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ABSTRACT 
  

Understanding a linguistic theory within OT requires an exact characterization of 
the ranking conditions necessitated by data. These conditions determine the 
formal shape of the grammar while providing the crucial link between the data 
and its interpretation. We introduce an algorithm (‘Fusional Reduction’, FRed) 
which calculates the necessary and sufficient ranking conditions inherent in any 
collection of candidates and presents them in a maximally concise and 
informative way. The algorithm, stemming from the original proposal of 
Brasoveanu 2003, is set within the fusional ERC theory of Prince 2002a. In this 
context, the Most Informative Basis and the Skeletal Basis emerge as the two 
important types of reduced representations of ranking structure. We examine their 
properties and show how FRed produces them from data. Fine-grained FRed is 
compared with broad-stroke RCD (Tesar & Smolensky 1993, Tesar 1995 et seq.), 
and RCD is re-interpreted and embraced within FRed as a simplified, 
information-losing sub-case. Finally, FRed is compared with other related 
algorithms in structure, worst-case complexity, and relevance to the analytical 
enterprise. This paper revises Brasoveanu & Prince 2005 
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1. Beyond the Sufficient 
 

ith a constraint set in hand, the first order of analytical business in OT is to match 
candidates with violation profiles. One of two problems then arises, depending on what is 

known (or assumed) about the candidates and the constraint hierarchy. 
W 
 
 The Selection Problem. If a ranking has been imposed, the problem is to determine 
which candidates come out as optimal, under that ranking. 
 
 The Ranking Problem. If the candidates desired to be optimal have been identified, the 
problem is to find the rankings, if any exist, that render them optimal. 
 
The Selection Problem arises when prior analysis or prior assumptions have fixed a ranking for 
the constraint set. Selection of optima can be obtained by a simple repeated process of filtration, 
conducted under the rubric “take the best, ignore the rest” (as Gigerenzer & Goldstein 1996 
sharply phrase it). The best overall must lie among the best on the top-ranked constraint; and 
must lie among the best of those as evaluated by the next-highest-ranked constraint, and so on 
down the hierarchy, selecting the best of the best, until the optimal violation profiles emerge. 

The Ranking Problem arises when the desired optima are known, as from empirical 
observation and analysis, but the rankings they require are yet to be discovered. The task is 
different in character from selection and rather more complex. It is based on comparisons of 
relative goodness between grammatical and ungrammatical forms — between desired optima 
and their suboptimal competitors. Any such comparison yields a pattern of successes, failures, 
and moot contests on individual constraints. Typically, only certain rankings will be consistent 
with a choice of desired optima. The partial information gleaned from each of many instances of 
comparing optimum vs. competitor must be integrated to produce the definitive set of ranking 
conditions imposed by the data. Taken together, these conditions delimit the set of rankings— 
total orders on the constraint set — that yield the observed grammatical forms and predict the 
shape of the language beyond the data considered. 

In brief, selection goes from ranking to optima, and presents little difficulty. The Ranking 
Problem runs the other way, from (desired) optima to ranking, and has a logic of its own. The 
analyst faces the Ranking Problem every working day. The tools provided in this paper will, for 
the first time, resolve it in full generality. 

 
To illustrate these problems, and their distinctness, let’s look at an example based on the Lardil 
analysis worked out in Prince & Smolensky 2004:140ff. We have re-named the constraints to 
accord with more recent usage,1 and we have omitted the constraints that award all candidates 
the same number of violations. The special nonphonetic notations in the candidate transcription 
are ‘A’ for ‘inserted [a]’ and ‘■’ for ‘deleted segment’. They are intended only to make the key 
input-output disparities obvious to the eye. Syllables are marked off by periods.  

                                                 
1 DEPV: a vowel in the output corresponds to one in the input. MAX: a segment in the input corresponds to one in the 
output. NOCODA:  no syllable ends in a consonant. ANCHOR-R:  a segment at the right edge of a morphological word 
has a correspondent at the right edge of a syllable. These constraints assess one violation for each configuration of 
which they are false. These re-work, respectively, the original FILLNuc, PARSE, –CODA, and ALIGN. 
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(1) The Selection Problem: Ranking given.  
 Lardil /kentapal/ → [???]  ‘dugong’ (dugong dugon: aquatic mammal species) 

/kentapal/ →  DEPV ANCHOR-R MAX NOCODA 
.ken.ta.pal.    ** 
      .ke.nA.ta.pa.■ *   ! * *  

 
The left-to-right order of the constraints mirrors their actual ranking (as shown in Prince & 
Smolensky 2004:132-138). The desired optimum beats its competitor definitively on DEPV, its 
suboptimality due to epenthesis: a victory (and a defeat) marked by the appearance of the 
exclamation point. 
 To see a less trivial filtration, we need to have the optimum face off against more than 
one competitor. Here’s an example, expanded from (1). 
 
(2) More elaborate selection. Given this ranking, Lardil /kentapal/ → [???]  ‘dugong’ 

/kentapal/ →  DEPV ANCHOR-R MAX NOCODA 
 .ken.ta.pal.    **       
     .ken.tap.al.    ***   ! 
     .ken.ta.pa.■  *  ! * *         
     .ke.nA.ta.pa.■ *   ! *    *  

 
An exclamation point marks where a losing candidate is ejected from the set of ‘best’ candidates, 
given this ranking. Shading emphasizes that the candidate is no longer in the filtered set. 

Matters look quite different when we start with knowledge that [.ken.ta.pal.] is the output 
from /kentapal/ and assume nothing about the constraint ranking. Let’s take the same two 
violation profiles as in (1) and annotate the tableau according to the relative performance of the 
competitors on each constraint. The desired optimum is listed first and candidates desired to be 
suboptimal are indented below it. The symbol ‘W’ generalizes ‘!’ and indicates that the desired 
optimum is locally better on the one constraint by virtue of having fewer violations than its 
suboptimal competitor. The new symbol ‘L’ indicates that the suboptimum does better on the 
constraint than the desired optimum. Only the suboptimum’s row is annotated, for the violation 
profile of the desired optimum functions as a kind of yardstick against which everything else is 
measured. We switch to numerals as violation markers to avoid the distractions of visual splatter. 
  
(3) The Ranking Problem: Optimum given. Lardil /kentapal/ → [.ken.ta.pal.]  ‘dugong’ 

/kentapal/ →  DEPV ANCHOR-R MAX NOCODA 
ken.ta.pal 0 0 0 2 
     ke.nA.ta.pa.■ 1        W 1       W   1        W 0        L 

 
This is an exact map of what the constraint set says about these data. The comparison shows that 
NOCODA (displaying L) must be subordinated in the ranking, because it favors the suboptimum, 
which had better do worse than the optimum over the hierarchy. It follows that NOCODA must be 
dominated by some constraint of opposite polarity that favors the desired optimum — and we 
have three different choices (each marked W). Comparing output [.ken.ta.pal.] with 
*[.ke.na.ta.pa.] gives us no grounds for choosing among the three potentially dominating 
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constraints, and yields, therefore, quite weak information about what the hierarchy must be. Just 
comparing these competitors, we have no idea whether *[.ke.na.ta.pa.]’s avoidance of 
[.ken.ta.pal.]’s codas is rejected because (1) you can’t insert to avoid codas, (2) you can’t delete 
to avoid them, or (3) you must preserve word-final consonants. To decide the matter, further 
evidence must be taken into account. Other comparisons will impose tighter conditions, which 
make it clear that the first of these is the correct and only explanation for the failure of 
*[.ke.nA.ta.pa.]. 
 
With a collection of such comparisons in hand, we may ask for a characterization of the set of 
successful rankings, those that give the data in its entirety. The answer we will be satisfied with 
varies with our goals. It is commonly the case that a number of different rankings will suffice — 
after all, many constraints simply do not conflict, many others lose the ability to conflict when 
they are subordinated in certain ways, and ranking serves to resolve conflicts. (Example: those 
constraints that are fully satisfied in every optimal form can be ranked in any order whatsoever at 
the top of the hierarchy.) The learner, for whom the grammar is a black box, is looking for a 
ranking sufficient to produce correct output and will be happy with any such.2 The data modeler 
might be similarly satisfied, and need know nothing more than that a grammar exists, happy that 
the grammar (whatever it is) reproduces the observed facts. But a more ambitious analyst will 
want to know the details of the constraint relations and their factual basis. Such information 
determines the explanatory structure of a theory, which relates data to constraints and their 
interaction. And it is crucial to the dynamics of investigation and theory construction. Modifying 
constraint definitions, adding new constraints, amalgamating or subdividing constraints — the 
success of any of these theory-developing maneuvers depends on the details of the interactions. 
The serious analyst, then, will be interested in precisely delimiting the data-theory relation: the 
necessary and sufficient conditions imposed by the data. Because of the inherent logic of the 
Ranking Problem, it need not be entirely straightforward to obtain them. 

As Tesar found, we can easily derive a sufficient ranking from a collection of 
comparative data if we ask not what constraints must be ranked at the top but what can be ranked 
there. We gather all those rankable constraints into a ‘stratum’, dismiss the data they solve, and 
proceed to re-ask the question of the remaining, smaller set of data, obtaining a new, lower 
stratum. We continue in this fashion until all the data is accounted for, yielding an ordered 
collection of strata. The stratification procedure is known as ‘Recursive Constraint Demotion’ 
(RCD) and a grammar derived from it will work, if any grammar works.3 Since the constraints 
within a stratum do not conflict, we can construct a successful grammar (a total ordering of the 
constraint set) which will select optima by picking any ranking order for the constraints within 
each stratum and patching these segments together so as to respect the stratal order. The trade-off 
is that while we have sufficiency, we have abandoned necessity. 

                                                 
2 Modulo restrictiveness, as reviewer A reminds us: see Prince & Tesar 2004, Hayes 2004 for recent proposals. 
Observe that even with restrictiveness as a limitation on grammar choice, many alternative rankings may still exist. 
3 Basic references include Tesar & Smolensky 1993, 2000; Tesar 1995; see also Samek-Lodovici & Prince 1999, 
Prince 2002a, Prince 2002b. It is used in OTSoft (Hayes et al. 2004), and an Excel™-based implementation is 
available in OTWorkplace (Prince 2008c, Prince & Tesar 2008). Prince 2009 offer an accessible walk-through of the 
algorithm, from a perspective closely allied to the one developed here. 
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A simple formal example brings us to the heart of the matter. Imagine that the entire 
constraint set has only three members, and suppose that applying RCD to the data of a particular 
language delivers up the following two-stratum hierarchy. (A double pipe demarcates the strata.) 
 
(4) A stratified hierarchy.  & C1,C2 & C3 &   

 
We know that C1 and C2 can be ranked at the top, and that C3 cannot. No fewer than four distinct 
ranking restrictions, driven by different data, could lie behind this one stratified hierarchy.  
 
 (a) Both C1 and C2 must dominate C3. 
 (b) Either C1 or C2 must dominate C3. 
 (c) C1 must dominate C3, but C2 can go anywhere. 
 (d) C2 must dominate C3, but C1 can go anywhere. 
 
These different situations — each quite common in the natural world — can be perspicuously 
summarized as (sets of) partial ordering diagrams. In each case, any linear order that respects the 
specified ranking restrictions, shown by the lines, will count as legitimate realization. 
 
(5) Rankings behind the RCD stratification.  & C1, C2 & C3 &   
 
(a)   C1  C2  (b)   C1  C2 -OR-  C2   C1  (c)   C1  C2    (d)   C2  C1 
 \/           |       |            |   | 
   C3          C3    C3                      C3             C3 
 
In all these mini-grammars, each arising from different data, C3 must be subordinated or the 
wrong candidate will be designated as optimal. But they differ in what C3 must be subordinated 
to. In (b), for example, the right outcome is achieved if C1 or C2  comes ahead of  C3 in a ranking, 
but in (c) it must absolutely be the case that C1 precedes C3 in a successful hierarchy. Of these, 
the latter three induce greediness artifacts in the RCD output & C1,C2 || C3 &. In each, some 
constraint will land in the top stratum because it can be there, not because it must.  

The four situations differ in their explanatory structure and in the mutability of the 
constraints involved. In case (c), for example, the violability of C3 is due entirely to the 
possibility of ‘better satisfying’ C1, and it is appropriate to say that C1 ‘forces’ the violation of C3 
or that only C1 ‘licenses’ C3 violation. But this is not true of any of the other patterns. In cases 
(b) and (c), the constraint C2 is wide open to reformulation, but not in the other systems. 

To see the force of such considerations, imagine that each of the four mini-systems is 
confronted with further data indicating unambiguously that C3�C2. Systems (a) and (d) are 
immediately kaput — they simply can’t accommodate the facts, since each requires that C2�C3. 
System (c) is refined by an additional ranking, which it handles uncomplainingly, while system 
(b) loses a disjunct and takes on the same form as system (c) — C1�C3�C2. This shows that 
neither the learner nor the analyst can settle for the RCD form of available data, at the risk of 
grossly miscalculating its import.4 
                                                 
4 Hence Tesar 1997ab finds that the actual ranking arguments, the ERCs in the terminology to be adopted here, and 
not an artifact-susceptible intermediate ranking, is what must be carried forth in learning. Tesar & Prince 2005 term 
this fund of irreplaceable knowledge the ‘Support’ for the ranking system. 
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In this paper, we present and justify an algorithm — ‘Fusional Reduction’, FRed — that pulls out 
the necessary and sufficient ranking conditions inherent in a set of data and puts them in a 
canonical form that is maximally concise and informative. The algorithm originates in 
Brasoveanu 2003; here it is revised and extended, in the setting of the theory of Prince 2002a. 
‘Maximally concise’ means that there is no other presentation that uses fewer comparative 
expressions. Among such maximally concise ranking summaries, of which there may be several, 
FRed will natively produce the one that is ‘maximally informative’ in the sense that each 
element in the description gives complete information about dominated constraints. This form 
we will call the ‘Most Informative Basis’; the notion ‘informative’ will be made precise for this 
usage. From it, another equally concise representation will be derived, one which describes the 
ranking relation with maximum locality, omitting mention of all dominated constraints whose 
status can be derived collectively. This is the ‘Skeletal Basis’, which directly maps ranking 
diagrams such as those in (5) and provides the direct link between data and the rankings they 
require. Each will have its uses in the analysis of OT systems. Through FRed, then, we will gain 
a complete algorithmic solution to the Ranking Problem, understood in its most demanding form. 
FRed has been implemented, along with a number of other analytically useful calculations, as 
part of the RUBOT component of OTWorkplace, an open-source software package that runs 
inside Excel™ (Prince 2008c, Prince & Tesar 2008). 
  
Such matters may be addressed at various levels of technical detail. In the interests of 
accessibility, we will steer clear of the finest grain of formal argument. Prince & Brasoveanu 
2009 gives proofs and deeper analysis of all our claims. Here the focus will be on the qualitative 
content of the notions involved and the step-by-step procedures involved in implementing them. 
We believe that it is both possible and useful for workers in OT (and perhaps for workers in 
other theories as well, who may be interested in reaching similar levels of analysis of their own 
data-theory relation) to see how things work at the level we pursue here. Beyond usefulness lies 
logical compulsion: when the facts can be obtained, it is time to relinquish heuristics, guesswork, 
and the assertion, however tentative, of falsehoods. We will provide explicit definitions for 
everything we talk about, usually appended to the discursive presentation, for those who wish to 
examine them. No prior background in the relevant material will be assumed.  

The requisite notional underpinnings will be developed in full in the next section (§2).  
With these tools in hand, we move to an exposition of the FRed algorithm and its output, the 
Most Informative Basis (§3). FRed is then refined so as to also produce the Skeletal Basis, whose 
importance we justify (§4). We then place FRed with respect to RCD, with the aim of developing 
further insight into both (§5). We conclude with some notes on computational complexity and on 
the relationship of FRed to other work in the area, such as the algorithm for finding bounding 
minima in Samek-Lodovici & Prince 2002 and the ERC set simplification algorithm of Prince 
2002a:31-34. 
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2. The Consequences of Comparison 
 
In this section we review the logic of pairwise candidate comparison that underlies the entire 
calculus of ranking argumentation in OT. We draw on Prince 2002a, Entailed Ranking 
Arguments, henceforth ERA. 
 

2.1 The Elementary Ranking Condition 
 
Extracting ranking information from even a single pairwise comparison need not be trivial. Each 
individual constraint awards one of three evaluations to a competing pair:   
 

W the desired optimum is better, with fewer violations than its competitor. 
  L the suboptimum is better, with fewer violations; the desired optimum loses to it. 
  e neither is better, because the two are equal in violations. 
 
We will say that a constraint ‘distinguishes’ two candidates if it awards one of the ‘polar’ values 
W or L, and not the ‘neutral’ value e, to their comparison. A typical result, seen in another Lardil 
example (Prince & Smolensky 2004:140), looks like this (as above, the suboptimal competitor is 
indented below the desired optimum): 
 
(6) Violation tableau with comparative annotations:  /ŋaluk/→ [.ŋa.lu.] 

/ŋaluk/ →  CODACOND DEPV ANCHOR-R DEPC MAX NOCODA 
.ŋa.lu.■ 0 0 1 0 1 0 
     .ŋa.luk. 1        W 0        e 0        L 0     e 0      L 1     W 

 
The constraint CODACOND,5 unmentioned in (3) because neutral and therefore irrelevant, is polar 
here; we have also brought in a couple of neutral constraints for illustrative purposes. Let us 
emphasize a key notational fact: in this paper, constraint order in a tableau header does not 
represent a ranking order. 
 
(7) Notational convention: constraint listing in tableaux. 

Since we are dealing with the Ranking Problem, we will never presuppose, henceforth, 
that the order of cited constraints in a tableau reflects a ranking order, nor will we 
distinguish in vertical line style between ranked and unranked constraints. 

 
A tableau like (6) can be reduced to its core by suppression of the violation profiles, which have 
done their work when the comparative values are calculated from them. The result is a pure 
‘comparative tableau’ (CT).6 
 

                                                 
5 CODACOND: A coda consonant can have only Coronal place or place shared with another consonant. 
6 For the CT per se, see Prince 1998, 2000, 2002b.  The relevant logic, presented here, is developed in ERA. 
Demonstrations of its utility in analyzing OT systems are found in Prince 2006b. 
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(8) Comparative tableau (CT). 
/ŋaluk/ →  CODACOND DEPV ANCHOR-R DEPC MAX NOCODA 
.ŋa.lu.■ ~ .ŋa.luk. W e L e L W 

 
The match of a desired optimum with its competitor is concisely indicated here. 
 
(9) Notational convention: optimum~suboptimum comparisons. 

We write ‘q~z’ to denote the comparison of a desired optimum q with its competitor z. 
We will compress out the repeated input term whenever convenient. 
     

For example, in (8) above, we are actually comparing q: 〈ŋaluk→.ŋa.lu.■〉 with z: 
〈ŋaluk→.ŋa.luk.〉. These are two competing input-output relations based on the same input. 
 
Each row detailing the evaluations of some q~z comparison over the entire constraint set is 
associated with a ranking restriction, an ‘Elementary Ranking Condition’ or ERC, that always 
has the same logical form. In CT (8), for example, the requirement is this: 
 
  either CODACOND or NOCODA dominates both ANCHOR-R and MAX. 
 
Every ranking in which the desired optimum 〈ŋaluk→.ŋa.lu.〉 is judged better than the competitor 
〈ŋaluk→.ŋa.luk.〉 will satisfy this condition. An ERC proclaims that some constraint assessing W 
must dominate all constraints assessing L.  

The ERC is a direct consequence of the way that optimality is defined. Recall that this 
requires two distinct ‘better than’ relations (Prince & Smolensky 2004:ch. 5; Prince 2009; see 
exs. (16), (17), (18) below for explicit formulations). A form is optimal when it is better than all 
of its violation-distinct competitors over the whole hierarchy. This global ‘better than’ in turn 
derives from the local, violation-sensitive judgments of the individual constraints, as represented 
in the W-L-e values. In terms of a single constraint, better than means ‘incurs fewer violations’. 
Globally, one candidate is better than another over the whole hierarchy when it is locally better 
on the highest-ranked constraint that distinguishes them (to use the concise formulation of 
Grimshaw 1997). This leads to the ERC: the comparative profile, in W-L-e values, determines 
which constraints could possibly serve in the decisive role as the highest-ranked distinguishing 
constraint (any of those assessing W), and which constraints must absolutely be banned from that 
position (all of those assessing L). The comparative profile also identifies those constraints that 
are completely irrelevant to the status of the competitors, those neutrals assessing e. 

