, B, Bs B,
A={ (08,22, (8022, (8202, (8220,
(0,2,82), (20872, (2802, (2820,
0228), (2028, (2208, (22801}

p=(1,1,1,1)  p*»=(0333  u¥=38033  u¥=(3303 p*=3330)

The conditions determining whether the minimum of a profile set A is unnecessary because
defeated by some relevant subset B, depends on the size of B. When B is not a singleton, it is
sufficient that u* islower than p® on some coordinate. Thisin turn translates into a condition on
the minimal values available in A and B, according to the lemma below.

(35) Lemma. Necessary Minimal. Let A beaset of profiles corresponding to somenodein T(A),
and B anon-singleton relevant subset for A in T(A). Then u* isnot defeated by B if and only if the
following condition holds.

VBCcA, BET(A), Brp? < [ Ji, ieMB, o, ()+1<P,;(i) ] OR
[ E“’ iERB’ o‘min(i)<ﬁmin(i) ]

Pf. (<) Notethati¢M?*, otherwise e, (i)=P.(i) contrary to hypothesis. Therefore, by definition
of minimum, p*(i)=0,,,(i)+1.

1. Assume only the first digunct holds. Then pB(3i)=p,,,(i), and p*()=0ct;,(1)+1<P i, (1)=R2().
Hence By-p”.

2. Assume the second disjunct hold. Then p®(i)=p,,;,(i)+1 and u*(i)=0ct, (i) +1<P,()+1=p2().
It follows that Br-p.”.

(=) Since |BJ>1, by hypothesis and by the bounding minimum theorem p*¢D(u?) u{nB}.

1. By definition of defeating set for singletons, it follows 3i, u*(i)<p®(i).

2. Note that i¢M*, because in this case the minimal value o, (i) is shared across both sets
because B isasubset of A, yielding o,;.())=B,;,(i), and therefore p*(i)=c,,,(i)=p2(i) against 1.

3. ThereforeieR* and by definition of minimum p”(i)=c,,,(i)+1.

4. 1f ieMB, then o, (1) +1=p" (i) <uB(i)=P,,(i), and therefore o, (i) +1<P,,(i).° Otherwise ieR®,
and hence ot(i)+1=p"())<p?(1)=B (i) +1, and therefore o (i)<Ppin(). O

> An example where this condition appliesisthe following: A={(0,2,4,6), (0,2,6,4), (7,1,5,5)}.
Then p*=(1,2,5,5), bounded by n®=(0,2,5,5) for B={(0,2,4,6), (0,2,6,4)}. The minimal valuefor A is
lower than that for B on the second coordinate, but e,,,(i)+1 is not, making bounding possible.
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When the relevant subset B is a singleton, D(B) no longer includes pB. In this case, p” isa
necessary minimum even if it coincides with p2, because p* is defeated by A, and thus crucially
addsto L(A) aprofilewhichwould otherwiseincorrectly escape |l oser status. Note that in singleton
sets, there only are M-coordinates, and hence the second condition in the above lemma cannot

apply.

(36) Lemma. Necessary Minimall. Let A beaset of profilescorresponding to somenodein T(A),
and B a singleton relevant subset for A in T(A). Then p* is not defeated by B if and only if the
following condition holds.
VBcA, BET(A), Bru” < [ i, ieR, o,,(1)+1<p,,,(i) ] OR
[ VI’ iERA, Ocmin(i)-l_l:Bmin(i) ]

Pf. By hypothesis on B, Vi, u8(i)=P,(i).
(<) Assume only the first disjunct holds. Then pA(i)=c;,(i)+1. Therefore u*(i)<pB(i).
Hence Brp”. Assume the second disjunct holds. Then p*(i)=a.;.(i)+1=P,,.(i)= uB(@i). Therefore
nA=pB. Hence B+p”, because by the bounding minimum theorem singletons do not defeat their own
minima.
(=) By hypothesis and by the bounding minimum theorem, p*¢D(u.?).
1. By definition of defeating set for singletons, either i, p*(i)<p®(i) or Vi, pA(i)=p2().
2. Assume the first digunct from 1 holds, i.e. 3Ji, p*(@i)<u®(@). Then i¢M?, edse
W) =tin(1)=Brmin(i)=p°(i) ag@inst hypothesis. Thereforei e R". Hence (i) =ty (i)+1<Bryn(i)=p>().
3. Now assume the second disunct from 1 holds, i.e. Vi, u*(i)=p®(@). Then, Vi, ieR",
o (1)+1=P,;.(i), and by definition of minimum, Vi, ieR?, uA()=c,;()+1=P . ()=p8G). O

5.2 Dimensions of the Violation Space

Canthenumber of dimensionsof the space V" affect the number of necessary minimaneeded
for aprofile set A of size K? While we do not yet have an exhaustive answer for this question, we
show that the worst case scenario, where all 2¢-1 non-empty subsets of A constitute subsets with
necessary minima, isimpossible whenever K>N, whileit becomes possible at |east in some cases
if K<N. The three possible relations of K to N are examined here below.