The essence of the comparative tableau lies in the sequences of values it assigns to 
comparisons. Let us recognize the relevant part of the tableau row as a distinct entity, a 
‘comparative vector’. Such a vector is a list of W-L-e values. Position in the list corresponds to 
an enumeration of the constraint set. The enumeration is arbitrary and serves only to keep track 
of the constraints, in much the same sense as the sequence of entries in a vector of Cartesian 
coordinates keeps track of the spatial dimensions, which have no intrinsic ordering. Following 
the standard Cartesian lingo, the entries in a vector will be called its ‘coordinates’. For example, 
the comparative tableau (8) displays a single vector, which we can write in the following 
compressed form: 

 
(10) Comparative vector: (W,e,L,e,L,W) 
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Each such vector is associated with an ERC, a logical expression. To represent the ranking 
relations imposed by a set of data, we take the ERC as the basic unit of description. We will see 
how certain operations on the coordinates of comparative vectors (i.e. the columns of 
comparative tableaux) compute the logical properties of ERCs and ERC sets. These will enable 
us to define the algorithm which takes a collection of vectors and renders it into its most 
compact, informative equivalent.  
 The ERC intuitively says ‘some W dominates all L’s’. In the interests of explicitness, let 
us formally define it here using the notion of the W-set of a vector a, written W(a) —  those 
constraints contributing W to a — and the parallel notion of its L-set, L(a).7 

 
(11) Elementary Ranking Condition (∀∃ form).        

Let a=[x~y]∈{W,L,e}n be a comparative vector associated with Σn, an arbitrary 
enumeration of the constraint set Σ.  Writing       
  W(a) =  {Ck∈Σ | a[k] = W} ‘those constraints assessing W of a’   
  L(a)  =  {Ck∈Σ | a[k] = L} ‘those constraints assessing L of a’ 

 the ERC associated with a is this:        
  ∀C∈Σ ∃D∈Σ ( C∈L(a)  ⊃ (D∈W(a) & D�C) )     
 ‘Every constraint assessing L is dominated by some constraint assessing W.’ 
 
(12) Elementary Ranking Condition (∃∀ form).  Using the same notation,   

  ∃D∈Σ ∀C∈Σ ( C∈L(a)  ⊃ (D∈W(a) & D�C) )     
 ‘Some constraint assessing W dominates all constraints assessing L.’ 

 
The ERC provides a new perspective on the Cancellation-Domination Lemma of Prince & 
Smolensky 2004: 153-4, which states that a candidate A is globally better than an alternative B 
iff “every mark incurred by A is either (i) cancelled by an identical mark incurred by B, or (ii) 
dominated by a higher-ranking mark incurred by B.” Shifting focus from marks to constraints: A 
is globally better than B iff each constraint evaluating [A~B] either (i) assesses W or e, or, if not, 
(ii) is dominated by another constraint, which assesses W. This will be the case iff ‘some W 
dominates all L’s’. 
 
The syntactically distinct forms of the ERC given in (11) and (12) are equivalent because the 
linear ordering of the constraint hierarchy means that one of the W-assessors must dominate all 
the others. If every constraint assessing L is dominated by some W-assessor (∀∃) then it follows, 
by linearity of the ranking, that one of the W-assessors dominates all the L’s (∃∀). We use the 
some-all form (∃∀) in (12) as our standard. 
 The truth or falsity of an ERC is determined with respect to a ranking on the constraint 
set. An ERC is about rankings. A constraint hierarchy is then a model in which an ERC is judged 
true or false. When an ERC is true of some hierarchy H, we will say, following the usual usage, 
that the hierarchy H satisfies the ERC. If all ERCs in a collection are true of a hierarchy, we will 
say that the hierarchy satisfies the entire ERC set.   

                                                 
7 For material implication (ordinary Boolean ‘if-then’), we use the Russellian symbol ⊃ ‘horseshoe’, currently 
waning in popularity, because we will use ⇒ and →  for other notions below. 
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 The force of the ERC associated with the comparison x~y, then, is that x is better than y 
on H if and only if H satisfies the associated ERC. From the selectional point of view, a totally-
ordered hierarchy that satisfies an ERC is one that successfully dismisses the competitor desired 
suboptimal. Similarly, if every member of a set of ERCs is simultaneously satisfied by a 
hierarchy, then that hierarchy guarantees that every comparison behind the ERC set comes out in 
favor of its desired winner. 

Since ERCs and ERC vectors stand in a one-to-one relation, let us simplify the discussion 
by extending the usage of ‘satisfies’ to encompass both entities. We will speak of a hierarchy 
satisfying an ERC vector, where this means that the associated ERC, a logical formula, is 
satisfied. It is possible to make this usage central, rather than extended, through a direct model-
theoretic account that gives the ERC vector the status of an expression in a formal language, 
directly interpreted. Since it is useful to have the ERC available as an expression in logical 
syntax, we will defer this option. 
 
To show the force and utility of ERC representation, we return to the 4-ways ambiguous RCD 
hierarchy cited in (4) and show how the various cases come out as expressed in ERC vectors: 
 
(13) Rankings behind the RCD stratification.  & C1,C2 & C3 & 
 
 (a) Both C1 and C2 must dominate C3.          {(W,e,L), (e,W,L)} 
        
 (b) Either C1 or C2 must dominate C3.  (W,W,L) 
    
 (c) C1 must dominate C3, but C2 goes anywhere. (W,e,L) 
   
 (d) C2 must dominate C3, but C1 goes anywhere.  (e,W,L) 
 
Expressions like these are ubiquitous in the analysis of language data. 

2.1.1 Appendix to 2.1 
 
We conclude with a concise record of the notions we have referred to in deriving the ERC. 
 
(14) Constraint. A constraint assigns violations to candidates; thus, a constraint is a function 

from the universal set of candidates U to the nonnegative integers, i.e. C:U→ℕ. 
 
(15) Constraint hierarchy. Given a set Σ = {C1,…,Cn} of constraints, a grammar or 

‘constraint hierarchy’ is a total order, written �, on the constraint set. 
 

(16) ‘Better than on a constraint’. For x,y∈U, and for a constraint C∈Σ, we say ‘x is better 
than y on C’, writing x ;C y, iff C(x)<C(y). In this case, we also say ‘x is locally better 
than y’. 

 
(17) ‘Better than on a constraint hierarchy’. For H, a total ordering of Σ, and x,y∈U, we say  

‘x is better than y on H’, writing x�Hy , iff (a) ∃C∈Σ such that x ;C y; and (b) ∀D∈Σ if 
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D�C, then D(x)=D(y), or equivalently, (b′) ∀D∈Σ if y ;D x, then C�D. That is: there is 
a constraint distinguishing x and y, and the highest-ranking such constraint favors x. In 
this case, we also say ‘x is globally better than y’. We use a different symbol for the two 
different ‘better than’ relations.  

 
(18) Optimal. For x∈K, a candidate set, and a constraint hierarchy H, x is ‘optimal’ on H (and 

in K) iff ¬∃y∈K such that y�Hx. ‘No candidate is globally better’. 
 
(19) Comparative values. A function Ĉ is associated with each constraint C, assigning to an 

ordered pair of candidates (x,y)∈U×U the following values: Ĉ[x~y] = cmp(C(y)−C(x)), 
where cmp(n) = W if n>0, e if n=0, L if n<0. This transforms C:U→ℕ into 
Ĉ:U×U→{W,L,e}.8 

 
(20) Comparative vector. Let Σ be an arbitrary enumeration of a constraint set, so that Σ = 

{C1,…,Cn}. A comparative vector (or ERC vector) v over Σ with respect to an ordered 
pair of candidates x,y∈U has coordinates given by v[k] = Ĉk([x~y]). 

 
(21) W-set. L-set. The W-set of a comparative vector v, written W(v), is the set of constraints 

that give rise to W coordinates in v.  Similarly for the L-set. 
W(v) = { Ĉ k |  vk = W} 
L(v) = { Ĉ k |  vk = L} 

 
(22) Elementary Ranking Condition (ERC). Each comparative vector gives rise to an ERC 

defined as in (11) and (12). 
 
(23) Satisfying an ERC. An ERC φ over a constraint set Σ is satisfied by linear ranking order 

H on Σ iff the ERC is true of H. In that case, we write HBφ. 
 
(24) Satisfying a vector. Given a hierarchy H and an ERC vector v, we will also say that H 

satisfies v, writing HBv, iff H satisfies the ERC associated with v; that is, iff H is such that 
some constraint in W(v) dominates every constraint in L(v). 

 
2.2 Informativeness and the Basis  
 
Identical rankings may be demanded by different ERC sets. The simplest nontrivial case involves 
only three constraints, linearly ordered, and shows quite clearly how this can happen. We use 
bolded numbers 1, 2, 3 etc. to index constraints, and bolded alphabetic characters a, a', b etc. to 
name ERC vectors. The same character but bracketed [a], [a'], etc., names the associated ERC. 
 

                                                 
8 It is natural to identify ‘cmp’ with ‘sgn’, the function that returns +1 for positive arguments, 0 for 0, and −1 for 
negative arguments (ERA:55ff., 100ff.) This portrays a comparative vector as a vector over GF(3), the Galois (i.e. 
finite) Field with 3 elements, where in fact the relations and operations defined in the next section can be stated 
algebraically. See fn.15. In the interest of retaining a palpable connection with the winner-loser structure of OT, we 
will use the standard symbols W,L,e. 
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(25)  Equivalent ERC sets:  1�2�3 
CT1 1 2 3  CT2 1 2 3  CT3 1 2 3 
a W L L  a′ W L e  a′′ W L W 
b e W L  b e W L  b e W L 

 
Taken individually, the first-row vectors a, a′, and a′′ are not equivalent, as is evident from their 
associated ERCs. 
 
  a:   (W,L,L)   [a] : 1�2 &  1�3 
  a′:  (W,L,e)   [a′]:  1�2 
  a′′: (W,L,W}   [a′′]:  1�2  ∨  3�2 
 
Nonetheless, in the context of vector b, which requires 2�3, these three all yield exactly the 
same conclusion: sets CT1, CT2, and CT3 are satisfied by one and the same linear order 1�2�3 
on the constraint set, and by no other. 

Further collections of ERCs can yield the same result: for example, the union of all three 
cited sets; the union of any two of them; numerous other admixtures and augmentations. We may 
freely add in vectors which consist solely of W’s and e’s: in such cases, no constraints disfavor 
the desired winners, and no ranking is required to make them win; such vectors place no 
restrictions and may be added or taken away from any ERC set without changing its content.  

All of these variants are commonly encountered. Here’s a 4-constraint case from 
Lombardi’s important voicing typology paper (Lombardi 1999:286, ex. (31)) which includes all 
of them. For clarity, we suppress e in favor of blankness. Bold font style draws attention to 
relevant consonants in the input, and in the output to unfaithful mappings.9 

 
(26)  Lombardi’s analysis of Swedish.  

  AGREE IDLAR *LAR IDONSLAR 
a. stekde → stek.te ~ steg.de   W L 
b. skuːg  → skuːg ~ skuːk  W L  
c. vigsəl → vik.səl ~ vig.səl W L W  
d. vigsəl → vik.səl ~ vig.zəl   W W 
e. ægde  →  æg.de ~ æk.te  W L W 
f. stekde → stek.te ~ stek.de W L W L 
g. ægde  →  æg.de ~ æk.de W W L  

  
Lombardi is considering the voicing patterns in obstruent clusters and aims to show that her 
constraint system provides a grammar for the kind of pattern seen in Swedish.10 If we are 

                                                 
9 Constraint definitions: AGREE demands that adjacent obstruents have identical voicing values. IDLAR demands that 
the input voicing value for an obstruent match that of its output correspondent. IDONSLAR demands the same, but is 
restricted to those output obstruents occurring in an onset and released into a sonorant. *LAR demands that an output 
obstruent be voiceless. All constraints assess one violation for each configuration that fails to meet their demands. 
10 Although our focus is on the structure of the analysis, and not on voicing per se, it might be useful to have a sense 
of how this works. The action of the given hierarchy on the universal set of candidates can be understood as follows 
(Prince 2006a). All obstruent clusters agree in voicing in the output (AGREE). If an input cluster is heterogeneous, 
the most frequent input value (if there is one) takes over, as it requires the fewest breaches of faithfulness (IDLAR). 
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looking for the ranking, only a proper subset of the cases need be considered. (When, like 
Lombardi, we turn to argue that the established ranking selects the desired optima, we must deal 
with entire candidate sets, since to be optimal is to be better than all violation-distinct 
compet

leau, is determined by any of the following ERC sets (as well as by any 
sets con aining them): 

 a, e, f 

hese. Note that the entire 
gramm

s b 
(e,W,L,

ng; 
we can

 determines the rankings required by some designated set, which we 
will call the ‘reference set’. 

(27) Basis.  A basis is a minimal cardinality collection of ERCs equivalent to a reference set.  

 we began with, which has 3 rather than 4 
onstraints in linear order, let us return to that. 

 

                                                                                                                                                            

itors.)  
The required ranking, which is total and follows (in this particular case) the listed order 

of constraints in the tab
t
 

  a, b, c 
  a, b, f 
  a, e, c 
 
 
For illustrative purposes, tableau (26) distinguishes the first of t

ar of voicing is fixed by just three pieces of comparative data. 
A couple of other remarks: vector d (e,e,W,W) is completely uninformative, since the 

desired optimum harmonically bounds its competitor: it is always equal to or better than the 
competitor, as is clearly displayed, and will win on any ranking.11 (Harmonic bounding of this 
sort is an important fact about the way the constraint set operates to exclude certain items 
universally, but it does not help with the Ranking Problem.) Row g, even though it does not 
involve harmonic bounding, is also uninformative in context, because any ranking that satisfie

e) must also satisfy the weaker requirements of  g (W,W,L,e), though not vice versa.  
Since our target is the most concise and informative representation of the ranking 

conditions, we will be interested only in those ERC vector sets of smallest size. Tableau (26) has 
7 vectors; all are distinct, but only 3 are needed to encapsulate the tableau’s ranking restrictions. 
Observe that the ERC vector is a free-standing formal object with a fully determinate meani

 (and will) use vectors to encode ranking relations that arise by implication from data. 
Let us introduce the term ‘basis’ to refer to any minimal-cardinality set of ERC vectors, 

of whatever origin, that fully

 

 
There are quite a few three-member ERC vector sets — bases — for Lombardi’s Swedish 

hierarchy: 27 in total. Tableau (26) contains 4 of them, each directly produced by analysis of 
comparative data. Among these yet further distinctions may be made. Since the distinctions are 
fully exemplified in the simpler abstract case
c

 
If an input cluster is evenly split between voicing values, it emerges voiceless (*LAR). (As for IDONSLAR, all cases 
are decided before it is reached, so it plays no role.) In the cases of unevenly-apportioned clusters, this doesn’t 
match the generalization cited in the text: “Swedish has been described as having bidirectional spread of [–voice]; in 
other words, a voiced obstruent devoices next to a voiceless obstruent…” (Lombardi 1999:285), but it’s what the 
hierarchy says. On the relation of the predicted pattern to the facts, see (60) below. 
11 Harmonic bounding: Prince & Smolensky 2004, Samek-Lodovici 1992, Samek-Lodovici & Prince 1999, 2005. 
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(28)  Equivalent ERC sets:  1�2�3 
CT1 1 2 3  CT2 1 2 3  CT3 1 2 3 
a W L L  a′ W L e  a′′ W L W 
b e W L  b e W L  b e W L 

 
Two basic observations may be made about the three constraint situation in (28): 
 

● The ranking relation 2�3 comes from just one vector, b: (e, W, L).  
 
● The ranking relation 1�2, in the context of b, has three distinct possible sources: 

 a :  (W,L,L)  [a]: 1�2  &  1�3  
 a′:  (W,L,e)  [a′]: 1�2 
 a′′: (W,L,W)  [a′′]: 1�2  ∨  3�2 

 
Vector a is the most informative of those concerned with constraint 1, in the sense that it spells 
out every condition on the ranking of that constraint. The others either omit a requirement (a′) or 
hide the truth among a disjunction that turns out to be irrelevantly weak (a′′ ).  

Here we see the three extremes in basis structure. 
(1) CT1 exemplifies what we will call the ‘Most Informative Basis’ (MIB): for each ERC, 

it gives the fullest possible listing of constraints dominated by (some element of) the W-set. 
(2) CT3 is an instance of its direct opposite, the ‘Least Informative Basis’ (LIB), because 

it is filled up with as many local disjunctions as possible, giving the locally weakest (and most 
opaque) picture of the ranking structure. 

(3) CT2 is an instance of what we will call the ‘Skeletal Basis’ (SKB): it suppresses all 
relations collectively derivable (here, from transitivity), omitting from the list of dominated 
constraints those that cannot be immediately dominated by the highest-ranked member of the W-
set. For this reason, the Skeletal Basis is quite useful, for example in constructing the diagrams 
that represent ranking relations and in isolating the particular data that contributes each local 
domination relation (here 1�2). The virtues of the Skeletal Basis are taken up in §4. 

 
To characterize these distinctions in terms of overall W-L-e content: the LIB has the most W’s 
possible, the MIB the most L’s, and the SKB the most e’s (therefore the least total number of 
W’s and L’s.) 

Both the MIB and Skeletal Basis have the extremely desirable property that any 
disjunction in one of their ERCs corresponds to a real disjunction in the overall system. Any W 
in a MIB or Skeletal Basis ERC vector appears as an actual dominator in some linear ranking 
countenanced by that basis (proved in Prince 2006c:13). These bases are locally trustworthy. 
Since the way to the Skeletal Basis lies through the MIB, we now turn to sharpening the logical 
tools that will lead to the MIB-producing Fusional Reduction Algorithm (FRed). 

 
Informativeness has various intuitive meanings, depending on what you are interested in being 
informed about. For the present initiative, the informativeness relation among ERCs is 
understood to be that of logical entailment.   

So: what do we mean by entailment? The vector a (W,L,L) entails a′ (W,L,e) in exactly 
the same way that ‘p&q’ entails ‘p’. Similarly, a′ (W,L,e) entails a′′ (W,L,W) in the same way 
that ‘p’ entails ‘p∨q’. Every circumstance in which the first of these is true is one in which the 
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second is true. In model-theoretic talk: every model that satisfies the first also satisfies the 
second. Extensionally, the set of rankings admitted by a is a (proper) subset of those admitted by 
a′, and the total rankings admitted by a′ are a (proper) subset of those admitted by a″. These 
relations may be readily seen if we simply list the rankings (total orders) allowed by each ERC. 
 
(29)  Linear rankings admitted by each ERC. 
 

Vector a = (W,L,L) a′ = (W,L,e) a″ = (W,L,W) 
ERC 1�2  &  1�3 1�2 1�2  ∨  3�2 
Rankings: 1�2�3 1�2�3 1�2�3 

 1�3�2 1�3�2 1�3�2 
  3�1�2 3�1�2 
   3�2�1 

 
Any ranking good for a also works for a′ and a″; any ranking good for a′ works for a″ as well. 
If we are looking at an overall ranking situation where a is satisfied, then a is the most 
informative of the trio about that situation. Our 1�2�3 in example (28) is exactly such a case: 
ERC [a] (hence vector a) provides the greatest possible amount of information about 1 and its 
necessary dominees, namely that 1 dominates both 2 and 3, a fact unmentioned in either a′ or a″. 

‘Informativeness’, for us, then, is entailment.  A stronger, asymmetrically entailing ERC 
is more informative, more restrictive of rankings, than the ERCs that it asymmetrically entails. 
Since entailment is based on satisfaction, it extends just as directly from ERCs (as logical 
expressions) to their corresponding vectors. So we will speak of entailment, thus extended, as a 
relation among vectors as well, exactly tracking the relation among their associated ERCs. 

The informativeness relation holds meaningfully among vectors arising from a given 
reference set, which is what they are being informative about. If you know ‘p&q’ you know 
more than if you know ‘p’ alone — so long as ‘p’ and ‘q’ are both informative in the first 
place.12 In particular, we are only interested in vectors that are entailed by the reference set, 
because we seek to characterize its essential content. 