¢ K>N

Under these circumstances, the worst scenario is not possible..The result follows from a simple
calculation over the number of relevant setsin T(A) required to accommodate the 2¢- 1 subsets of
A. Thetree T(A) may at most identify N relevant subsets of sizeK -1, onefor each dimension (see
the definition of T(A) on p. 21 above). However, there are K subsets of size K-1in A. Therefore,
there simply are not enough relevant sets of the appropriate sizein T(A) for the possible sets of the
same sizein the power set P(A). It follows that one or more setsin P(A) are necessarily irrelevant,
since we know from the theorem on the sufficiency of T(A), on page 23, that its subsets and
corresponding minima are sufficient to determine all losersin L(A).
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4 K=N
If K=N, theworst case scenarioisequally impossible. Forming K subsetsof sizeK -1 requireseach
member of A to occur in K- 1 of these subsets. Thisentailsthat on each coordinate, K-1 members
of A sharethe minimal valuefor A, elsethey could not be part of the corresponding relevant sets.
This must hold on all K distinct coordinates, yielding K distinct subsets. But thisis possible only
if the original set A has the shape shown below, where each m is the global minimal value on the
i coordinate, and each V; is non-minimal.

(37) A={ m, m, ms;, .. M.V, ),
m, m, mg, .. V,.,M ),
( m, m, mg, .. mM_,M ),

< ml! m2’ V3! e mkfl’ mk >k72’

< ml! VZ’ m3! Ty mkfl’ mk >kfl’

< Vl: mza m31 e mk—l’ mk >k }

The minimum for A will then be p*=(m,+1, m+1, my+1, ..., m,_,+1, m+1), and will be defeated
by each of the K subset at issue here. The subset for coordinate i will in fact shareswith p* al but
the minimal value m, and thus bound p.”.

For example, theminimumfor 1(A) isp*®=(m,, m,+1, my+1, ..., m_,+1, m+1), and bounds
u”. At least one p, that for A, is thus unnecessary, showing that the worst scenario is not possible
for K=N.

4 K<N.

The worst case scenario becomes possible when K<N. What has been said about the layout for the
K=N case, remainstrue heretoo. Thereforethereare K coordinateson each of which K-1 members
of A share aminimal value for A. However, the remaining coordinates may host non-minimal
valuesthat ensure that the corresponding minimado not bound each other nor the global minimum
for A. An example follows below for N=8 and K=4. To ease comparisons, global minimal values
are underlined in the minimafor non-singleton relevant subsets, and high values that prevent the
minimum to bound other minima are bolded. The 2*-1=15 minima never bound each other.
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(38) Worst Case: A={ «, B, v, 0}

« = 1 3 5 9 8 8 8 5 = (e

B = 1 3 9 7 7 7 5 7 ST ()

y = 1 9 5 7 9 5 7 8 = uy)

5 = 9 3 5 7 5 9 9 9 = uO)
2 4 6 8 6 6 6 6 = p
1 4 6 8 8 6 6 6 = p{e B, v})
2 3 6 8 6 8 6 6 = p{o, B o))
2 4 5 8 6 6 8 6 = p{a vy, 8))
2 4 6 7 6 6 6 8 = w({B, v, d})
1 3 6 8 8 8 6 6 = K« p})
1 4 5 8 9 6 8 6 = (o}
1 4 6 7 8 6 6 8 = w({B. v})
2 3 6 71 6 8 6 8 = u({B. %}
2 4 5 71 6 6 8 9 = k(v. o}
2 3 5 8 6 9 9 6 = p{e d})

5.3 Some Interesting Casesof T(A)

Here we consider two possible arrangements of T(A), the first guarantees necessity of all
minima in the tree (i.e. corresponding to the relevant subsets in the tree), while the second
maximizes coordinate sharing among the profiles. Aswe will see, both cases require less minima
than the worst case scenario examined above.