There is then a hierarchy of informativeness among a, a′, and a′′, running from more to 
less, based on asymmetric entailment. This local hierarchy propagates to the bases containing 
them. The three different bases for 1�2�3 can be rated according to their relative 
informativeness. All must contain exactly two vectors and one of those must be b (e,W,L), but 
the second can be chosen from among these: 

 
a: (W,L,L) a′: (W,L,e) a′′: (W,L,W)  

 
If we seek maximal informativeness, we choose a, since it asymmetrically entails the others. Our 
choice, taken with b (e,W,L), yields the MIB. If we seek to focus on local relations and avoid 
consequences collectively derivable through transitivity, we choose a′, arriving at the Skeletal 
Basis.  If we are for some reason interested in keeping up the appearance of openness in our local 
options, we choose a″, yielding the Least Informative Basis. 

                                                 
12 For example, ‘2+2=4’ is entailed by everything and ‘2+2=5’ entails everything, but neither ‘p&(2+2=4)’ nor 
‘p&(2+2=5)’ is notably more informative than ‘p’ by itself. 
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The minimality restriction of the size of the basis also determines the extent of entailment 
relations within it: none can exist. If one basis element were entailed by others, then it could be 
removed without loss of information, which means that the original putative ‘basis’ didn’t have 
minimal cardinality and couldn’t have been a basis at all.  

Our overall goal can now be made quite concrete: given a reference set of ERC vectors, 
we wish to operate upon it to obtain a minimal vector set giving back the entirety of required 
rankings. In addition to conciseness, we want informativeness: maximal local informativeness 
gives the MIB. From the elements of the MIB, the Skeletal Basis may be constructed. Although 
there will in general be many bases for a typical reference set, both the MIB and the Skeletal 
Basis are unique,  a not-quite-trivial fact that is proved in Prince & Brasoveanu 2009. 

For Lombardi’s Swedish as evidenced in (26), the MIB will contain exactly these three 
elements: 

 
  b1: (W,L,L,L) 1�2 & 1�3 & 1�4 
  b2: (e,W,L,L)   2�3 & 2�4 
  b3: (e,e,W,L)     3�4  
 
This gives the following CT (e omitted for clarity): 
 
(30)  MIB for Lombardi’s Swedish. 

MIB of  (26) 1 2 3 4 
b1 W L L L 
b2  W L L 
b3   W L 

 
This is skeletalized by reducing all collectively-derivable L to e (which is equivalent to blank): 
 
(31)  SKB for Lombardi’s Swedish. 

SKB of  (26) 1 2 3 4 
b1′ W L e e 
b2′  W L e 
b3   W L 

 
Other bases exist, but they all contain weaker or more confounded elements. For example, b1 
(W,L,L,L) can be replaced by (W,L,L,W) or (W,L,W,W) or (W,L,e,W) or various others, but 
any such are asymmetrically entailed by b1, since they omit requirements present in b1 and 
introduce disjunctions that are cancelled out in the broader scheme of things. 

Importantly, there is no restriction that the MIB, or any other basis, be a subset of the 
original set. In the case at hand, only vectors b3 (MIB) and b2′ (SKB) appear in the raw data, as 
(26)a and (26)b. The others must be constructed by combining information that is directly 
available. We now leave behind the notion of the ERC vector as the creature of data observation 
and we advance to regarding it as formal expression, with a certain interpretation, in which guise 
it serves as the essential element for representing and calculating ranking requirements. 
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2.2.1 Appendix to 2.2 
 
For purposes of explicitness, we record the notions involved in the discussion. 
  
(32) Entailment among vectors. Let A be a set of ERC vectors, and b be an ERC vector. 

Then ABb iff every ranking that satisfies A also satisfies b. For vectors b,c, if bBc but not 
vice versa, then b ‘asymmetrically entails’ c. Entailment between sets of ERC vectors is 
as follows: for A and B  sets of ERC vectors, ABB iff ABb for every b∈B. 

 
(33) Informative. Let A be an ERC vector set, and b,c be ERC vectors. Suppose also that 

AB{b,c}. Then ‘b is more informative than c about A’ iff b asymmetrically entails c. 
 
(34) Basis. Let A be an ERC vector set and suppose B is such that BBA and ABB, i.e. A and B 

are equivalent ERC vector sets. Further suppose there is no set C with the same property 
such that |C|<|B| (i.e. the cardinality of C is strictly less than the cardinality of B). Then 
we say that B is a basis for A.13 

 
(35) Most Informative Basis (MIB). Let B be a basis for A. B is the MIB for A iff B has the 

most L’s of any basis. Equivalently, iff for every b∈B and every x such that ABx, if xBb, 
then x=b. Equivalently, if xBb and x≠b, then B\b ∪ {x} is not a basis for A. 

 
(36) Least Informative Basis (LIB). Let B be a basis for A. B is the LIB for A iff B has the 

most W’s of any basis. Equivalently, iff for every b∈B and every x such that ABx, if bBx 
and x≠b, then B\b ∪ {x} is not a basis for A. 

 
(37) Skeletal Basis (SKB). Let B be a basis for A. B is the SKB for A iff B has the most e’s of 

any basis. Equivalently, using the notion of fusion introduced in §2.3 below, notated with 
the ‘◦’ symbol, B is the SKB for A iff for every b∈B and for every x such that ABx, if 
x◦b=b and x≠b then B\b ∪ {x} is not a basis for A. 

 
 
2.3  ERCs and Consequences 
 
Defining and finding the Most Informative Basis turns on the notion of entailment between 
ERCs. Given an ERC set A, the elements of a basis are drawn not just from A, but from the 
entire set of ERCs entailed by A. The relation of informativeness between ERCs is based on 
entailment. The elements of a basis are logically independent, in the sense that no one of them is 
entailed by any collection of others. 

The relation of entailment between ERCs has been studied in ERA. Here we present the 
basic findings that underlie the present investigation and move forward to develop the key ideas 
that lead to the Fusional Reduction Algorithm. 

                                                 
13 It is also possible to define basis in terms of logical properties and derive its minimal cardinality; noted below, 
§3.3, p.52, and developed in Prince & Brasoveanu 2009. For present purposes, we settle for the direct approach. 
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2.3.1 Single ERC Entailment 
 
Entailment relations fall naturally into two types. The simplest involves entailments following 
from a single ERC. More complex is the relation between a multi-member set of ERCs and its 
consequences. We will see that the second reduces to the first, when an appropriate method of 
combining ERCs, ‘fusion’, is introduced.  The algorithm FRed depends on this reduction. 

Let us first examine single ERC entailment Given an ERC vector that contains at least 
one L coordinate, we can derive an entailment from it by removing an L and replacing it with an 
e. We write ‘→’ between vectors connected by this operation: 
 
(38) L-retraction. 
   (W,L,L)  → (W,L,e) 
   1�2 & 1�3 B 1�2 
 
Similarly, if we replace an e with a W, we also obtain a legitimate entailment. Again, we signify 
the relation between vectors with ‘→’. 
 
(39) W-extension. 

(W,L,e) → (W,L,W) 
1�2   B 1�2 ∨  3�2 

 
Putting aside those ‘trivial’ vectors that are satisfied in all models or in none, it turns out that 
every entailment from a single ERC arises from a sequence of L-retractions and W-extensions 
(ERA:6, Prop 1.1).14 
 
The trivial vectors deserve a moment’s notice. These lack the familiar configuration in which 
both W’s and L’s are present, and they therefore do not express a contentful ranking relation. 
They come in two species, valid and invalid. 

(1) Valid. Those lacking L impose no ranking requirements, because there is no 
constraint that must be subordinated; they are therefore satisfied by any hierarchy and 
universally valid.  

(2) Invalid. Those lacking W but containing L no ranking can satisfy, because they 
contain no legitimate dominator to satisfy the requirement that L be dominated. 

To provide for convenient reference to these entities, let us designate the set of all valid 
vectors of any length by the name W*, mnemonically marking their composition from W’s and 
e’s.  The set of invalid vectors we will designate L+, indicating that its members contain at least 
one L (but no W’s).  

Trivial vectors, because of their indiscriminate logic, misbehave with respect to L-
retraction and W-extension. Boolean logic tells us that invalid statements entail anything, and 
anything entails a valid statement. But L-retraction and W-extension are more particular. For 
example, 

                                                 
14 Recall that a model is a grammar or total ranking of the constraints (p.10), yielding the semantics of satisfaction 
(see ex. (24), p.12). We are thus taking a model-theoretic perspective on the logic of natural language grammar. The 
centrality of entailment in OT metatheory attests to the utility of the approach, here and in linguistics generally. 
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(40) (e,L) g (L,W)  but (e,L) B (L,W): ex falso quodlibet. 
 
The relationship e → L in the first coordinate is not sanctioned by L-retraction. Similarly, 
 
(41) (W,L) g (e,W) but (W,L) B (e,W): verum ex quodlibet. 
 
Here the first-coordinate relationship Wge runs in the wrong direction, but has no effect on 
(Boolean) entailment. 

L-retraction and W-extension can be brought under one roof if we see the entailment 
relation as being based on an order. Assume the scale: L<e<W.15  Then we can say that a  
‘arrows’ b by definition iff every coordinate of a is less than or equal to the corresponding 
coordinate of b in this order.16 Our fundamental result identifies the ‘arrowing’ relation as the 
perfect mirror of  semantic entailment, as long as trivial ERCs are not involved. 
 
(42) Entailment over individual nontrivial vectors ⇔ Arrow.     

 For a,b nontrivial, a→b iff aBb.    
  Proof. ERA:6, Prop 1.1. 
 
Observe that moving from ‘arrow’ to entailment is always legitimate, regardless of triviality. The 
arrow relation refines entailment, adding further structure but never contradicting it. 

2.3.2 Multiple ERC Entailment 
 
Entailments may follow from a set of ERCs that do not follow from any individual member of 
the set. Consider this pair: 
  
(43) 1�2 and 1�3. 

 1 2 3 ERC 
a W L e 1�2 
b W e L 1�3 

 
Neither a nor b independently yields the conclusion that 1 must dominate both 2 and 3. In this 
kind of case, there is a vector that exactly encapsulates the set, namely (W,L,L). But when 
transitivity of ranking order is involved, such a handy reduction will not be available. Consider 
the simplest case where transitivity asserts itself. 
 

                                                 
15 The arithmetization of fn.8 (with L=−1, e=0, W=1) would serve handily. See Meyer 1975:400 for the original 
introduction of the scalar idea for interpreting arrow and related connectives; see ERA:55-57 for discussion. 
16 This extends the familiar Boolean relation of material implication. There the scale is F<T, often mirrored 
numerically by taking F=0 and T=1. Then p⊃q is true whenever the truth value of p is less than or equal to that of q. 
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(44) 1�2�3. 
 1 2 3 ERC 
a W L e 1�2 
b e W L 2�3 

 
From these two vectors, it follows that 1�3. But the vector (W,e,L) expressing this requirement 
is not individually arrowed (or entailed) by either a or b: 
 
(45)  Failures of simple arrowing. 

Non-arrowed   Non-entailed  Cause 
 a: (W, L, e) g (W, e, L)  1�2 H 1�3   egL in  3   
 b: (e, W, L) g (W, e, L). 2�3 H 1�3   Wge in 2 
 
Furthermore, there is no way to combine a and b into a third vector that expresses the full 
content of both. The reason is straightforward: the totality of information in a and b is 
represented in the logical conjunction of their associated ERCs, and this expression is simply not 
of the ERC form.   
 
(46) Conjunction. [a]&[b] =  1�2 & 2�3 
 
In this conjunction, constraint 2 is identified both as a dominator (W) and a dominee (L). But any 
ERC must treat the W and L classes as disjoint.17 An ERC relates two disjoint classes of 
constraints; transitivity mentions three constraints falling into two overlapping classes. 

What’s needed is a different kind of logical combination, one which may sacrifice some 
information, but preserves enough to support the calculation of entailments. The appropriate 
method is ‘fusion’, which combines values according to the following scheme (ERA:8): 
 
(47) Fusion of values. 
 L◦X = X◦L = L  ‘L is dominant’ 

e◦X = X◦e = X  ‘e is identity’ 
W◦W   = W  ‘fusion is idempotent: more generally, X◦X =X’ 

 
 
 
    
We write X◦Y for ‘X fused with Y’ where X,Y are variables over {W,L,e}. We will speak of the 
components of a fusion as ‘fusands’. To get the fusion of multi-coordinate vectors, we apply the 
operation to corresponding coordinates, paralleling the way vectors are added. As is customary, 
we overload the fusion symbol, using the same notation for the derived and basic operations. 
  
(48) Fusion of vectors. Fuse coordinatewise. Writing v[k] for the kth coordinate of v, we 

define the coordinates of the vector a◦b in terms of the fusion of its coordinates.  
   a◦b[k] =def a[k]◦b[k]        

 
That is: the kth coordinate of a◦b is the fusion of the kth coordinates of a and b.  
                                                 
17 In an equivalent to the vectorial representation, an ERC may be expressed as an ordered pair of sets of constraints, 
the W-set and the L-set of the candidate pair: 〈W,L〉. See ERA:2. 
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Like more familiar operations such as and, or, plus, and times, the order of fusion of 

multiple entities is immaterial; it therefore extends smoothly from pairs to multi-element sets.18 
We therefore adopt a general notation for fusion of multiple vectors. 

 
(49) Notational convention: Fusion of sets of ERC vectors.      

We write fA for the fusion of a nonempty set of ERC vectors A, with the convenient 
proviso that f{v} = v for singleton sets. 

 
Returning to case (44) with fusion in hand, we can now derive the desired collective 
consequence. First, we fuse the two vectors: 
 
(50) Fusion and transitivity. 

 1 2 3 
a W L e 
b e W L 

a◦b W L L 
 
The vector representing 1�3 is arrowed, and therefore entailed, by the fusion a◦b: 
 
  (W,L,L ) → (W,e,L) nb: L→e in 2. 
 
Fusion has delivered a vector that allows the collective consequence 1�3 to be derived from the 
rules for individual entailments. This pattern turns out to be entirely general.  
 
A fusion-derived vector is telling us something about ranking requirements that the entire fusing 
set also tells us. Fusion respects the content of a set of vectors. More important: it suffices, 
properly used, to recover any ranking requirement imposed collectively by members of that set. 
 To get a glimpse of the utility of fusion, let’s return to the Lombardi analysis, gathering 
some highly disjunctive ERCs that nonetheless jointly and completely determine the ranking. 
 
(51) A basis for Lombardi’s Swedish. 

  1: AGREE 2: IDLAR 3: *LAR 4: IDONSLAR 
a. stekde → stek.te ~ steg.de   W L 
e. ægde  →  æg.de ~ æk.te  W L W 
f. stekde → stek.te ~ stek.de W L W L 

  
Each ERC-internal disjunct marked W suggests an illusory explanation for the optimality of a 
correct form. For example, comparison e taken by itself allows for 4:IDONSLAR to be regarded as 
explaining the choice of [æg.de] over *[æk.te]. But comparison a shows that this cannot be right; 
it is only 2:IDLAR that can be doing the job. Fusion allows us to integrate the key information 
from other ERCs, suppressing the nonviable disjunctions (bolded and italicized) that come in 
with the raw data. Suppressing them all via fusion leads in this case directly to the MIB. 

                                                 
18 Fusion is commutative by definition and associativity follows from a straightforward calculation. The term itself, 
and the ◦ notation come from relevance logic (Anderson & Belnap 1975). See §2.4 below for discussion. 
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(52)  Relevant fusions. 

MIB 1: AGREE 2: IDLAR 3: *LAR 4: IDONSLAR 
a     W L 
a◦e     W L L 
a◦e◦f W L L L 

  
Fusion always expresses a ranking restriction inherent in the original data. Those displayed here 
are particularly useful, since the last two rows are individually stronger than the corresponding 
rows in the original basis (51), deriving directly from the data, in which several factors are 
confounded. Selective fusion removes the confounds, and the resulting basis in (52) resolves the 
Ranking Problem with maximal informativeness in each ERC, the hallmark of the MIB. 
 
(53) Fusion  Associated ERC 
 a◦e  2:IDLAR �   {3:*LAR,  4:IDONSLAR}   
 a◦e◦f  1:AGREE �  {2:IDLAR,  3:*LAR , 4:IDONSLAR} 
 
It is immediate from inspection of the tableau that a total order on the constraint set is mandated. 
 
To put the content-respecting property of fusion more exactly: the fusion of any set of vectors is 
entailed by that set, so that fusion never leads us outside the realm of consequences of the 
original set. This is a ‘closure’ property, since the set of entailed vectors is closed under fusion. 
 
(54) Closure: Fusion respects entailment.        

  ABfA.             
      Proof. ERA:10, Prop. 2.1. 
 
The closure property is true of a variety of possible combining operations, some uselessly weak 
— for example, if we replace X-combine-L with e, yielding a valid ERC, the entailment would 
hold vacuously (verum ex quodlibet). But fusion has a great strength: it reduces the collective 
entailment problem to single ERC entailment.  
 For any ERC vector v entailed by a set A, we are guaranteed that there is a subset of A 
that fuses to a single ERC vector that entails v. 
 
(55) Entailment by fusion. Let v be an ERC vector and A a set of ERC vectors. 

If ABv, then for some X⊆A, fXBv. 
      Proof. ERA:14, Prop. 2.5. 
 
Even better, for all nontrivial entailments, we have a perfect match between entailment and W-
extension/L-retraction — equivalently, the ‘arrow’ ordering relation on vectors. 
 
(56) General nontrivial entailment ⇔ Arrow. Let v be a nontrivial ERC vector and A a 

satisfiable set of ERC vectors.          
  ABv iff for some X⊆A, fX→v.        

      Proof. RL from (42) and (54).  
       LR from (55) and (42). See ERA:6, 10, 14. 
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Only the left-to-right (LR) direction — entailment to arrow — actually needs the caveats about 
nontriviality and satisfiability. This reflects the mismatch, noted above, between the 
hyperparticularity of arrow and the nonparticularity of entailment with respect to relations 
involving valid and invalid vectors. Compare the observations in (40) and (41), which identify 
specific instances of divergence. 
 The arrow relation, however, is a sturdily reliable guide to entailment, without 
qualification: 
 
(57)  Arrow ⇒ Entailment (all vectors).        

  If for some X⊆A we have fX→v, then ABv.        
      Proof. Follows directly from ERA:10,  Prop. 2.1. 
 
 Fusion, then, is pretty much as strong as possible. The key fact is that an entailed ERC, 
whatever the complexity of the logic, is always entailed by a single ERC that is the fusion of  
some subset of the reference set. With this result, we have completely transported the entailment 
problem from the semantics of ranking arguments into the domain of vectorial operations and 
relations. 

2.3.3 Fusion and Failure 
 

The flipside of entailment is inconsistency/unsatisfiability. If p entails q, then p and ¬q are 
inconsistent — and vice versa. Example: being square (p) entails having corners (q), so you can’t 
have a cornerless square (¬q and p). An ERC set may be internally inconsistent, with no 
hierarchy satisfying it. This is no exotic mischance: in the course of research, assumptions about 
the constraint set or linguistic structure frequently reveal themselves as erroneous or incomplete 
because they give rise to unsatisfiable ERC sets. Similarly, much of Tesar’s learnability work 
depends on inconsistency detection to reject mistaken hypotheses (Tesar 1995 et seq.).   

Fusion detects inconsistency unerringly. The simplest example takes the form of a pair of 
constraints which are ranked 1�2 by one ERC and 2�1 by another. The ERC vectors would be 
(W,L) and (L,W). Their fusion to (L,L) marks the case as hopeless, since it demands domination 
of both and provides no dominator for either. This result hints at the underlying generalization: a 
set of ERC vectors is unsatisfiable iff it contains a subset that fuses to a vector with no W’s and 
at least one L, a member of L+. 
 
(58) Unsatisfiability via fusion.         

 No hierarchy satisfies A iff for some X⊆A,  fX∈ L+.    
      Proof. ERA Prop. 2.4, p.11. 
 
To see how this works in general, consider the following more intricate example: 
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(59) A = {a,b}. 
 1 2 3 4 ERC 
a  W L W L (1�2  & 1�4) ∨  (3�2 & 3�4) 
b L W L W (2�1 & 2�3)  ∨  (4�1 & 4�3) 

a◦b L L L L ∃x∈Ø s.t. x�{1,2,3,4} 
    
ERC-wise, it will take some tangled work with the propositional calculus, especially the 
distributive law, accompanied by references to the transitivity and asymmetry of ‘�’, to crank 
out the conclusion that no ranking can satisfy both vectors. But fusion delivers the fact directly. 
The ERC associated with the fusion is invalid, unsatisfiable by any hierarchy; therefore the 
original set must be unsatisfiable as well. Whatever entails a falsehood must itself be false. 
 To put this fact to work, let us return again to Lombardi’s analysis of Swedish, adding in 
a piece of data mentioned but untableau’d in the original article: /skuːg+s+brand/ ‘forest fire’, 
which comes out as [skuːksprand] not *[skuːgzbrand].19 We attach this fact to the basis (51) in 
order to assess its status. We know that the cited basis is equivalent to the full set of data 
considered by Lombardi. If the new datum is already encompassed, it should be entailed by what 
we already have. If it raises problems, they will be visible in this context. 
 
(60) Basis {a,e,f} for Lombardi’s Swedish + additional datum. 
 1: AGREE 2: IDLAR 3: *LAR 4: IDONSLAR 
a. stekde → stek.te ~ steg.de   W L 
e. ægde → æg.de ~ æk.te  W L W 
f. stekde → stek.te ~ stek.de W L W L 
h. skuːgsbrand → skuːks.prand ~ skuːgz.brand  L W L 

e◦h  L L L 
 
A quick calculation shows that e◦h = (e,L,L,L). Bad news! Observe, too, that the problem in the 
data does not emerge from fusion of the whole set:  a◦e◦f◦h = (W,L,L,L). The theorem is that 
failure occurs when any subset fails, here just {e,h}. 
 The underlying problem, of course, is that IDLAR favors the candidate making fewest 
changes in the voicing value of obstruents (see fn.10, p.3). The desired winner in h makes two 
such changes, its competitor merely one. This is ‘majority rules’: see Lombardi 1999:295 and 
Baković 2000:25ff for relevant discussion. In the case at hand, its force is mooted by another fact 
of the language, albeit one that has not been prominent in discussion of the issue: Swedish 
admits no z. When we acknowledge this fact by noting the force of a z-barring constraint, call it 
*z, the inconsistency disappears. Now no subset fuses to L+. 
 

                                                 
19 Hat-tip to Sarah Murray for pointing us to the key datum. 
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(61) More complete view of relevant constraints. 
 0: *z 1: AGREE 2: IDLAR 3: *LAR 4: IDONSLAR 
a. stekde → stek.te ~ steg.de    W L 
e. ægde → æg.de ~ æk.te   W L W 
f. stekde → stek.te ~ stek.de  W L W L 
h. skuːgsbrand → skuːks.prand ~ skuːgz.brand W  L W L 

e◦h W  L L L 
 
The methodological moral is two-fold and makes up in widespread applicability what it lacks in 
subtlety: sound analysis requires inclusion of all relevant constraints and all relevant data. A 
relevant constraint is one assessing a polar value, W or L. Relevant data produces a new 
unentailed ERC, new information about the ranking conditions required by the language. 

2.3.4 Fusion and the Loss of Information 
 
Why does fusion work? Formally, the response might be: because it does, and provably. 
Qualitatively, though, we can see that it has the virtue of preserving necessary subordination 
(through the dominance of L) and possible domination (through the dominance of W when L is 
not around). This L-preserving strategy captures the transitivity and asymmetry of domination. In 
the simplest case, this is straightforward:  if a says 1�2 and b says 2�3, then both 2 and 3 are 
necessarily dominated; the fusion a◦b records this fact and thereby obtains the transitivity-
derived relation 1�3. Similarly for asymmetry:  ERCs requiring 1�2 and 2�1, for example, 
will fuse to (L,L), because both 1 and 2 are necessarily dominated. In this way, the logic of the 
ERC calculus inherently contains the logic of strict order, and fusion brings it out. 

From this point of view, it is natural to expect that every unsatisfiable set should contain 
a subset that fuses to L+. Transitivity leads to contradiction between inconsistent ranking 
requirements, yielding a cycle of required constraint dominations, which is disallowed by the 
asymmetry of the relation. In such a cycle, every constraint is necessarily dominated, earning L 
somewhere, and thereby eliminating W and e from its fusion.20 
 But fusion is not a panacea that automatically and indiscriminately resolves all problems. 
In order to retrieve the consequences of transitivity, the value e must serve as an identity, to 
preserve possible domination in W◦e. This leads to cases where fusion weakens informativeness. 
Consider the following, in which fusion produces an ERC that is entailed by both fusands, and 
entails neither. 

 
(62)  When fusion weakens. 

 1 2 3 ERC 
a  W e L 1�3 
b e W L 2�3 

a◦b W W L 1�3 ∨ 2�3 
 

                                                 
20 Observe that if the relation were not asymmetric, such a cycle would be harmless. We can have a≥b and b≥ a. 
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Two complementary questions then arise: when does fusion preserve information exactly? and 
when does fusion lose information? (We consider only nontrivial ERCs.) These are equivalent to 
asking when fusion is identical to conjunction (ERA:15-20). Conjunction is entirely information-
preserving, since a conjunction entails each of its conjuncts, and the conjuncts jointly entail the 
conjunction. 
 We already have {p,q}Bp◦q, the fusands jointly entailing the fusion, from (54). To 
answer the question of equivalence, then, we need only ascertain the circumstances in which the 
fusion is guaranteed to entail both fusands (or, complementarily, when it fails to entail one of 
them). This is the crucial pair of relations: 
 
(63) Requirements for fusion-conjuction equivalence. 
   p ◦ q → p 
   p ◦ q → q  
 
A quick review of the rules for fusion reveals these considerations: 
 
 ● in any coordinate where at least one of p or q has L, both entailments are secure. For 
any X,Y∈ {W,L,e}, we have:. 
   L◦X   → Y because ‘L arrows anything’ 
 
 ● in any coordinate where both p and q have W, the two entailments are secure: 
   W◦W → W because ‘W arrows W’ 
  
 ● similarly where both are e: 
     e◦e   → e because ‘e arrows e’ 
 
This leaves only the situation where one vector has e and the other has W. Here arrow fails from 
the fusion to the e-bearing vector: 
 
   e◦W=W  so e◦W g e         (here, p◦q g p) 
 
 Fusion becomes equivalent to conjunction, and fully-information preserving, precisely 
when every W in the fusion comes only from the fusion of W’s in the fusands. This situation is 
called ‘W-compliance’ (ERA:16).21 This is true not just of pairs, but also of arbitrary sets. When 
every W in the fusion of an entire set of ERCs comes only from W’s, then the fusion of the 
whole — a single vector — encapsulates everything that the set has to say about ranking. To see 
the power of fusion in a W-compliant environment, consider the following: 
 

                                                 
21 The converse (‘fusion ≡ conjunction implies W-compliance’) is challenged only when both of the fusands are 
valid. Consider the simplest possible case, with just one coordinate: e◦W g e, yet eBW. From the logical point of 
view, W and L are acting like truth values T and F; e is a third value. F behaves in fusion just as it does in 
conjunction, dominating. Conjunction and fusion part company in their treatment of relations between T and the 
new value e. Conjunction must take T∧e to be e, in order to obtain the eminently desirable ‘p∧q → q’ (consider 
p=T, q=e). Thus, when combinations of T and e are not at issue, fusion collapses with conjunction. See ERA:47ff. 
for discussion.  
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(64) W-compliance. 
 1 2 3 ERC 
a  W W L 1�3 ∨ 2�3  
b W L W 1�2 ∨ 3�2 

a◦b W L L 1�{2,3} 
 
Here again we face a struggle with the distributive law (supported by the defining order 
properties of domination and an additional dollop of propositional calculus) if we wish to assault 
the consequences of the set {a,b} within standard logic. But the sole W in the fusion derives 
entirely from fusand W’s, signaling W-compliance, so that we can be sure that fusion delivers 
not just a consequence, but a complete equivalent. We may discard both fusands in favor of their 
fusion and lose nothing. 
 When W-compliance fails in at least one coordinate, due to a collocation of W’s and e’s 
there, the fusion is doomed to lose information.22 A dead loss, as it were, occurs when the fusion 
entails none of its component fusands. A simple example illustrates this outcome: 
 
(65) Failure of W-compliance I: Increase in disjunctivity. 

 1 2 3 ERC 
a W e L 1�3 
b e W L 2�3 

a◦b W W L 1�3 ∨ 2�3 
 
To recognize the crucial points of departure from W-compliance, let’s use the term ‘info loss 
configuration’ to describe any constraint column that contains both W and e but no L’s — 
equivalently, any coordinate in the vector set that fails to be W-compliant under fusion. In 
example (65), every W-coordinate in a◦b belongs to an info loss configuration. 
 
Since it is the vectors that carry the information, we have a related notion that describes their 
role: for a given constraint fusing to W, its ‘info loss residue’ is the set of vectors that contribute 
e to its fusion. Crucially, these will not be entailed by the fusion, since Wge. That’s why their 
domination information is lost. In the case at hand (65), vector b is the info loss residue of 
constraint 1: it supplies the e which is obliterated in the fusion to W. Similarly, vector a is the 
info loss residue of constraint 2. Neither is entailed by the fusion, so it fails to capture their 
content. The total info loss residue, the union of all residues, embraces the entirety of the data set 
here, indicating that fusion loses info across the board. In such cases, it is pointless to form the 
fusion; information is lost from every vector. 

In other circumstances, as we’ve seen, loss of information is compensated for by a local 
increase in informativeness. Consider the following, which contains a single info loss 
configuration (constraint 1) and a single correlated info loss residue (ERC b). 
 

                                                 
22 If there is information to be lost. Fusion of valid vectors, like e.g. (e,W) and (W,e), loses nothing because there is 
nothing to lose. 
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(66) Failure of W-compliance II: Compensatory increase in conjunctivity. 
 1 2 3 ERC 
a W L e 1�2  
b e W L 2�3 

a◦b W L L 1�2 & 1�3 
 
Focus on  ERC vector b  and the information that it delivers. The fusion a◦b loses all of b’s 
information about constraint 2, retaining from b only the information that constraint 3 must be 
dominated. But this is not nothing — the implied relation between 1 and 3 is nowhere locally 
expressed in the original set {a,b}. The fusion, though lossy, provides a more complete account 
of the ranking restrictions on constraint 1 than any ERC in the set we started out with. The fusion 
asymmetrically entails one of its fusands, a desirable increase in informativeness. This means 
that we may replace the entailed fusand a with the more informative fusion a◦b. We must still 
retain the unentailed residue b, because fusion obliterates its crucial proffer of constraint 2 as the 
necessary dominator of 3. 
 Let us designate as ‘fusionally reducible’ any collection of vectors that can be replaced 
by the fusion of a set that includes it. It’s clear that W-compliant sets are fusionally reducible in 
themselves. But the phenomenon is more general. Strikingly, a subset that is not internally W-
compliant can still be reducible in the context of a containing superset, if every info loss 
configuration column within the subset fuses to L in the fusion of its container. Trivial vectors 
aside, a subset of vectors is fusionally reducible in the context of a superset if and only if every 
member of the subset is pairwise W-compliant with the fusion of the superset. In the case just 
reviewed, the singleton set {a} is fusionally reducible to a◦b. This is more than a trivial swap of 
one for one, because the fusion is more informative than what it replaces. 

Here’s a richer example: the focus is on the behavior of multi-element subset within a yet 
larger set. To start off, let’s consider a non-W-compliant pair: 
 
(67) Fusion, with  info loss. 

 1 2 3 4 ERC 
a W L e W 1� 2 ∨ 4�2 
b W e L e 1�3 

a◦b W L L W 1�{2,3} ∨ 4�{2,3} 
 
Constraint 4 is an info loss configuration; its residue is b. Vectors a and b are not W-compliant, 
so the pair is not fusionally reducible in the context of itself. Vector a alone is reduced by a◦b. 
But suppose they in fact sit in a larger world, where further conditions also obtain: 
 
(68)  Fusionally reducible in context, but not internally W-compliant. 

A 1 2 3 4 ERC 
a W L e W 1�2 ∨ 4�2 
b W e L e 1�3 
c e W e L 2�4 

a◦b◦c W L L L 1�{2,3,4} 
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Here the beneficent influence of ERC c dispels the info loss configuration 4. The addition of c 
introduces a new loss configuration of its own in 1, of which c is the residue, but that merely 
means that c is indispensable in characterizing the entire new set. 
 The fusion a◦b◦c can replace the subset {a,b} without loss of entailments. The fusion of 
the whole is not merely equivalent to the subset {a,b}. It is stronger. It imposes a relation 
between 1 and 4 of which the subset is ignorant. The additional requirement 1�4 is collectively 
mandated via transitivity involving constraint 2 as expressed in vector c, which declares that 
2�4. It is only vector c that provides the rationale for dismissing the illusory hope, asserted 
disjunctively in a and not contradicted in b, that constraint 4 is fit to serve as a possible 
dominator for constraint 2. 

We may therefore replace {a,b} with the fusion of the whole. The resulting vector set is 
equivalent to the original set, with an increase in both conciseness and local informativeness.  
 
(69) Fusionally reduced set. 

A′  1 2 3 4 ERC 
a◦b◦c W L L L 1�{2,3,4} 
c e W e L 2�4 

 
The set of ERC vectors presented in (69) is the smallest that can fully recover the content of the 
original set, and its component vectors are individually as informative as possible. We have 
therefore calculated the Most Informative Basis (MIB) for {a,b,c}.  
 
In this section, we have developed the techniques that yield a syntactic or algebraic counterpart 
of the essentially semantic — model-theoretic — notion of entailment. Fusion is the key 
operation on sets of vectors. Its result contains the maximum possible number of L’s, picking up 
every L in the set, identifying every necessarily subordinated constraint, and thereby making the 
fusion potentially more informative than any single vector in the set. Among the remaining 
coordinates, the fusion also collects every W, identifying all potential dominator constraints 
among those that needn’t be subordinated. Fusion respects entailment and allows us to reduce 
nontrivial entailment from any set of premise vectors to the arrowing relation between single 
vectors. The logic of fusion identifies among the constraints those where fusion degrades the 
information content of the set of vectors that is fused: ‘info loss configurations’, constraints 
fusing to W with e in the fusion. Complementarily, we have identified among the vectors 
‘fusionally reducible sets’, those whose informational content is preserved, or even (in context) 
enhanced, by fusion. 
 We are now equippd to take on the full Fusional Reduction Algorithm, which forms the 
techniques used selectively here into a procedure that is guaranteed to produce the MIB of any 
satisfiable set whatever. 
 
2.3.5 Remark on the Logical Background 
 
Fusion began its life in linguistics under the name ‘summation’ (Prince 2000). With the 
introduction of the ‘negative’, which transforms [x~y] to [y~x] (ERA:12), a full-fledged logic  
emerged, identified in ERA as the implication-negation fragment of the relevance logic RM3 
(Anderson and Belnap 1975; Meyer 1975; Parks 1972), which itself first appears, on its own, in 
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Sobociński 1952. With this identification, notation and terminology was normalized to the 
relevance logic standard. RM3 is a three-valued propositional logic, in which our W corresponds 
to T(rue), L to F(alse), and e marks the third value. In this logic, fusion is a kind of weakened 
analog of conjunction; arrow, a weakened analog of material implication; and negative, of 
standard negation. The relation between OT and RM3 (as well as its big sibling RM), is explored 
in some detail in ERA:47-80. 

2.3.6 Appendix to 2.3 
 
For the explicit record, we conclude with a concise listing of the key notions and results.  
 
(70) Trivial vector. A vector v is ‘trivial’ over a constraint set Σ, iff either of two conditions 

holds: 
a. For every hierarchy H, a linear ordering of Σ, H satisfies v,  
b. For every hierarchy H, a linear ordering of Σ, H does not satisfy v. 

In the first case, we say that v is valid; in the second case, invalid. In the first case, 
v∈W*, the set of all vectors lacking L; in the second, v∈L+, the set of vectors with at 
least one L but no W. 

 
(71) Arrow. Let a,b be vectors over a set of n constraints. Vector a ‘arrows’ a vector b, written 

a→b, iff for every coordinate k, 1≤k≤n, we have a[k]≤b[k], where the order relation is 
determined by the scale L<e<W, of which ‘≤’ is the reflexive closure, ‘less than or equal 
to’. 

 
(72) Individual nontrivial entailment ⇔ Arrow. For a,b nontrivial, a→b iff aBb. (See (42).) 
 
(73) Fusion. Let a,b be vectors over a set of n constraints. The ‘fusion’ of a and b, written a◦b 

or f{a,b}, is the vector c whose coordinates c[k] are given by the following: 
c[k] = (a◦b)[k] = (b◦a)[k]  ‘fusion is commutative’ 
c[k] = X if a[k] = X and b[k] = X ‘fusion is idempotent’ 
c[k] = L if a[k] = L   ‘L is dominant’ 
c[k] = b[k] if a[k] = e   ‘e is identity’ 

By convention, f{v} = v. 
 
In the following, A is a set of ERC vectors, v an ERC vector, Σ the constraint set. 
 
(74) Closure: Fusion respects entailment. ABfA. (See (54).) 
 
(75) Entailment by fusion. If ABv, then for some X⊆A, fXBv. (See (55).) 
 
(76) Arrow ⇒ Entailment. If for some X⊆A we have fX→v, then ABv. (See (57).) 
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(77) General nontrivial entailment ⇔ Arrow. For v nontrivial, and A satisfiable, 
 ABv iff for some X⊆A, fX→v. (See (56).) 

 
(78) W-compliant. A is ‘W-compliant’ iff ∀k  fA[k]=W ⇒ a[k]=W for all a∈A. 
  
(79) Fusion / Conjunction. For a,b∉W*, a◦bB{a,b}iff {a, b} is W-compliant. More 

generally, if A contains no valid vectors, then fABv for every v∈A iff A is W-compliant. 
       Proof. ERA:16,  Props. 3.1, 3.2. 
(80) Info loss configuration (ILC)          

Let Ck∈Σ provide the kth coordinate for the vectors in A. We say Ck is an ‘info loss 
configuration’ over A iff fA[k]=W and there is a v∈A such that v[k]=e. ‘ 
 A constraint column containing both W and e but no L is an ILC; equivalently, any 
coordinate in the vector set where the criterion for W-compliance fails to hold. 

 
(81) Info loss residue (ILR)         

  Let Ck∈Σ be an info loss configuration over the set of vectors A. The ‘info loss residue’ 
of Ck over A is the set of vectors v∈A such that v[k]=e.     
   An ILR is a set of vectors that have an e in a column that constitutes an info loss 
configuration. 

  
(82) Fusionally reducible.           

X⊆A is ‘fusionally reducible in A’, where |A|>1, iff for every v∈X, fABv.    
‘A set of vectors whose content is encodable via fusion of a containing superset.’ 
  Remark: we may have X=A, in which case a (W-compliant) set is reducible to its 
own fusion. We may also have X⊊A, in which case only a proper subset of A is reducible 
via the fusion of all of A.  
  The requirement |A|>1 means that a singleton set is not taken to be fusionally 
reducible to itself. A singleton subset may be reducible in context: for example, with A 
={(W,L,W), (e,W,L)}, X={(W,L,W)}, we have that X is reducible via fA=(W,L,L). 

 

 32



3. The Fusional Reduction Algorithm: FRed 
 
FRed and the objects it creates are developed and explored. 
 
3.1 Fusional Reduction and the MIB 
 
Our primary goal is to calculate the maximally concise, maximally informative representation of 
the content of any set of ERCs: its Most Informative Basis (MIB). ‘Conciseness’ means precisely 
that a basis contains the fewest possible number of ERCs. The demand for conciseness has two 
distinct consequences for the general character of any basis, MIB or not. First, the elements of a 
basis must be logically independent, in the sense that none of them can be entailed by the rest. 
Any entailed vector is superfluous, adding nothing to the content, and can be removed — 
producing a smaller, equivalent set. But no set of ERCs equivalent to the reference set can be 
smaller than a basis. Second, it follows from conciseness that no basis can contain fusionally-
reducible subsets of cardinality greater than one. If a multi-element subset of a certain vector set 
is fusionally reducible, we can replace it with a fusion, a single vector, thereby reducing the 
cardinality, and showing that what we had originally couldn’t have been a basis. These two 
properties, logical independence and fusional irreducibility, cannot be unified.  
 To see this, observe first that a set can be fusionally irreducible yet contain logically 
dependent vectors. Consider the following two-element set, taken in isolation: 
 
(83) Fusionally irreducible and logically dependent. 

 1 2 3 ERC 
a  W W L 1�3 ∨ 2  3  
b W e L 1�3 

a◦b W W L 1�3 ∨ 2  3 
 
The set {a,b} is logically dependent, i.e. redundant: b entails a by W-extension. However, its 
fusion is identical to the weaker, entailed vector a. Therefore, the set {a,b} cannot be replaced by 
its fusion a◦b without loss of information. 
 Conversely, a fusionally reducible set can perfectly well be logically independent, as in 
the following example: 
 
(84) Fusionally reducible and logically independent. 