T(A) with only necessary minima: When the daughters of any set in T(A) partition the set, then
every nodein T(A) yields anecessary . In this case, every set of profilesin the tree will have the
shape shown below, with no profile ever hosting two minimal coordinate values across the set.
When building the next layer of T(A), only the profiles sharingaminimal valuemwill be selected,
with empty intersection between the various subsets.
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39 Ss{ (m,V, .. V), (Vymy .., V), ..., Vi, Vs, ymy)
(m, V', ..., V'), Vom, ..V, .., V', ,V,.,m)
........... }

The minimum for the entire set is p°=(m,+1, m,+1, ..., m_+1), and it cannot bound the . of
each subset i(S), which would post the lower value m on the i™ coordinate. Likewise, each subset
minimum cannot bound .3, since their value on some other coordinate is higher than m+1=p.3(i).
Thisis ensured by the empty intersection that must hold across the subsets. For a subset to match
the value of p° on all coordinates other than i, and thus bound it viaits own minimum, some of its
profileswould have to contain aminimal value on some coordinate other thani. For example, aset
collecting the profileswith minimal i coordinatewith the profilep=( ..., m,, ..., m,, ...) would make
it possible for the corresponding . to match us on the j™ coordinate. But p would of course now be
part of two subsets, namely i(S) and j(S), violating the intersection requirement.

For T(A) to only allow necessary minima, the condition must hold on every node, and hence
the schema shown for S in the above example must reoccur on each of S relevant subsets, where
itwould affect the V-values shown above, which thus should not be considered to be unconstrained.
The practical example below shows how a complete case could ook like.

A final problem ariseswith singleton subsets, wherep’ scoincidewith profilesin A. Toavoid
bounding, each profile must show at |east one value which is 2 violations higher than any minimal
coordinate of the subsets dominating it in T(A). The example below conforms to al conditions
examined here. The next oneis similar, but lets the singleton sets bound the subsets immediately
dominating them.

(40) s={ (0,1,3), (1,0,3), (1,3,0), ns=(1,1,1)
(0,3,1), (30,1, (3,1,0}
1(9={(0, 1, 3),(0, 3, 1)} n©=(0,2,2)
2(9={(1,0,3),(3,0, 1)} n#9=(2,0,2)
3(9)={(1,3,0), (3,1, 0} u¥9=(2,2,0)
2(1(9)={(0, 1, 3)} p&=(0, 1, 3)
3(1(9)={(0, 3, 1)} p¥®=(0, 3, 1)
1(2(S)={(1, 0, 3)} pie®=(1, 0, 3)
3(2(9={(3,0, 1)} p2®=(3, 0, 1)
1(3(9)={(1, 3, 0)} pie®=(1 3 0)
2(3(9={(3, 1, 0)} nX*e=(3, 1, 0)
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(41) Ss={ (0,1,2), (1,0,2, (1,20, pS=(1,1,1)
0,2,1), (2,0,1), (2,1,0}
1(5)={(0, 1, 2), (0, 2, 1)} n9=(0,2,2)
2(9=1{(1,0,2),(2,0, 1} n2®=(2,0,2)
3(9)={(1,2,0),(2,1,0} u3®=(2,2,0)
2(1(9={(0, 1, 2)} p2t®=(0, 1, 2) bounds p*®
3(1(9={(0, 2, 1)} p3®=(0, 2, 1) bounds p*®
1(2(5)={(1, 0, 2)} pi=(1, 0, 2) bounds p2®
3(2(9={(2, 0, 1)} p2S)=(2, 0, 1) bounds
1(3(S)={(1, 2,0} piC®=(1, 2, 0) bounds p>®
2(3(9={(2, 1, 0}} p2C&=(2 1, 0) bounds p>®

Note that thisclass of profile sets cannot give riseto the worst scenario independently of the
number of dimensions. The condition on subset-partition goes directly against coordinate sharing,
making it impossible, except for K=2, to construct K subsets within T(A) each containing K-1
profiles, since this would inevitably require some profiles to occur in more than one subset.

Maximal Sharing. An interesting case arises when profiles are alowed to maximize coordinate
sharing. If we set the number of profilesequal to that of the allowed dimensions, the profile set will
look like the schema below, with each two profiles diverging on exactly two coordinatesi and j.

(42) A={ ( m, m, mg, .. m_,V, ),
m, m, mg, .. V,.,m ),
( m, m, Mg, .. mMm_,M ),
< ml! m2’ V3! e mkfl’ mk >k72’
< ml! VZ’ m3! Ty mkfl’ mk >kfl’
< Vl: mza m31 e mk—l’ mk >k }

Provided that each V; isat least 2 units greater then the corresponding minimum, each of the

(ZKJ pairs of profileswill yield a necessary ., because it will beat each candidate on coordinatesi

and j. On the other hand, the minima of any larger set will be bounded by those of its relevant
subsets, becausethe subsetswill shareacrossall their profiles some additional minimal valuem not
shared by the superset. The . for the superset will thus post avalue m+ 1 against thelower m value
of the subset minimum, while on any other coordinate superset and subset will be identical. The
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K(K+1
overall number of necessary minimawill thus be K+ (ZKJ , hence equal to (K+ D . Anexample

2
follows below.
(43) S={ (0,0,2), (0,2,0), (2,00} n=(1,1,1)
1(S)={¢0, 0, 2), (0, 2, 0)} n®=(0,1,1)  boundsus
2(9)={(0, 0, 2), (2,00} n¥9=(1,0,1)  boundsus
3(9={(0, 2,0), (2,000} p¥9=(1,1,0)  boundsus
2(1(S)=1(2(9)={(0, 0, 2)} u=(0, 0, 2)
3(1(9)=1(3(9={(0, 2, 0} u=(0, 2, 0)
3(2(S)=2(3(S)={(2, 00} u=(2,00)
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Appendix

The Defeating-Bounding lemmaand the Defeating theorem are repeated bel ow together with their
demonstration. For an intuitive outline, see p. 6.

(44) Lemma. Defeating-Bounding. Let B be a non-empty bounding set for A in V, then B
constitutes a defeating set for A in V. Conversely, let A be a defeating set for A in V, then there
exists a non-empty subset B in A that constitutes a bounding set for A in V.

a VB+@, [B=B(A) - AcD(B)] .
b. VA+#@[AeD(A) — IBcA, B=J, B=B(1)].

Pf. (a) By hypothesis, B+@ is abounding set for A, hence it satisfies reciprocity, and therefore it
also constitutes a non-empty defeating set for A.
(b) Let A be adefeating set for A. By definition of defeating set, A is non-empty and satisfies

reciprocity with respect to A. Moreover A¢A, again by definition.

1. Let B be the subset of A formed by collecting each « in A beating A on some coordinate, i.e.
B={a: acA and 3i, a(i)<A(i)}.

2. B satisfies strictness by definition.

3. B satisfies reciprocity; let i be a coordinate such that A(i)<p(i) for some f€B. Then by
reciprocity on A, Jo, (i)<A(i). By definition of B, aeB.

4. Moreover B=@, because for any a€A, since A¢A, it follows A=,
and therefore i, A(i)#a(i). If A(i)>a(i), then aeB, else by reciprocity do’, o '(iI)<A(i).

5. By 2, 3, and 4, set B isanon-empty bounding set for A. [

The defeating and bounding lemma extends to defeating sets all the properties of bounding
sets associated with the bounding theorem, namely that if A isanon-empty defeating set for A, then
A isaloser in any optimization involving A. The corresponding defeating theorem is demonstrated
below.

(45) Defeating Theorem. Let X be aset of constraint coordinatesfor V, and let K be a profile set
inV and A aprofilein K. Then A is suboptimal in K under any ranking of X iff thereisin K anon-
empty defeating set A for A.

AeW(K, )= JA#@, AcK, AcA.

Pf. (<) By the defeating bounding lemma, set A contains a non-empty bounding subset A’ for A.
By the bounding theorem, A isaloser on any optimization involving A’, and hence in K as well.

(=) Let A bealoser in K. Then, by the bounding theorem, thereisin K a non-empty bounding
set A inV satisfying strictnessand reciprocity with respect to A. Sinceit satisfiesreciprocity, A also
guaifiesasdefeating set for A inV. [

Asalready briefly explained earlier on, despite their close relation, bounding and defeating
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sets are not identical. Consider the following informative example. Let A={(0,4),, (4,03, (2,2),).
Set A qualifies as bounding set for A,=(1,3), with & and y satisfying strictness on i=1 and 3
satisfying it on i=2. Asthe reader may check, A aso satisfies reciprocity. Since bounding sets are
also defeating sets, A aso qualifies as defeating set for A,.

Now consider A,=(1,1). Suddenly, v isnolonger ableto satisfy strictness. Asaconsequence,
A can no longer qualify as bounding set for A,. It however still qualifies as defeating set for A,
because reciprocity remain satisfied, with « acting as areciprocity rescuer on i=1 and 3 oni=2.

Thereason for thisasymmetry isthat vy isitself collectively bounded by B={ &, 8}, but ruins
A’s prospects to qualify as bounding set for A, dueto itsfailure of strictness. Of course, A, isthe
minimum of A, i.e. p*=(1,1)=A.,.

The notion of defeating set permits us to hold true for any set A that the set of profiles
defeated by the set minimum includes al profiles defeated by A itsalf (with the exception of the
minimum), i.e. that D(A)=D(u*)+{"}. The notion of bounding set does not allow for the same
straightforward expression, because of problematic caseslikethe onejust discussed arise whenever
A contains profiles bounded by some of its subsets. If we temporarily interpret D(A) as meaning
‘profiles bounded by the bounding set A’ the above equality would be falsified by the example just
considered, since p* is not bounded by A={ «, B, v} dueto thefailure of strictness by y. Nor does
the problem only concerns minimalike u*: the profiles(1,2) and (2,1) are not minimal but they too
fail to be bounded by A due to a strictness failure. The equation does hold of bounding sets when
these contain only winners, but thisassumption would diminishthe generality of our results, besides
creating further difficulties when calculating L(A).
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