 1 2 3 ERC 
a  W L e 1�2  
b W e L 1�3 

a◦b W L L 1�{2,3} 
 
This is the simplest case of fusional reducibility, a W-compliant set. Here, neither element entails 
the other, yet their collective content is entirely present in their fusion. A more intricate case of 
the same phenomenon is seen in the collection of independent disjunctive ERCs, 
{(W,L,W),(W,W,L)}. Neither entails the other, but their fusion, which has the same form as in 
(84), entails them both. In the more general case of fusion reducibility illustrated in ex. (68) 
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above, where a proper subset reduces to the fusion of a containing superset, the elements of the 
reducible set are also logically independent. 
 The MIB is distinguished among bases in that its elements are maximally informative. 
Informativeness is determined by entailment: an entailing ERC vector is strictly more 
informative than any entailee distinct from it (choosing all of these from among the 
consequences of a reference set). The maximal informativeness requirement on the MIB means 
that each ERC in the MIB is entailed only by itself. Maximal informativeness induces further 
structure: the MIB doesn’t even tolerate subsets of cardinality one that are fusionally reducible to 
something else: any such would consist of an individual ERC than can be replaced, in context, 
with another ERC that asymmetrically entails it. 

From such global requirements on basis and MIB structure, we can assemble a concrete 
picture of what individual MIB elements look like. Each vector in the MIB describes the 
complete ranking requirements of a unique, minimal W-set. 

 
(I) Uniqueness of the W-set. The W-set of any basis vector must be different from all 

the other W-sets of any of its fellow basis elements. Two vectors with the same W-set will be W-
compliant, and therefore reducible to one, contradicting the minimal cardinality requirement. 
This holds of all kinds of bases. 

(II) Completeness of the ranking requirements. In the MIB, the L-set attached to a W-
set must be maximal: broadly put, you can’t add an L to any basis element in the MIB, 
preserving equivalence with the reference set. Specifically, for any vector b in the MIB,  there 
can be no other vector x, among all of the MIB’s entailments, with the same W-set and with an 
L-set that properly includes that of b. In this case, b would be asymmetrically entailed by x, via 
L-retraction (38) and thus not maximally informative. The MIB, then, consists of a set of vectors 
with distinct W-sets, each one with the maximal L-set allowed for by its proprietary W-set. 

(III) Minimality of the W-set. Accompanying the maximality property of the L-set of a 
MIB vector is the minimality displayed of its W-set. Given the domination requirements on the 
W-set of any MIB vector, as determined by the reference set, that W-set must be minimal, in the 
sense that it cannot be replaced by any proper subset of itself. Were it to be so replaced, the 
result would asymmetrically entail the original, not a possibility if we are looking at the MIB in 
the first place. The same property shows up in the Skeletal Basis: inserting a new W either 
diminishes the number of e’s, de-skeletalizing, or diminishes the number of L’s, losing an 
irreplaceable ranking requirement. 

 
 There is inevitably a gap, which may even be a chasm, between knowing the structure of 
an object, knowing what it looks like, and being able to produce it on demand. Up to this point, 
we have only interpreted the basis in various ways; now we want to change the way linguistic 
analysis can be done by providing an effective, infallible method of creating the MIB from data. 

The tools we have in hand are fusion and the single-vector entailment scale L→e→W. 
They will suffice. The MIB-producing Fusional Reduction Algorithm (FRed) works, in broad 
outline, like this: 

 
 a. Fuse everything. 
 b. Keep the fusion if it is informative. 
 c. Recurse on all vector subsets from which information has been lost. 
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More specifically, it runs like this: 
 
 1. Fuse everything. 
 2. Use the fusion to identify:  
 • each info loss configuration  (a constraint assessing W and e) 
 • the related info loss residue  (the set of vectors containing the fusion’s info loss) 
 3. Check for entailment of the fusion by the total residue; keep the fusion if unentailed. 

4. Recurse on each info loss residue. 
 
The first step hunts for sets that are fusionally reducible in the context of the whole (including 
single less-than-maximally informative vectors). The second step finds the info loss 
configurations and their residues (the vectors from which information is lost in the fusion of the 
whole). The third step determines whether the fusion — concomitantly, the vector subset whose 
content it encodes — is itself entailed by other vectors, in particular by those whose info is lost 
in the fusion. If unentailed, it is kept as part of the output of FRed; it has fusionally reduced some 
vectors whose content is not otherwise repesented in the reference set. The recursion step repeats 
the same process on all subsets of vectors from which information has been lost: those that create 
info loss configurations. In this way, FRed traverses the entire set, digging out, condensing, and 
locally strengthening all of its ranking requirements. The collection of retained fusions turns out 
to be exactly the MIB. 

In the general case, the process applies repeatedly, fusing smaller and smaller subsets 
until none are left. Nowhere in the algorithm are the defining features of the MIB explicitly 
checked; and even the property of logical independence — a global property of bases — is 
examined only locally (at step 3). Observe that the object computed by FRed, which we will call 
the ‘Fusional Normal Form’ (FNF) of the original set, is conceptually distinct from the MIB, 
which is defined purely in terms of its relation to the reference set, without reference to fusion. 
We must therefore show that these two objects are identical. This is demonstrated in Prince & 
Brasoveanu 2009, along with a number of other properties of the MIB, including existence and 
uniqueness. Here we will focus on presenting the algorithm itself. 

To see how maximal informativeness emerges, it is instructive to examine the touchstone 
1�2�3 case. Suppose — only for simplicity of illustration; there are no requirements on the 
reference set other than that it be consistent — that we start out with the Least Informative Basis, 
which we will rename ‘A’. Let us step through FRed with it. 
 
(85)  LIB for 1�2�3. 

A 1 2 3 
a′ W L W 
b e W L 

 
Step 1: Fuse.  

FRed’s first step is to form the fusion of the whole. This step has the dual role of 
condensing fusionally reducible sets and obtaining maximal informativeness.  
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(86)  Fusion of the whole of A.  
A 1 2 3 
a′ W L W 
b e W L 
a′◦b W L L 

 
Step 2: Identify lost information.   

Constraint 1 is an info loss configuration, as indicated in (87) below. This configuration 
implicates vector b as the info loser — all information provided by b about its W-set is indeed 
lost in the fusion. Let us notate the info loss residue of constraint n in a set X as ‘Xn’. In the case 
at hand, there is only one such residue, A1 = {b}. 
 
(87) Info loss configuration in A: A1={b}. 

A 1 2 3 Remarks 
a′ W L W {a′ }is fusionally reducible 
b e W L {b} is the info loss residue A1 

a′◦b W L L  
 
Step 3: Check for entailment.  

Is the fusion entailed by the collectivity of lost information, here just A1, namely {b}, 
whose fusion is identical to its sole member?  
 
(88)  Info loss residue A1.   

A1 1 2 3 
   b e W L 

 
Entailment fails: {b}HfA. Specifically: 
 

 (e,W,L) g (W,L,L)       nb: 2: WgL 
 
The unentailed fusion fA is therefore retained as an element of the FNF of our original set A.  
 
Step 4: Recursion. We now continue recursively with the info loss residue A1. In this case, 
the process is trivial, since A1 contains a single vector. The fusion of A1 is safely computable by 
inspection. There is no info loss residue, and no entailment to check. We add this fusion to the 
FNF, and we are done, since there is nothing left for FRed to operate on. The FNF of A, and 
therefore its MIB, which we have just calculated, is as follows: 
 
(89)  MIB(A) = {fA, fA1} = {a′◦ b, b}. 

MIB(A) 1 2 3 
a′◦b W L L 
b e W L 

 
Application of FRed can be represented perspicuously as the construction of a tree which 

tracks the stages by which the algorithm generates the FNF. We begin with the original set as the 
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root. We place its fusion as the leftmost branch, and any info loss residues as sibling nodes to it. 
These residue nodes may then be the site of further recursive expansion of the tree. The 
processing of A by FRed, which we have just reviewed, would look like this: 
 
(90)  FRed(A) as a tree. 
 

A 1 2 3 
a′ W L W 
b e W L 
fA W L L 

 
 
 
f  1 2 3      A1 1 2 3 
fA  W L L       b e W L 
         fA1 e W L 
 
 

f  1 2 3 
fA1 e W L 

 
 
The terminal nodes of the tree (boxed) give the MIB. For ease of checking the calculation, we 
also show the fusion of the whole as the bottom row inside the node from which it arises. In the 
interests of painstaking exactitude, we have drawn out the final step (right branch). We will 
suppress it in future, being content to box any node that contains a single vector. 
 
To see how the entailment check step can be crucial to the success of the algorithm, let us 
consider a typical case in which fusion of the whole proves uninformative: 
 
(91)  Crucial entailment in the course of FRed. 
 

D 1 2 3 4 
a W e L e 
b e W e L 
a◦b W W L L 

 
 
f  1 2 3 4  D1 1 2 3 4  D2 1 2 3 4 
fD W W L L  b e W e L  a W e L e 
      

 f(D1∪D2) → fD 
 
     (W,W,L,L)             

 
Step 1 produces the fusion of the whole, fD. Step 2 assesses its independence from the totality of 
the info loss residues. We know that the residues must be retained and examined, because their 
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content is surely unentailed by the fusion of the whole. The hanging question is whether they 
contain in themselves, jointly or severally, all the info that fD encapsulates. Since their fusion 
entails (indeed, is identical to) the fusion of the whole, we know that it can be abandoned. It is 
therefore ejected from the FNF, a fate we mark by shading and line style.  

How is the entailment relation to be determined? The fusion of the whole divides the 
original set into two disjoint parts: the fusionally-reducible subset — possibly null — which it 
entails and replaces, and the collection of info loss residues (one for each constraint that is an 
info loss configuration), which we can call ‘the total residue’ (TR). What matters for the MIB is 
that a retained fusion not be entailed by the total residue. If it were so entailed, it would be 
redundant with respect to other fusions yet to be calculated. Retaining an entailed fusion would 
destroy the logical independence of the output of FRed. 

The total residue can be a set of any size, given the right starting point. From the 
fundamental entailment/arrow relation (56), we know that for nontrivial ERCs, entailment from 
the total residue amounts to arrowing from the fusion of some subset of the residue. The 
appearance of the term ‘some subset’ might suggest the risk of a lengthy calculation. But in this 
situation, it turns out that we can simply fuse the entire residue and use that fusion to check for 
entailment. Valid and invalid vectors aside, the entailment check runs like this, writing ‘TR(A)’ 
for the total residue of A, the union of all its info loss residues. 
 
(92) Entailment check (nontrivials). If fTR(A) → fA, omit fA from the FNF. Else, keep it. 
 
As for the practicalities of implementation: we need merely count the raw number of L’s in fA 
and fTR(A). If they are exactly the same then the fusion of the whole is entailed. If not, then not. 

Broadly put: when L-numbers are equal, all the subordination information is present in 
the residues, and it is only the residues that need to be consulted to determine ranking. To see 
why this qualitative sense of things is correct, consider the formal relation between the two 
fusions, which is tightly restricted because the total residue is part of the whole.  

Let’s map out the generic possibilities. We make no prior assumption about the existence 
or nonexistence of an entailment relation between the fusion of the whole and the fusion of the 
total residue. ‘FR’ names the fusionally reducible subset of A, ‘TR’ its total residue. 
 
(93) Possible coordinatewise relations. 

fA = f(FR∪TR} e W L 
fTR e e,W e,W,L 

 
Each column represents the possible distribution of values in corresponding coordinates; we 
survey the values in fA and ask what can co-exist in fTR. The presence of e in fA poses no 
problems for entailment (first column). W is entailed by anything anyway (second column).
 Everything rests on the third column, where the values of fTR are unconstrained by the 
value observed in the fusion of its superset. The key fact is this: L can only be entailed by L. The 
only way entailment can fail is when fA has L and fTR has e or W. (That is: when the L of fA  
comes from some ERC that is not in the total residue.) In this case, fTR has fewer L’s than fA. If 
entailment succeeds, the L’s match up one for one, and their total is perforce the same. 
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Entailment from fTR to fA can only be by W-extension (possibly trivial, when the two are 
identical),23 when the two expressions have identical L content. 
 
What of the trivial vectors, valid and invalid? These arise frequently enough in the course of 
empirical investigation, but do not belong in bases. FRed detects them naturally when they 
threaten to enter the FNF, and the algorithm can easily be outfitted to handle them with an extra 
clause or two. A set consisting entirely of valid vectors may show up as an info loss residue (or 
even, in principle, as the starting point of the whole process, though only the most insouciant 
investigator could fail to notice the uniform W* glare of harmonic bounding that renders every 
ranking argument vacuous.) When a valid set is encountered, its fusion should be excluded: it is 
entailed by anything, including nothing. 

An unsatisfiable set is a more alarming discovery, since it indicates failure of the 
constraint set to analyze the data. When FRed encounters an unsatisfiable set, it should issue an 
announcement to that effect, and quit, producing no output: an unsatisfiable set does not have a 
basis. Every unsatisfiable set contains a subset fusing to L+, as noted in (58). Any such subset 
will be isolated and fused in the course of FRed, revealing its identity.  

With these considerations in mind, the entailment check step can be given as follows: 
 

(94)  Entailment check on a set A. 
a. Trivial-True. If fA∈W*, then omit fA. 
b. Trivial-False. If fA∈L+, EXIT and announce: ‘A is unsatisfiable.’ 
c. Else: If fTR → fA, then omit fA from the FNF. If not, retain it. 

 
Here is a complete statement of FRed.. The discussion of examples below will clarify the formal 
steps and the concise comments beside them. 
 
(95) FRed 

0. Base Step.       #Terminate when A is empty. 
   If A = Ø then FNF(A) := Ø    

1. Fuse All.       #Collect the fusion of the whole. 
   HoldFus := {fA} 

2. Identify Lost Information.   #Collect the info loss residues. 
   ILC(A) := {i | Ci∈Σ & fA[i] = W & ∃v∈A such that v[i]=e}. 
   Res(A,i) := {v| v∈A & i∈ILC(A) & v[i]=e}. 
   TR(A) := ∪iRes(A,i). 

3. Check Entailment.    #Omit trivial and entailed fusions. 
   If fA∈W* then HoldFus := Ø.  
   If fA∈L+, EXIT and announce: ‘A is unsatisfiable.’ 
   If fTR(A) → fA then HoldFus := Ø. 
   Else, FNF(A) := HoldFus. 

4. Recurse.      #Do FRed on each residue. 
   FNF(A) := HoldFus ∪ ∪kFNF(Res(A,k)). 

 
                                                 
23 The reader might wish to confirm, by means of a similar calculation, that when fA entails a vector in the subset of 
A that it fusionally reduces, this must involve L-retraction (perhaps then followed by W-extension from the result).  
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 With FRed written out, a formal infelicity in the statement of step 2 becomes visible. 
There is no need to be so particular about collecting info loss configurations. We could just as 
well drop reference to the ILC entirely and define a residue for every coordinate that fuses to W, 
tolerating the empty residues that arise when a W in the fusion comes only from Ws in its 
component fusands. The Base Step of FRed as stated will process a null residue without 
complaint. Refining the formulation in this way would cause the FRed tree to become bushier, 
but it will not have material effects either on the outcome or on the essential features of the 
process. We therefore put it aside, revisiting it in section 4, where it will become quite useful in 
clarifying FRed’s relation to RCD and constraint ranking. 
 
Let’s conclude the illustration of FRed with a couple of examples where recursion does more 
than report the obvious. Consider the following set of ERC vectors: 
 
(96)  A set U of vectors. 

U 1 2 3 4 
a W L e W 
b e W L W 
c W W L e 
d W L W e 

 
FRed’s run is pictured in the following tree: 

 
(97)  

U 1 2 3 4 
a W L e W
b e W L W
c W W L e 
d W L W e 
fU W L L W 

 
 

 
f 1 2 3 4 U1 1 2 3 4   U4 1 2 3 4 

fU W L L W 
f{U1∪U4}→fA 

 
(W,L,L,W) b e W L W   c W W L e 

                d W L W e 
                fU4 W L L e 
                    
                    
                  

 

  
                fU4 W L L e 

 
 
Of note in the first round of daughterly processing is the discovery that the whole fusion is 
redundant (step 3: entailment check). This encapsulates the fact that the fusionally reducible 
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subset {a}={(W,L,e,W)} is entailed by its complement, the total info loss residue. Although no 
single vector in the residue is an entailer, FRed finds the collective entailment without difficulty. 
 In the second, recursive round of processing, FRed ascertains that the W-compliant 
subset U4 can be completely reduced to its fusion. There are no info loss residues, and the 
procedure terminates, having discovered that the original reference set of four vectors describes a 
ranking system that requires only two ERCs. 

As a final example, let’s look closely at a case where FRed has to work recursively and 
nontrivially on residues — Lombardi’s Swedish analysis. 
     
(98) Round 1: FRed(S), step 1: Fuse All. 

S  1: AGREE 2: IDLAR 3: *LAR 4: IDONSLAR 
a. stekde → stek.te ~ steg.de e  W L 
b. skuːg  → skuːg ~ skuːk e W L  
c. vigsəl → vik.səl ~ vig.səl W L W  
d. vigsəl → vik.səl ~ vig.zəl e  W W 
e. ægde  →  æg.de ~ æk.te e W L W 
f. stekde → stek.te ~ stek.de W L W L 
g. ægde  →  æg.de ~ æk.de W W L  

fS W L L L 
            
To focus the info loss, we have omitted most of the e’s in the tableau. The crucial cells inducing 
info loss are highlighted.  Only constraint 1 has an info loss residue, which we collect: 
 
(99) Round 1: FRed(S), step 2: Identify the info loss residue of S: S1 = {a,b,d,e}. 

S1  1: AGREE 2: IDLAR 3: *LAR 4: IDONSLAR 
a. stekde → stek.te ~ steg.de e  W L 
b. skuːg  → skuːg ~ skuːk e W L  
d. vigsəl → vik.səl ~ vig.zəl e  W W 
e. ægde  →  æg.de ~ æk.te e W L W 

    
For step 3, we fuse the total residue — here, just S1 — to enable entailment checking. 
 
  fTR(S) = fS1 = (e,W,L,L) 
 
It is evident that fS, the fusion of the original set, namely (W,L,L,L), is unentailed. 
 
(100) Round 1: FRed(S), step 3: Entailment Check. fTR(S)  g fS. No action taken. 
 
We now execute the recursion step: 
 
(101)  Recurse: FNF(S) := {fS} ∪ FNF(S1) 
 
We must now start all over again with S1. As always, we begin with fusion: 
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(102) Round 2: FRed(S1), step 1: Fuse All. 
S1  1: AGREE 2: IDLAR 3: *LAR 4: IDONSLAR 
a. stekde → stek.te ~ steg.de  e W L 
b. skuːg  → skuːg ~ sku;k  W L  
d. vigsəl → vik.səl ~ vig.zəl  e W W 
e. ægde  →  æg.de ~ æk.te  W L W 

fS1  W L L 
 
Only constraint 2 shows info loss. This gives rise to the info loss residue of S1, namely S12. 
 
(103) Round 2: FRed(S1), step 2: Collect Info Loss Residue of S1: S12. 

S12  1: AGREE 2: IDLAR 3: *LAR 4: IDONSLAR 
a. stekde → stek.te ~ steg.de  e W L 
d. vigsəl → vik.səl ~ vig.zəl  e W W 

 
To perform the entailment check, we fuse the total residue of S1, which is mercifully just S12. 
 

 fTR(S1) = fS12 = (e,e,W,L) g (e,W,L,L) = fS1 
    
(104)  Round 2: FRed(S1), step 3: Entailment Check. fTR(S1) g fS1. No action taken. 
 
We advance to the recursion step: 
 
(105) Recurse.  FNF(S1) := {fS1} ∪ FNF(S12). 
 
Recursive application of FRed to S12 begins with its fusion, which is clearly unentailed, and 
furthermore indicates that there is no residue. 
 
(106) Round 3: FRed(S12), step 1: Fuse All. 

S12 1: AGREE 2: IDLAR 3: *LAR 4: IDONSLAR 
a.   stekde → stek.te ~ stegde   W L 
d.   vigsəl → vik.səl ~ vig.zəl   W W 

fS12   W L 
  
The final step is taken: 
 
(107) FRed(S12). Recursion Step. FNF(S12) = {fS12} ∪ FNF(Ø). 
 
The whole process ends abruptly with the 0th round of the next recursion, which informs us that 
the FNF of the null set is itself. Putting all the pieces together, we are licensed to conclude that 
for S, the FNF (and therefore the MIB) consists of the fusions we have recursively calculated: 
 
(108)  FNF(S) = {fS, fS1, fS12} = {a◦b◦c◦d◦e◦f◦g,  a◦b◦d◦e,  a◦d} 
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Discussion. Of note in the derivation is the deft elimination of redundant elements. On the first 
round, three vectors are compressed into one. Here they are: 
 
(109) Round 1. Fusionally reducible subset. 

c.    vigsəl → vik.səl ~ vig.səl W L W  
f.   stekde → stek.te ~ stek.de W L W L 
g.   ægde  →  æg.de ~ æk.te W  L  

 
This is a W-compliant set, and therefore exactly equivalent to its fusion (W,L,L,L). Observe that 
entailment from the fusion proceeds via L-retraction, as noted in fn.23. 
 
On the second round, as shown in ex. (102), another two vectors are compressed: 
 
(110)  Round 2. Fusionally reducible subset. 

b. skuːg → skuːg ~ skuːk  W L  
e. ægde → æg.de ~ æk.te  W L W 

 
These are not W-compliant internally, but they are fusionally reducible in the context of S1. 
Notice also the entailment relation between b and e. FRed eliminates a redundancy involving 
entailment, even though it is not specifically looking for it here. 
 
The third round compresses two more vectors, once again W-compliant: 
 
(111)  Round 3. Fusionally reducible subset. 

S12 1: AGREE 2: IDLAR 3: *LAR 4: IDONSLAR
a.   stekde → stek.te ~ steg.de   W L 
d.   vigsəl → vik.səl ~ vig.zəl   W W 

  
The trivial, valid vector d shows up in this residue and is forthwith reduced, even though the 
algorithm never takes explicit note of it. 
 There is a final noteworthy property of this example, which is utterly characteristic of 
FRed:  the disclosure of info loss residues as recursion progresses. When we advance to the info 
loss residue of the first round, the fusionally reducible subset {c,f,g}, presented in (109), is gone, 
taking its L coordinates with it. Crucially, all L values now disappear from constraint 2, 
rendering it an info loss configuration, due to the e coordinates a[2] and d[2]. Thus, the set {a,d} 
pops up as an info loss residue which must be inspected for ranking information in Round 3. 
Such newly disclosed residues provide the fodder for further recursion. 
 
We conclude with a few remarks on features of FRed.  
 

Entailment Check. Entailment check asks whether the total residue (TR) — the union of 
all info loss residues — entails the fusion of the whole. In the general case, we are only 
guaranteed that any entailment from a set follows from the fusion of some subset.  In FRed, it 
suffices to fuse the entire total residue and compare that with the fusion of the whole; no 
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laborious prospecting for subsets of the TR is needed. This special situation arises because the 
vectors in the total residue are included in the whole, so that the following strong result applies: 

 
(112) Fusion entailed by fusion. Let A be an ERC vector set, such that fA∉W*. Let X⊆A be 

such that fX∉L+. Then:  
    XBfA iff fX→fA. 
       Proof. See Prince & Brasoveanu 2009. 
 
A further point of interest: conducting the check very locally suffices to determine whether 
entailment of the whole fusion occurs anywhere. This is not too surprising at the very first step of 
the algorithm, where the entire set under consideration is split into two parts. But after that, in the 
full-blown general case, there can be many, many info loss residues, each sprouting many further 
residues, generating a massively branching derivation tree, in which entailment could, one is 
tempted to imagine, lurk in some far-distant node or, worse, be spread in fragments throughout a 
number of them. But any entailing set must always end up entirely represented in the total info 
loss residue that is sister to the fusion, and no global traverse is necessary to uncover entailment. 
 This follows from the way residues separate off during the descent through the 
telescoping sequence of proper subsets as we move down the branch from the root to the residue 
R that yields the target entailed fusion fR. Every vector that is in the complement of R must have 
a W where R has an e. Furthermore, since a residue comes from a column consisting of only W 
and e, these entailment-denying Ws cannot be rescued through fusion with another ERC with L 
at the same coordinate: such an vector simply doesn’t exist.  Further perspective on this property, 
relating it to ranking structure, is given in section 4 below.  

 
Residues. FRed can handle all kinds of relations between info loss residues. Residues 

may overlap, stand in subset-superset relations, or even be identical. Here’s an example which 
shows the variety of configurations available: 

 
(113) Relations between info loss configurations.  

A 1 2 3 4 5 
a W W e L  
b W e e   
c e e W L L 

fA W W W L L 
 

 Residues Relations 
 A1 = {c} A1 ⊆ A2 
 A2 = {b,c} A2 ∩ A3 = {b} 
 A3 = {a,b} A1 ∩ A3 = Ø    

 
Because we must pursue every info loss configuration, we are necessarily going to encounter 
repetition in the branches of the process. For example, a little calculation shows these residue 
duplications implicit in (113): 
 

 A21 = {c} = A1 
 A23 = {b} = A32 
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FRed sails through all such relations smoothly, repeating itself exactly over identical residues, no 
matter how they are derived. Since the FNF is the set of collected fusions, any duplications will 
have no effect on the outcome. 
 
Let’s glance back now, with FRed well in hand, at the properties of the MIB as an object (p.34), 
to see qualitatively how they emerge. (I) The Uniqueness of the W-set in each MIB vector 
follows because FRed collapses all fusionally reducible sets: should two vectors share a common 
W-set, they will be W-compliant, and hence fusionally reducible, and hence fusionally reduced. 
(II) The Completeness of the Ranking Requirements is due to the maximization of the number of 
L’s in the MIB vectors, which comes about because each such vector is derived by fusion, which 
by definition preserves all L’s in its fusands. (III) The Minimality of the W-set follows jointly 
from the fusional maximization of L-content, on the one hand, and the maximization of e’s on 
the other. This latter is achieved in the course of the relentless pursuit of every info loss 
configuration, using their info loss residues to eject via the entailment check step precisely those 
redundant fusions with excessive numbers of W’s. 
 

3.2 The Skeletal Basis 
 
The virtues of the Skeletal Basis are both theoretical and empirical. We will find that FRed can 
produce it with a simple modification in one clause.  
 
Each member of the MIB describes the entirety of ranking relations of a unique W set. Recall the 
MIB for 1�2�3�4, as in Lombardi’s Swedish. 
 
(114) MIB for 1�2�3�4. 

 1 2 3 4 
a W L L L 
b  W L L 
c   W L 

 
From this, we can directly read off everything that constraint 1 must dominate, and so on for all 
the others. But such maximal local informativeness also carries a cost: from vector a alone we 
cannot tell which of constraint 1’s necessary subordinates it must immediately dominate. 
Because a MIB vector contains all the information derivable from collective interactions, in this 
case from transitivity, it lumps the dominated constraints together into one class.  

Among the potentially many bases for a reference set,  there is another extremal type, the 
one that contains no information derivable from transitivity or other L-introducing interactions. 
This is the Skeletal Basis, which contains the sparsest possible deployment of W’s and L’s. For 
1�2�3�4, it will look like this: 
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(115) Skeletal Basis for 1�2�3�4. 
 1 2 3 4 
a W L     
b  W L   
c   W L 

 
Only the immediate domination requirements on the W-set of each component vector are 
represented. The Skeletal Basis is characterized by having as many as e’s as possible.  

In certain respects, the Skeletal Basis gives a clearer view of the ranking situation than 
the MIB. Most obviously, when it’s possible to construct a Hasse diagram of ranking relations, 
the Skeletal Basis provides what’s needed to connect adjacent nodes, and no more.24 To work 
from the MIB would require erasing from the diagram all connections due to transitivity. The 
MIB provides the transitive closure of the ranking relations; the Skeletal Basis provides the 
‘transitive reduction’. But more is at stake than transitivity. Consider the subtle effect seen in the 
following case: 
 
(116) A twist on the ‘informativeness’ of the MIB. 

MIB 1 2 3 4 
a W W  L L  
b W e e L  

 
This is a MIB: neither vector entails the other, nor can they be fusionally reduced. Nevertheless, 
there is an excessively weak local statement lurking here. ERC [a] holds that 1 or 2 must 
dominate 4. So: ERC [a] tells us that 1 may dominate 4. Yet [b] asserts that 1 must dominate 4.  
 Let us construct the Skeletal Basis for the same ranking system: 
  
(117) The Skeletal Basis. 

SKB 1 2 3 4 
a′  W W  L e 
b W e e L  

 
The MIB can be recovered by replacing a′ with a′◦b = a, as FRed would. The Skeletal Basis has 
eliminated the excessively weak local assertion from a in favor of the stronger requirement 
imposed by b. Transitivity is involved rather subtly in this argument, which also rests on the 
linearity of ranking order in a grammar. 

Perhaps the easiest way to see what’s going on is to blow the ERC vector a up into two 
W-compliant components, two ‘Primitive Ranking Conditions’, in the terms of Prince 2006c.  

 

                                                 
24 The Skeletal Basis, when no disjunctions are present, provides the incidence matrix of the associated Hasse 
Diagram, which is just a directed graph. Whenever an irreducible disjunction is present, we don’t have a single 
partial order, but a set of them, requiring multiple Hasse diagrams. In general, an ERC set determines a hypergraph 
rather than a graph, of which the SKB is the incidence matrix. See Prince 2006b:4; 2008a, for discussion. 
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(118) Conjunctive blow-up: a = a1◦a2 = a1 & a2. 
  1 2 3 4 

a1 W W  L e 
a2 W W e L  
b W e e L  

 
From this it is clear that b→a2 by W-extension. In short: although b does not entail a, it entails 
an implicit conjunctive component within a. The Skeletal Basis rids us of this enfeebled 
conjunct. Thus, if we want to grasp all the ranking relations in their detail, we have good reason 
to examine the Skeletal Basis. 
 
How then to find the Skeletal Basis? No operation analogous to fusion will combine pieces of 
data to produce it. Happily, FRed produces the relevant information in the course of its run, 
exactly where the fusion of the whole is compared with the fusion of the total residue. As found 
above in examining the entailment check step, the fusion of the whole will always contain a 
superset of the L coordinates that lie in the fusion of the total residue. Every L in the total residue 
must appear as L in the fusion of the whole, and non-residue ERCs may provide a few more, as 
illustrated in table (93). If we simply strike out all those L’s that are shared between the two, we 
will have ‘skeletalized’ the fusion of the whole. Logically speaking, we are simply removing 
entailed conjuncts from the fusion of the whole. 
 
To see how this works, let’s continue with 1�2�3�4, using Lombardi’s Swedish as a source. 
 
(119) Fusion of the whole. 

a. e  W L 
b. e W L  
c. W L W  
d. e  W W 
e. e W L W 
f. W L W L 
g. W W L  
fS W L L L 

 
The total residue is merely the residue of constraint 1, namely S1 = {a,b,d,e}. Its fusion is 
computed here: 
 
(120) The total residue of Round 1. 

a.   W L 
b.  W L  
d.   W W 
e.  W L W 
fS1  W L L 
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Striking out the L’s shared by the two fusions, which occur in constraints 3 and 4, will yield a 
member of the Skeletal Basis. We write x\y for ‘x skeletalized by y’, that is: x with all of its L’s 
shared with y reduced to e. 
 
(121) Skeletalization. 

fS W L L L 
fS1  W L L 

fS \ fS1 W L e e 
 
Skeletalization may appear to be a wildly abstract gesture, since it takes place high atop a tower 
of formal constructions. But it leads directly back to the data. The skeletalized vector indexes the 
contrasts that give rise to the ranking relation it expresses. In the case at hand, it is composed as 
follows: 
  fS \ fS1 =  a◦b◦c◦d◦e◦f◦g \ a◦b◦d◦e 
 
This identifies the set {c,f,g} as containing the responsible parties, and {a,b,d,e} as irrelevant. 
Going back to the data itself, we mark the W’s and L’s shared with the Skeletal Basis: 
 
(122) Content providers for 1�2. 

S  1: AGREE 2: IDLAR 3: *LAR 4: IDONSLAR 
c. vigsəl → vik.səl ~ vig.səl W L W  
f. stekde → stek.te ~ stek.de W L W L 
g. ægde  →  æg.de ~ æk.de W W L  

 
A glance at this collection reveals that vector g tells us nothing about 1�2; therefore, c and f are 
the ones that compel the ranking; in this case, either will suffice to give it. This is not a 
conclusion that one could confidently assert based on these data in isolation. Both c and f contain 
internal disjunctions that locally suggest that 1 is merely a possible dominator of 2. The fusion of 
the whole dispels this illusion, but throws the entire data set into the mix, completely obscuring 
the source of the ranking effect even while establishing its existence. 
 
Pursuing this observation a bit more systematically, let’s reconsider the following data from 
Lombardi’s Swedish, repeated from (51), again marking the Skeletal Basis entries. 
 
(123) Data from Lombardi’s Swedish. 

  1: AGREE 2: IDLAR 3: *LAR 4: IDONSLAR 
a. stekde → stek.te ~ steg.de   W L 
e. ægde →  æg.de ~ æk.te  W L W 
f. stekde → stek.te ~ stek.de W L W L 

  
Each ERC other than the first contains non-skeletal material, reflecting the intermingling of 
various properties in the data. The Skeletal Basis allows us to precisely identify the contribution 
of each individual data contrast, no matter how confounded it may be. At the same time, it 
identifies the key constraint conflict inherent in the data resolved by the ranking restriction.
 Of the ERC f, for example, we may discern the following properties. (1) The constraint 
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*LAR, which provides a nonskeletal W in f, is not the explanation for the choice of the voiceless 
cluster in outputs like [stek.te] in this language. (2) The nonskeletal L under IDONSLAR is not 
proper to the derivation of this form, but follows from another, broader generalization about the 
language. This fact is only apparent in the Skeletal Basis, as the nonskeletal L in question will 
appear in the MIB. (3) The data contrast in f is uniquely involved with the conflict between 
AGREE and IDLAR.   
 Globally, comparing the 3 ERC vectors of (123) with the Skeletal Basis establishes that 
the cited forms, though but a tiny subset of the relevant data, suffice to entirely determine the 
grammar of voicing in the language. These data, in context, contribute the essential material — 
W’s and L’s in the right places — to the Skeletal Basis. Because of this, they demonstrably 
yields a Support (see fn.4 for this notion) for the Skeletal Basis, and therefore for the grammar as 
a whole. The Support (123) is minimal, in that nothing may be removed from it. 
 Finding data that constitutes a minimal Support for the ranking can be done 
algorithmically via FRed. For each member of the Skeletal Basis, the data supporting it must lie 
in a residue whose fusion leads exactly to that basis vector. Compare the ERC vectors in that 
residue to the Skeletal Basis element that derives from the fusion of the residue, just as in (121) 
above. Choose enough of them to give the W’s and L’s in the basis element, and you’re set. (In 
the case at hand, only one data-based ERC vector is required to support each basis vector.) A 
minimal Support for the grammar need not be unique, but it is invaluable: it identifies a core set 
of data which controls the analysis of every datum, attested or possible, in the entire language. 
All the ranking arguments needed for an analysis are contained in such a minimal Support, as is 
the essential data for understanding how the grammar parses the language.25 
 The natural place to site skeletalization within FRed is at the entailment check step. As 
noted above (discussing ex. (93), p.38), the L-set of the fusion of the whole is a superset, not 
necessarily proper, of the L-set of fusion of the total residue. 

Entailment may therefore be checked in the following way: go through every L 
coordinate of fTR and replace the corresponding coordinate in fA with e. The end result is the 
skeletalization of fA by fTR.  If this is a vector with no L’s, a member of W*, a valid vector, then 
we have fTR→fA.  

If not, then the result of this calculation is a member of the Skeletal Basis. We have taken 
away every L from fA that can be recovered from the data in the TR. What’s left must be due to 
the fusionally reducible set that fA replaces, and indeed only as much of that as is not attributable 
to anything in the TR. In short: entailment check itself is no more than a test of fA\ fTR to see 
whether it’s in W*. 

To incorporate these remarks, we re-write the entailment check step of FRed (95) as 
follows: 
 
(124) FRed: Step 3 Revised. Entailment Check and the Skeletal Basis. 

If fA∈L+, EXIT and announce: ‘A is unsatisfiable.’ #Detect inconsistency. 
s := fA       #Potential Sk. Basis element. 
For every coordinate k, if fTR[k] = L then s[k] := e  #Eliminate TR L’s from s. 
If s∈W* then HoldFus := Ø                #Omit entailed fusion from MIB. 
 else SKB = SKB ∪ {s}     #Save Sk. Basis element. 

                                                 
25 The Support-seeking algorithm sketched here has been implemented in OTWorkplace (Prince 2008c, Prince & 
Tesar 2008). 
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Here we construct a potential member s of the Skeletal Basis from a corresponding potential 
member of the MIB. If s is rendered valid by the L-replacement step, then we forget it and erase 
the fusion of the whole from the location where it is (temporarily) stored. If s is not trivially 
valid, then we retain the fusion of the whole for the MIB and add s to the Skeletal Basis. 
  
We conclude with a note on the relation of the Skeletal Basis to the system of comparative 
values. Just as the MIB displays a maximum number of L’s and the Least Informative Basis the 
maximum number of W’s, so the Skeletal Basis has the maximum number of e’s. In the case of 
the MIB and the LIB, these properties connect with the entailment order L<e<W. MIB elements 
occupy the lowest possible position in the entailment hierarchy given by this order. The elements 
of the LIB occupy the highest possible position. Skeletality can be defined by the same strategy, 
if we turn away from the entailment order and recognize a distinct ‘fusional order’ <f on the 
comparative values, according to which L <f W <f  e.  

The fusional order earns its name because fusion takes the minimal value in this order 
(see Meyer 1975:400, ERA:55-6; the matter is further explored in Prince & Brasoveanu 2009 
when we dig deeper into the formal details of FRed.) Extend the order on values to an order on 
vectors in the usual coordinatewise fashion, parallel to the treatment of arrow (71). Each vector 
in the Skeletal Basis must then be maximal in the fusional order in the sense that no greater 
vector can replace it,  preserving basis status. Compare this with definition given in ex. (37). 

 
(125) Skeletal Basis. B is the skeletal basis for A iff  B is a basis for A, and for every b∈B and 

for every x such that ABx, if x >f b then replacing b in B with x fails to yield a basis for A. 
 
3.3  Atomic Generation 
 
A basis is a minimal cardinality collection of ERC vectors that entails every vecto in a reference 
set. In some cases, entailment may involve a simple relationship between one ERC vector in the 
basis and some other drawn from the reference set (or from its consequences). But entailment 
may on occasion require the participation of more than one vector from the basis. Here’s a 
typical case, repeated from ex. (91): 
 
(126) Multi-ERC entailment. 

D 1 2 3 4 ERC 
a W e L e 1� 3 
b e W e L 2� 4 

a◦b W W L L 1�{3,4} ∨ 2�{3,4} 
 
Take the set D as the reference set. It’s a MIB, and therefore its own MIB. Among its 
consequences is the one encoded in the vector (W,W,L,L). Yet this vector is entailed neither by a 
nor by b in isolation. It takes the two of them together to get it. 
 For certain purposes it may be convenient or even necessary to have at hand a list of 
ERCs from which everything in the reference set follows via single ERC entailment. For 
example, this is required by the procedure in Merchant 2008 for the extraction of ranking 
information shared by two grammars, which combines ERCs pairwise, one from each grammar, 
by the 3-valued ‘or’ of RM3 (ERA:51, ex. (99)).  
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 We know that such a set must exist — trivially, the entire set of ERC entailments has this 
property; it is finite and can be exhaustively listed. More interestingly, we know from the basic 
theorem of the ERC calculus, stated in ex. (55), that anything entailed by a reference set must 
follow from some single ERC which is the fusion of one its subsets. If we therefore collect the 
‘fusional closure’ of the reference set — the entire set of fusions of all of its subsets — we surely 
have all the equipment we need to guarantee single ERC entailment.  
 Let us call any set G that is logically equivalent to a reference set A a ‘generator’ or 
‘generating set’ for A. If all entailments can be obtained from G via single ERCs, let us call G an 
‘atomic generator’. The fusional closure of A is, in these terms, an ‘atomic generator’ for A. 
Within every atomic generator lies a minimal atomic generator (MAG), a subset of smallest size 
that atomically generates A. The MAG must be unique — it is simply the set of elements of the 
fusional closure that are minimal in the coordinatewise entailment order based on L→e→W, and 
the finiteness of the set gives us uniqueness unproblematically. Furthermore, the MAG is a 
subset of any atomic generator, as shown in Prince & Brasoveanu 2009 along with the other 
claims of this section. 
 We have seen how FRed produces the MIB and the Skeletal Basis: FRed also produces 
the MAG, in passing, as it were. If we suspend the entailment check step and simply collect all 
fusions produced by FRed, we will have accumulated an atomic generator. Since the fusional 
products of FRed generate the reference set atomically, and since the MAG lies inside any 
atomic generator, we may obtain it by processing the output of unfettered FRed. 
 Filtering the MAG from the total fusional production of FRed can’t be done quite as 
tidily as the general entailment check step, which settles the global entailment question by 
looking at just one additional fusion (that of the total residue TR). It’s tempting to imagine that 
the task could be accomplished without fusion by looking through all the TR vectors 
individually. But further processing among the residues may crucially collapse some vectors. 
Here’s a simple example: 
 
(127) Atomic entailment check cannot be entirely local. 

A 1 2 3 4 
a W W e L 
b e W L e 
c e W e L 
fA W W L L 

 
There’s one and only one residue, A1 = {b,c}. Neither of its elements atomically entails fA. 
Nevertheless, in its next round, FRed will find fA1, collapsing the W-compliant b and c, which 
does entail fA. In fact, the MAG for A consists of the one ERC (e,W,L,L), which is exactly b◦c. 
 This example points to the correct way to filter for atomic entailment: every time a new 
fusion is obtained, you must look back up the branch of FRed it lies on, and check to see whether 
previous fusions on that branch are entailed by it. But you don’t have to look very far: only up to 
the fusion of its immediate mother in the FRed tree. Thus, while general entailment check need 
only examine the fusion of the total residue TR, the check for atomic entailment will look at the 
fusion of each residue separately, unamalgamated with the fusions of its sisterly residues, but 
need look at nothing more.  
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 To see why this is so, recall that any single branch of FRed involves a superset-subset 
chain of ERC sets: a residue contains a proper subset of the ERCs in its parent node; that parent a 
proper subset of its parent, and so on up to the top. This means that a higher node has the L-
content of any and all nodes lower than it on the branch, and possibly more. As you descend a 
branch, L-content can at best stay the same, and may decrease. For the fusion of a lower node to 
entail the fusion of a higher node on a branch, then, they must exactly have the same number and 
distribution of L-coordinates (L is entailed only by L). But as we descend a branch, the e-content 
is strictly increasing. A residue AI, for I some sequence of coordinates, must have e’s at every 
position named in I. A residue AIJ will have all those e’s and in addition, those named in the 
sequence J. Similarly for AIJK , for a sequence K.  
 Suppose now that fAIJK entails fAI. They must have identical L-sets. Furthermore, AIJ 
must share that L-content, since it contains AIJK. Therefore, the L-set of the intermediate node AIJ 
is identical to that of both AI and AIJK. Since e-content increases strictly from AI to AIJ to AIJK, 
and in a proper subsetting fashion, it follows (given constancy of L-content) that W-content 
decreases in the same way. The W-set of fAI is a strict superset of that of fAIJ. It follows 
immediately that fAIJ entails fAI by W-extension. Since we only assumed that fAIJK entails fAI, 
this shows that any distal entailment relation along a branch enforces step-wise local entailment 
relations (by W-extension) all along the branch, running upward. 
 To close the argument, we note that every atomic entailer for a fusion fX, created by 
FRed in the processing of reference set A, will lie in residues of X. That is, no distinct atomic 
entailer can be lurking in other distinct branches of FRed, or scattered among them. This follows 
for reasons paralleling those that lead to the similar property shown by general entailment, 
enabling the very local entailment-check step of FRed (discussed on  p. 60 below). 
 Putting these considerations together, we arrive at a statement of the type of entailment 
checking needed if we wish to add the Minimal Atomic Generator (MAG) to FRed’s output.  
 
(128) Atomic entailment check. 
 Let A be an ERC set or any of its info loss residues. Add fA to the MAG iff fA is 
unentailed by the fusion of any of its info loss residues. 
 
The deeper interest of atomic generation lies in the observation that FRed natively produces the 
MAG among its fusional products. Atomic entailment check eliminates from these products 
those that are redundant with respect to single-ERC entailment. The general entailment-check 
step of FRed proper eliminates all redundancies, and thereby finds the MIB inside the MAG. 
This identifies the MIB as a fully nonredundant set of vectors, none of which is atomically 
entailed by anything other than itself. The MIB is therefore definable in logical predicates only, 
and the minimal cardinality requirement, which we have taken as basic here, can be shown to 
follow from the logical characterization. This perspective underlies the approach to MIB and 
basis structure developed in Prince & Brasoveanu 2009. 
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3.3.1 Appendix to 3.3 
 
We conclude with definitions of the new notions introduced in section 3.3. 
 
(129) Fusional closure. For a set of ERC vectors A, the fusional closure of A, written fuscl(A), 

is the set of fusions of every nonempty subset A. 
  fuscl(A) = {fX |  X⊆A, X≠∅ } 
 
(130) Generator/Generating set. For A a ERC (vector) set, an ERC (vector) set G is a 

generator (generating set) for A iff G and A have exactly the same entailments.  
  For every ERC (vector) α , GBα iff ABα; that is, GBA and ABG. 
 
(131) Atomic entailment.A set G entails an ERC (vector) α atomically iff ∃β∈G such that βBα. 
 
(132) Atomic generating set. G is an atomic generating set for A iff G is a generating set for A 

and, for every ERC (vector) α, if ABα, then there is a β∈G such that βBα . 
 
(133) Minimal Atomic Generator (MAG). G is a minimal atomic generator (MAG) for A iff 

G is an atomic generator for A and no proper subset of G is an atomic generator for A. 
 
 

4.  FRed and RCD 
 
Here we examine the relation of FRed to RCD. Reversing perspective, RCD is viewed as a 
gatherer of information, and FRed as an explorer of rankings.  
 The Ranking Problem can be addressed from different angles, with different goals. 
Recursive Constraint Demotion (RCD) efficiently delivers a ranking, if one exists, sufficient to 
satisfy all the ERCs on hand, and also discovers when there is no such ranking. With less 
efficiency but greater detail, FRed concisely presents the entirety of ranking conditions inherent 
in a ERC set. It is instructive in both directions to compare the two. 

RCD is usually cast as a ranking algorithm, producing a concrete result — a stratified 
hierarchy, from which a linear ranking may be chosen. FRed, in apparent contrast, collects 
information about rankings, presenting not a hierarchy of any sort but, more abstractly, a set of 
ERCs. Much of the apparent conceptual distance between the two algorithms is a matter of 
analytic perspective that can be eliminated by re-considering RCD as an information producer. 

The first action in RCD, as in FRed, is to compute the fusion of the whole (ERA:21-26; 
Prince 2009). Hierarchywise, this tells us which constraints are immediately rankable: those that 
fuse to e or W; we may also think of this as identifying those constraints that must be demoted, 
those that fuse to L. Informationally, the fusion of the whole gives us an ERC which summarizes 
a set of ranking conditions. To normalize RCD to the FRed model, let us put aside the 
hierarchizing interpretation and proceed informationally: we want to retain the fusion of the 
whole as the output of the first step of RCD, postponing any consideration of ranking per se. In 
this new conception, the fusion is not a mere tool to determine rankability, but the principal goal 
of the calculation, as it is in FRed. 
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RCD in its earliest formulations advances to its recursive step by a kind of double 
elimination. Those ERCs satisfied by the newly stratified constraints are omitted from further 
consideration; similarly omitted are those constraints that have been ranked. We are then left 
with a smaller set of ERCs and a smaller set of constraints to deal with. FRed, in contrast, works 
by eliminating only the satisfied ERCs and always keeps the entire set of constraints intact. But 
this contrast is illusory. The double-elimination conception is rooted in the ‘mark-data pair’ data 
structure (Tesar & Smolensky 1993, Tesar 1995 et seq.), which couples a list of the constraints 
crucially violated by the desired optimum with another list of those crucially violated by its 
competitor; that is: the L- and W-sets of the comparison. When we move to the ERC vector 
representation, with its explicit identity (e), the constraints fall into three sets, not two, with 
inertness formally recognized as presence (of e) not absence from the accounting. We need no 
longer remove the stratified constraints, because they award e to the retained ERC vectors and 
are therefore inert. To see this, consider the following simple example: 
 
(134) RCD by double elimination (classic). 

I 1 2 3   II 1 2 3   III 1 2 3 
a W L e →     →     
b e W L   b  W L       
 
Here each stage removes a constraint and the ERC it explains. That we need only remove ERCs 
is apparent in this re-conceptualization: 
 
(135) RCD by single elimination. 

I 1 2 3   II 1 2 3   III 1 2 3 
a W L e →     →     
b e W L   b e W L       
 
In stage I we find that constraint 1 is rankable. This eliminates vector a, leaving b to be reckoned 
with. At stage II, the ranking of constraint 2 satisfies b, leading to stage III, a kind of optimality-
theoretic nirvana. Free of ERCs, we step off the wheel of recursion. In the process, there is no 
need to literally remove constraints from the scene. At the second stage, as shown in (134), 
constraint 1 would have been classically removed. Here we simply keep it, as its presence does 
no harm. We may now conceive of RCD as compiling a set of vectors via fusion, paralleling 
FRed. Call this the ‘Constraint Demotion Normal Form’ or CDNF of the original set. 
  
(136) Constraint Demotion Normal Form (CDNF). 

CDNF 1 2 3 
a◦b W L L 
b e W L 

 
The CDNF is exactly the same as the FNF in this case. In other cases, of course, they will 
diverge; for example, the set consisting of (W,e,L) and (e,W,L) has Demotion Normal Form 
(W,W,L), but its Fusional Normal Form, and MIB, is identical to the original.  

These differences between FRed and RCD arise because of the differing ways that they 
move to recursion. To clarify these differences, we must first surmount an obstacle of 
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perspective. In familiar RCD, we talk of removing ERCs (those satisfied by some rankable 
constraint assessing W) and in FRed we talk of retaining ERCs (those involved in info loss 
configurations), but these are complementary descriptions of the same principle of selection. In 
example (135), the constraint 1 is an info loss configuration. RCD proceeds by examining the 
info loss residue of this constraint — vector b — exactly as FRed does.  

RCD and FRed both continue recursively with info loss residues. But where FRed 
explores each one separately, RCD makes a grosser calculation. RCD retains precisely those 
ERCs which earn e in every rankable constraint. RCD, then, continues with the intersection of 
the info loss residues of the constraints that fuse to W in the fusion of the whole. This is 
equivalent to removing those ERCs satisfied by some W and continuing with what’s left. An 
example will bring out the pattern: 
 
(137) RCD intersects info loss residues of rankable C: {d, e} = A1 ∩ A2 ∩ A3 ∩ A4. 

A 1 2 3 4 5 6 7 8 
a W e W W L e e L 
b e W e W e L e e 
c e e W e e L e e 
d e e e e e W L e 
e e e e e W e L e 
fA W W W W L L L L 

 
The info loss residues of the rankable constraints, A1 through A4, are signaled by shading: their 
intersection is boxed in heavy lines. Every ERC belongs to some residue, in this case. 
 
   A1 = {b, c, d, e} 
   A2 = {a, c, d, e} 
   A3 = {b, d, e} 
   A4 = {c, d, e} 
   A1 ∩ A2 ∩ A3 ∩ A4 = {d, e} 
 
RCD removes from A the vectors {a, b, c} because they are satisfied by the constraints fusing to 
W. Complementarily, RCD continues with the intersection of all residues: {d, e}. Observe that 
the intersection is not among the four residues, though it will eventually appear in various 
branches of FRed devolving from each. 
 
Let us proceed: 
 
(138) Next Round of RCD. 

∩iAi 1 2 3 4 5 6 7 8 
d     e W L e 
e     W e L e 
f∩iAi     W W L e 

 
Need we go on to a yet further round? The intersection of the residues here is null. 
Spelling it out: 

 55



 
   A5 = {d} 
   A6 = {e} 
   A5 ∩ A6 = ∅ 
 
This signals the successful conclusion of RCD. We have collected all the fusions we need, when 
our goal is just to find a ranking sufficient to satisfy the original reference set. 
 The output is a reduced set of ERCs, which carries the information we need. Our example 
yields the following Constraint Demotion Normal Form. 
 
(139) CDNF(A) 

CDNF(A) 1 2 3 4 5 6 7 8 
fA W W W W L L L L 
f∩iAi e e e e W W L e 

 
We can now formulate RCD in the manner of FRed, as a collector of fusions. Observe that we 
will also want a null intersection in the case where any single constraint fusing to W contains 
only W’s (i.e. is W-compliant). Such a constraint is rankable, and its ranking satisfies all 
remaining ERCs, bringing the RCD process to a successful conclusion. We must therefore say 
not that it has no residue, but that it has a null residue, which when intersected with any other 
residues ensures the desired null intersection. We therefore modify step 2 in the manner noted on 
p.40: we define a residue for every coordinate fusing to W. In this understanding, an info loss 
configuration occurs when a constraint has a non-null residue.  
 
(140) RCD as information gatherer. 

0. Base Step.            #Terminate when A is empty. 
  If A = Ø then CDNF(A) := Ø 

1. Fuse All.            #Collect the fusion of the whole. 
  HoldFus := {fA} 

2. Identify Info Loss Residues and Their Intersection. 
  Res(A,i) := {v| v∈A & i∈W(fA) & v[i]=e}.       # Each W in fA has a residue 
  IR(A) := ∩iRes(A,i). 

3. Check Consistency. 
  If fA∈L+, EXIT and announce: ‘A is unsatisfiable.’    #If L+ fusion, announce failure. 

      Else, CDNF(A) := HoldFus.          #Else, save the fusion in CDNF.  
4. Recurse.             #Recurse on the intersection IR. 

  CDNF(A) := HoldFus ∪ CDNF(IR(A)). 
 
We may dissect the current result (139) into three strata if we wish. With each constraint placed 
as high as possible, our example yields the following tripartite structure: 
 
   {1,2,3,4} � {5,6,8} � {7}. 
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(141) CDNF(A). 
CDNF(A) 1 2 3 4 8 5 6 7 
fA W W W W L L L L 
f∩iAi e e e e e W W L 

 
Stratification is shown by heavy lines and rearrangement of columns. 
 
The logic of fusion allows us to bridge between the fusional representation of RCD and the 
stratifying conception. Following ERA:22ff., 83ff., let’s extend the fusion operation to 
constraints, so that it can be applied to columns in a tableau as well as to rows. With a constraint 
taken to be a column vector over {W,L,e}, the familiar rules for fusion apply without change. A 
‘stratum’ is then understood to be the fusion of a collection of constraints — namely, those that 
are ‘rankable’: those giving rise at some stage of RCD to e or W in the fusion of the whole 
remaining ERC set. 
 On this view, our eight-constraint example turns out like this: 
 
(142) RCD with constraint fusion. 

A 1◦2◦3◦4 5◦6◦8 7 
c(fA) W L L 
c(f∩iAi) e W L 

 
RCD, then, emerges as FRed with one essential modification: after the fusion of the whole ERC 
vector set, we interpolate a step where RCD contracts the constraint system by fusing together all 
the rankable constraints. The FRed algorithm then proceeds with the reduced system. In the 
tableau, we write c(X) for the ‘contraction’ of X that eventually emerges from the fusional 
lumping of constraint columns. 

In this representation, there is at most one info loss configuration — the fused mega-
constraint, which gathers all those constraints fusing to e or W; every other constraint fuses to L. 
The info loss residue corresponding to the fused constraint is precisely the intersection of the 
info loss residues of its fusands.26 If we add one final clean-up operation that fuses all constraints 
in the lowest stratum, the characteristic result would take on the following form, behind which 
we imagine a system of 11 constraints, and a set U containing various ERCs whose number we 
need not fix. 
 
(143) Typical result of RCD. 

CDNF(U) 1◦7◦11 4◦6 2◦5◦9 3◦8◦10 
c(fU) W L L L 
c(fU′) e W L L 
c(fU″)  e e W L 

 
This pattern — a diagonal of W’s fencing off a solid upper triangle of L’s — illustrates the form 
that the outcome will always take. 

                                                 
26 The standard fusional rule W◦e=e◦W=W, applying horizontally in the tableau as rankable constraint columns fuse, 
will eliminate from the residue of the mega-constraint any ERC vector with W in a rankable constraint.  
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For RCD on a satisfiable ERC set, an entailment check step will always come up negative; there 
can be no entailment from the residue to the fusion of the whole. The {e,W}-set of the fusion of 
the whole matches to e’s in the intersected RCD residue; but its L-set corresponds to residual e, 
W, or L: among these, there must be at least one W, rendering entailment impossible. The lower 
the stratum, the fewer the L’s. This behavior is visible in all the exs. (139)-(143). 

Under this conception, RCD produces the MIB for the fusionally-contracted constraint 
system, which in the schematic example (143) consists of four derived mega-constraints: 
{1◦7◦11, 4◦6, 2◦5◦9, 3◦8◦10}. When a full linear order on the constraints is what’s required by the 
ERC set, each stratum contains exactly one constraint. Constraint fusion is in this case trivial, 
and RCD and FRed agree completely. Whenever fusional contraction involves constraints that 
are distinct in their values, RCD and FRed diverge. RCD loses ranking information via nontrivial 
constraint fusion, as may be seen by contemplating the many configurations that give rise to 
1◦2�3◦4, while FRed losslessly pursues all strands of information. 

Developing this approach in detail requires that the effects of the contraction operation be 
propagated to all stored references to the constraint system. Because contraction can change the 
composition of the constraint set at any recursive stage, the character of all preserved fusions will 
also change. After the first stage of applying RCD to some set A, for example, we will have fA, 
which we save and contract as c1(fA). When the L-set of the c1(fA) is further processed,  it too 
will typically undergo some contraction, and we will also want to be sure that the saved version 
of c1(fA) is contracted as well, so that it accords with the developing picture of the constraint 
set’s composition.27 We must similarly revise the saved fusions at every stage.  

The core of contractional RCD will proceed according to the following outline, which 
suppresses the inconsistency check and the termination condition (ERC set emptiness).  
 
(144) Contractional RCD (outline). 

[1] Fuse all ERC vectors and save the result in CDNF. 
[2a] Contract the constraint set, fusing all constraints projecting W or e in [1]. 
[2b] Contract the members of CDNF according to the same scheme. 
[3] Recurse on the single info loss residue of [2a]. 

 
The result is a reduction of the original ERC set to a canonical form, a kind of triangular matrix, 
echoing the reduction of the ranking requirements to a single linear order on the fusionally-
contracted constraint set. 
 
Just as it is profitable to view RCD as a producer of information, so is it worthwhile to examine 
FRed as a surveyor of rankings. Consider any path in the tree of FRed recursions, running from 
the reference set at the root to the empty residue that the modified definition of step 2 places at 
the end of every branch. FRed begins with the entire set under consideration, call it A, and 
proceeds to some info loss residue of A. Since the numbering of the constraint set is arbitrary, let 
us imagine (without loss of generalization) that it is perfectly suited to our expositional purposes, 
so that the residues along the branch we’re discussing are A1, A12, A123, …, A123…k.  

The residue A1 is comprised of those ERCs to which C1 assigns e. Complementarily put, 
A1 is precisely what’s left of A when all the ERCs earning W in C1 are removed from A. The 
                                                 
27 Thus, while at stage 1 we save c1(fA), at stage 2, we’re saving c2 (c1(fA)) and c2(f(Res(c1(fA)))).  
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effect of removal is precisely the same as that obtained by filtration when C1 is ranked at the top 
of a hierarchy. The residue A1 is made up of those ERCs that are not yet satisfied by this ranking 
maneuver; A1 consists of the data about which C1 is silent. RCD continues with those ERCs that 
are as-yet unsatisfied when the entire set of rankable constraints is placed at the top. We may 
think of FRed as dealing with what happens when each rankable constraint occupies the topmost 
position in a separate ranking. FRed’s search is not mindlessly exhaustive, however. Only those 
rankings are pursued that need further articulation to resolve the entire original reference set.  

To see how this works, consider first a version of the 1�2�3 case: 
 
(145) FRed hunts rankings. 

S 1 2 3 
a W L W 
b e W L 

 
Here FRed produces a single branch 〈S, S1, S12〉. To obtain the related ranking, we extend the 
sequence to 〈1,2,3〉, continuing it with any constraints that the last fusion declares to be 
necessarily dominated. Here the branch of residues is telling us that 1�2�3 will work: this is 
the ranking that it unfolds. From fS = (W,L,L), we know that in fact 1 must dominate 2. In this 
simple case, FRed has just one branch, and, appropriately extended, its indices exhaust the 
constraint set. The MIB is {fS, fS1} = {a◦b, b}. 

What happens when a fusion of the whole contains a W-compliant coordinate? This leads 
directly to a null residue, which therefore marks the end of a branch. If it is ranked, everything is 
solved. Consider this expansion of example (145) : 
 
(146) A W-compliant column. 

A 1 2 3 4 
a′  W W L W 
b′  W e W L 

 
 
The residue of 1 is empty:  A1=∅. The fusion fA=(W,W,L,L) tells us that 3 and 4 must be 
dominated. Therefore, the branch 〈A, A1〉 corresponds to the ranking sequences 〈1,3,4〉 and 
〈1,4,3〉. Constraint 2 makes no appearance in these sequences. This means that any ranking of 
the whole constraint set which respects the orders 〈1,3,4〉 or 〈1,4,3〉 will also work no matter 
where constraint 2 is interpolated.  
 The restrictions on constraint 2 are explored in the branch 〈A,A2, A23〉.  The last fusion 
on this branch, which is identical with b′, declares that constraint 4 must be subordinated. This 
yields the ranking sequence 〈2,3,4〉, into which the omitted constraint 1 may be freely inserted. A 
calculation shows that some 10 total orders are admitted by the ERCs of this example. FRed 
explores them quite efficiently in just two branches. 

Pursuing this logic, we find that the branch terminating in A123…k = ∅ corresponds to a 
linearly-ordered ranking of constraints C1�C2�C3�…�Ck. The last fusion in the branch 
determines how it must be extended; if m additional constraints must be subordinated, then the 
ranking orders associated with this branch relate k+m constraints. Any constraints that remain 
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may be freely interspersed in the rankings thus fixed. This enumerates the set of rankings 
associated with the branch. 

Starting back at the root A, we find that the fusion fA enumerates all possible top-ranked 
constraints: these provide the non-L-coordinates of fA. Ignoring the constraints that yield e in fA 
— they do no work, where the job is to outrank all L’s with a W — FRed next considers what 
would happen if each W-supplying constraint were indeed first in a ranking order. The info loss 
residue of each such constraint contains all the data that is not resolved by ranking it at the top. 
Moving to the next stage, the fusion of any first-order residue Aj identifies the constraints that 
may be productively ranked just below Cj, as second in the unfolding linear rankings. And so on, 
through the residues of residues, until no residues are left, and only the constraints supplying L in 
the last fusion must be placed at the bottom. 

FRed does not remember the rankings it unfolds, retaining instead the fusions it creates 
along the way, an exact record of the conditions that it is exploring. (The entailed, redundant 
fusions are eliminated in the interest of conciseness.) Each fusion determines the possible 
informative continuations. Each residue Ak…m says: if you have continued in this way, adjoining 
Cm to the end of the initial sequence Ck�…�Cm−1, then here is the data unsolved by that partial 
ranking, giving further conditions that must be met. The fusion fAk…m is the key to what 
constraints may be ranked next, and identifies their next-order residues. Viewed as ranking 
algorithms, both RCD and FRed operate locally with respect to developing hierarchies, seeking 
out the set of the constraints that can be ranked next. RCD amalgamates them; FRed explores, for 
each possibility, the further as-yet-incomplete possibilities that lead to eventual success, if 
success is available. It is remarkable that if any of the branches so enumerated lead to success, 
then all of them do; and if any lead to failure, then all fail. The fact that such localism is viable 
— that, for example, at the very first step you can determine which constraints can stand in 
topmost position — reflects the structure of lexicographic optimization that OT is based on. 

The ranking perspective on FRed is of direct use in understanding its properties. A 
valuable relation between constraint ranking order and ERC entailment is established in ERA:29, 
Prop. 4.3. Given a hierarchy, possibly stratified, let the ‘rank’ of an ERC be determined by the 
highest-ranking constraint that assigns it a polar value. (In a successful hierarchy, this value will 
be W.) The higher the ‘rank’ of the ERC, the higher in the given hierarchy is the constraint that 
dismisses its suboptimal data. 

The relevant result is that, in any successful hierarchy, a nontrivial ERC can be entailed 
only by ERCs that are at the same or lower position in the ERC rank order. The rank relation in a 
successful hierarchy refines the arrow/entailment relation, in the sense that, if a→b for two 
distinct ERC vectors, then the rank of a is lower than or equal to that of b. Turning this around 
contrapositively: if b is of lower rank than a, then we cannot have a→b. Even more strongly, 
Prop. 4.4 of ERA:30 shows that any set of entailing ERCs is similarly restricted. For S a 
consistent set of nontrivial ERCs, if A⊆S entails b∈S, with the restriction that every member of 
A is essential to the entailment (i.e. cannot be removed from A without losing the relation), then 
every member of A has rank less than or equal to b in any hierarchy that satisfies S. 

From this, taken with the ranking-testing interpretation of FRed, it follows that if fAK is 
asymmetrically entailed, for some sequence K, it will be entailed by a set of vectors in the total 
residue of AK, since these include all those of lower rank than fAK in the ranking sequences 
developed through AK and its residues. (Prince & Brasoveanu 2009 supplies further details.) This 
means that the extreme locality of FRed’s general entailment check step — flying in the face of 
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the potentially daunting ramifications of the FRed tree, which has far-flung nodes that might be 
imagined relevant — is fully justified. The very same observation applies to the checking of 
atomic entailments: since everything that potentially entails fAK is located in its residues, it can’t 
happen that we’re missing any atomic entailers. For present purposes, it shows once again how 
the informational interpretations of FRed and RCD are mirrored directly in ranking 
interpretations, leading to considerable mutual illumination. 
  

5. The Worst-case Complexity of FRed 
 
As a proxy measure of the potential complexity of FRed, let us count the total number of fusions 
of sets of vectors that it can involve, summing over the entire computation. 

To obtain the worst possible case, imagine that each of n constraints produces its own 
info loss residue. Still looking for the worst, assume that each such first-order residue itself 
produces a maximum number of its own residues, and so on. Since each of these n first-order 
residues has one constraint that is all e’s, each will maximally produce (n−1) further residues. 
We therefore have n(n−1) second-order residues. Continuing in this fashion, each of the 
n!/(n−k)! kth-order residues produces n−k further residues, adding n(n−1)…(n−k) more residues 
to the total, until we reach the last possible level of residues, the (n−1)st. (Each residue of degree 
k neuters out k constraints, and we want one constraint left at the end, so as to obtain the 
absolutely maximal extension of the process.) Summing the terms, we find that the total number 
of ERC sets computed, each of which is fused, including the initial one, is given by this formula: 
 
(147)  Total  = 1 + n + n(n − 1) +  n(n − 1)(n − 2) + … + n! 
 
To estimate this quantity, we observe first that it may be re-written as follows: 
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The summation term in this expression is recognizable as a truncation of the series expansion for 
e−1, where e is the base of the natural logarithms (2.718281828459045….). 
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Because 1/k! gets small fast, the summation term in the Total is well-approximated by the 
infinite series, so we have 
 
(150)  Total ≈ (e−1) n! 
 
In fact, the approximation is so good that the Total is always equal to the greatest integer in the 
approximating expression, its integer ‘floor’: 
 
(151)  Total = floor [(e−1) n!] 
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Thus, in the worst case, the number of fusions grows factorially in the number of constraints. 
This situation amounts to an exhaustive listing of all possible rankings on the constraint set — 
with duplications.  

The worst case only arises, of course, when there is an unnaturally high degree of 
symmetry. We’d need n constraints where each row and each column contains a single W, with 
the rest e’s. (Imagine a square array with W’s along the diagonal.) This particular arrangement 
won’t present itself often in practice. More realistically, we could have n+1 constraints, with n of 
them as described and the (n+1)st all L’s. (In this case, the machinations of FRed are not 
particularly productive, since we’re starting out with a MIB.) Furthermore, our reckoning of the 
maximal bushiness of the FRed tree must seriously overestimate the amount of computational 
work that needs to be done in even the worst case. There is no reason to re-process a residue, and 
the number of possible residues is bounded by the number of subsets of the ERC vectors under 
consideration. Keeping track of where the algorithm has been will have a favorable impact on 
processing time whenever there are duplications.  

The absolute worst case is unlikely to be encountered ecologically, but we can still expect 
a certain amount of complexity in naturalistic applications of the algorithm, as is confirmed by 
work with RUBOT (Prince and Tesar 2008), which uses depth-first traversal of the FRed tree. 
Observe that these complexity considerations should not be taken as a rhetorical talking point by 
would-be objectors, since they apply to a construction at the meta-level, where the theorist is 
trying to understand the theory, rather than at the level where the learner is manipulating 
language data. Worst-case analyses should not be fetishized, in any case, since they do not have 
immediate empirical relevance.  

The best case arises when the ERC set demands a linear order. At each application, there 
is only one info loss residue. Including the original set, only n−1 set fusions are calculated, one 
for each required ordering relation. 
 

6.  Related Algorithms 
 
Here we mention four algorithms related to FRed, one with a different functionality but similar 
structure; the others with similar goals but different modes of approach. 
 
 
6.1 An Abstract Parallel 
 
In “Fundamental Properties of Harmonic Bounding,” Samek-Lodovici and Prince (2002) present 
an algorithm that takes as input a set of violation profiles and produces as output a set of 
‘bounding minima’, profiles that are sufficient to ‘simply bound’ everything that is bounded, 
simply or collectively, by the original set. This algorithm, which was developed in complete 
independence of FRed and for very different purposes, has a structure that resembles FRed’s in a 
number of respects. The columns of a matrix (of violations) are examined for a certain criterial 
property (minimal violation value), and a summary of the matrix, a derived profile of violations, 
analogous to fusion, is constructed with respect to the minimal values. Associated with each 
column is a submatrix defined as those rows that carry the minimal value in the column; these 
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submatrices are gathered for further recursive processing, like the information loss residues, 
except that every column has one. 
 There are strong direct connections between harmonic bounding and ERC entailment 
(ERA:35-46). Single ERC entailment is simple bounding between ERC vectors under the L<e<W 
order, and further abstract relations exist between set entailment and collective bounding (Prince 
2006b:28). These arise from shared order properties, since both involve coordinatewise order in 
their respective vectorial domains. The goals of the two related algorithms remain distinct, even 
viewed abstractly — not just because the bounding reduction algorithm operates in the domain of 
violation profiles, sorting out relations between candidates rather than between constraints, but 
because its scope is ultimately narrower than that of FRed. It seeks to reduce the problem of 
bounding entirely to simple bounding, which parallels the pursuit of the Minimal Atomic 
Generator (MAG). FRed handles the derivation of both the MIB and the MAG (§3.3, p. 50 
above), looking either for entailments from sets of any size or specifically for atomic 
entailments. As with the MAG, bounding reduction needs only a simple comparison across two 
submatrices, parent and child in the tree, to determine whether a product of the algorithm should 
be retained. Such parallels suggest the value of further scrutinizing the relation between the two 
algorithms. 

 
 

6.2  A Shared Goal 
 
The matter of ridding an ERC set of logical dependencies and W-compliant sets is taken up in 
ERA:31-34. The technique proposed there for dealing with entailments is based on the 
observation that ERC logic supports a form of negation, there called the ‘negative’, which is 
obtained by permuting the terms of the comparison, so that the desired winner becomes the 
desired loser. The formal effect is to switch W and L (ERA:12ff). For all ERCs except the 
‘degenerate’ one consisting entirely of e’s, the negative works exactly like classical negation. In 
particular, we have the familiar relationship between inconsistency/unsatisfiability and 
entailment: 
 
(152) Entailment and ERC negative. For a nondegenerate, ABa iff A∪{−a}is unsatisfiable.  

       Proof. ERA:13, Lemma (23). 
 
(This result is used to prove that fusion delivers all nontrivial entailments, ERA:14, Prop. 2.5.) 
The tractable behavior of the ERC negative gives us a very efficient way to determine if any 
a∈A is entailed by other vectors in A. We simply replace a with −a in A and ask if the result is 
inconsistent. If it is, then a is entailed; if not, then not. RCD makes this a quick calculation, since 
it is highly efficient and fully capable of detecting inconsistency. To rid A of entailments, we 
simply go through it, ERC by ERC, checking in this fashion and discarding the entailed ERCs 
that we find. 

In the ERA algorithm, the entailment check is to be preceded by a winnowing of the W-
compliant subsets (ERA:32-33). In many cases, the result of this two-barreled procedure will be 
identical to that of FRed, but there is one key case where they diverge: where a subset is 
fusionally reducible in the context of the whole, but not locally W-compliant. Example (68), 
repeated here for convenience, provides an example: 
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(153) Fusionally reducible but not internally W-compliant. 

A 1 2 3 4  ERC 
a W L e W  1�2 ∨ 4 2 
b W e L e  1�3 
c e W e L  2�4 

a◦b◦c W L L L  1�{2,3,4} 
 
There are no W-compliant subsets, yet {a,b} is fusionally reducible, as its members are pairwise 
W-compliant with the fusion of the whole. 

Thus, the ERA algorithm will not always produce a basis. For the limited goal of 
determining whether an individual ERC is entailed by a specific set of vectors, however, the 
efficient ERA technique remains unrivalled. 
 
6.3  Test & Verify: an Alternative Route  
 
The iterated-testing style of the ERA algorithm can be used to skeletalize an ERC set directly 
(Prince 2008b). Instead of looking to see whether each ERC is entailed as is, we can test possible 
modifications of its {W,L}-content, assessing their feasibility. This approach is patterned after 
the Horn clause minimization algorithm of Hammer & Kogan 1993:135, which similarly rests on 
the ease of checking entailment in the Horn clause setting. 

Suppose we wish to know whether a given ERC vector is in skeletal form; that is, 
whether it has as few W’s and L’s as it can possibly have in the context of the overall reference 
set. To test this, we need merely turn one of its polar values to e. We first test to see whether the 
modified vector is entailed by the reference set, and is therefore a candidate for membership in a 
set that is equivalent to the reference set. (If unentailed, it says something that the reference set 
does not.) If it is, replace the original vector with this partially skeletalized derivative, and check 
to see whether the modified reference set entails the original vector. If it does, then we have 
replaced a polar value whose content follows from the other vectors in the set; that value was 
inessential and can be omitted. If not, then the tested value was necessary, and the original 
coordinate could not be emptied while preserving the ranking content of the set. To skeletalize, 
we continue in the same mode, working our way through each polar coordinate, replacing the 
vector with its reduction whenever skeletalization is successful, iterating until the absolute polar 
minimum is reached. If all coordinates are replaced, reducing original vector to degeneracy, then 
it must have been entailed by the set. If we throw away degenerate vectors obtained by this 
process, we are guaranteed that the end result of the algorithm is a logically independent set, one 
that is free of internal entailments. Let’s call this algorithm ‘Test and Verify’, T&V for short. 

If every polar coordinate in the reference set is subjected to the T&V algorithm, the polar 
content of each vector is definitively minimized, and all entailed vectors are reduced to 
degeneracy. The set of nondegenerate vectors in the output of T&V is not guaranteed to be a 
basis, because it may contain fusionally reducible sets. Example (153) again provides a case. 
T&V will find that the W in constraint 4 of ERC a is inessential. But that’s it. The result will 
look like the following, writing a′ for the skeletalized version of a. 
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(154) T&V skeletalization of A (153). 
T&V(A) 1 2 3 4  ERC  
a′  W L e e  1�2 ∨4�2 
b W e L e  1�3  
c e W e L  2�4  

 
The set {a′,b} is fusionally reducible, but unreduced, meaning that basis status eludes T&V(A).  

With skeletalization, the nature of the reduction problem has shifted. Observe that ERC 
vectors a′ and b are now simply W-compliant; no reference to c is needed to obtain reducibility. 
T&V removes any block to internal W-compliance by neutralizing to e (bolded) the very W that 
blocks W-compliance in {a,b}, which fusion of the whole set would obliterate with L. This is a 
general fact: a skeletalized form will be much better behaved with respect to W-compliance than 
an arbitrary ERC set. We may therefore proceed to the Skeletal Basis, if we wish, by fusing only 
the W-compliant sets, without concern that other fusionally-reducible sets have been missed. 

The skeletalization part of this algorithm is tractable, in the sense that it is linear in both 
the number of constraints in the target ERC set and in the number of polar values in that set. Two 
factors determine the algorithm’s ultimate complexity: the inherent complexity of the entailment 
check step, and the number of times it must be run. Observe first that checking entailment 
requires a run of RCD. Counting its complexity by the number of set fusions it requires, we see 
that it is almost appallingly efficient: for n constraints, there are at most n strata (with one 
constraint in each), and therefore at most n–1 set fusions can be required. In the worst case, we 
must test each of the p polar values in the reference set: this tells us how many times we must run 
the entailment check. We must check for two entailments: one of the target skeletalization by the 
reference set, the other of the target ERC itself by the modified reference set. The total number 
of set fusions required in total is merely 2p(n–1), with no exponents greater than one anywhere 
in sight. We can bound p by the maximum number of polar values, which cannot be greater than 
the number of constraints times the number of ERC vectors, call it |A| for a set A, yielding 
max(p)≤n|A|. Substituting this in, we find that the absolute maximum number of fusions 
required to skeletalize a set A is 2|A|n(n–1), or strictly less that 2|A|n². 

To get to a basis, we must fuse W-compliant subsets in the output of T&V. The general 
problem is messy, because a set can be W-compliant as a whole, yet fail to have any W-
compliant subsets. Here’s an example: 
 
(155) Global-only W-compliance.  

A 1 2 3 4 
a W e L W 
b W W e L 
c W L W e 
a◦b◦c W L L L 

 
The whole of A is W-compliant, as may be seen immediately from the fusion. But no pair is;   
shading in the columns marks the loci of pairwise failure. A similar construction may be 
provided for an ERC set of arbitrary size, rendering the whole W-compliant while every proper 
subset fails to be so. 
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This phenomenon also disappears under skeletalization, and for exactly the same reason 
that fusional reducibility simplifies to mere W-compliance. To get the global-only effect, all 
columns that contain some internal non-compliance must fuse to L. But this means that any W’s 
in those columns are eliminable by skeletalization. When those W’s go, internal non-compliance 
goes with them. In a skeletalized ERC set, every subset of a W-compliant set is also W-
compliant. Therefore, after skeletalization, we may perform fusional reduction in a strictly 
pairwise, iterative fashion. This is equivalent to reducing out the repetitions in a list. For m items, 
this takes less than m(m–1)/2 comparisons. Here the analog of a repeated pair of items is pair of 
W-compliant vectors, whose compliance we can test by a fusion. Since there are |A| ERCs on 
hand, the number of required fusions will be strictly less than |A|2. 

Putting this together with our first bound on skeletalization, we find that the entire 
process of producing the Skeletal Basis by the T&V algorithm accompanied by post-T&V 
collapse of W-compliant subsets requires strictly less than 2|A|³n² fusional steps.28 

This polynomial term counts as tractable in standard terms, while the expressions n! and 
2|A|, which show up in the analysis of FRed, do not. The question arises as to why one should 
proceed with FRed. Two considerations, we believe, are compelling. 

(1) First, complexity-in-the-event and complexity in the worst-case limit are far from 
equivalent. FRed responds to the number of residues and T&V to the number of polar 
specifications; in any given case, their actual distribution can conspire to favor one or the other. 
For example, in an ERC set incorporating a square block with a diagonal of W’s amid a field of 
e’s, FRed will face a maximally large number of residues, while T&V looks only at the W’s. If 
we reverse figure and ground, placing a diagonal of e’s in a square field of W’s, T&V will be 
grinding through each W while FRed swiftly marches through the e’s. 

(2) Secondly, and far more important for the fundamental goal of the enterprise, FRed 
gives us a window into the structure of the data-theory relation. The skeletalizing step in FRed, 
as noted on p.48 above, points directly toward the collection of ERCs that are responsible for the 
ranking relations incorporated in a basis element. T&V, by contrast, works quite globally with 
the entire mass of ERCs, and only asks whether skeletalization can be achieved in that 
undifferentiated context. Further structure would have to be built on top of it to try to dig out 
more specific relations. We conclude that FRed retains its unique attractiveness as a general 
solution to the Ranking Problem. 
 
 
6.4  Emin  
 
Another ERC-minimizing algorithm, ‘emin’, has been developed by Jason Riggle, and is alluded 
to in Riggle 2007. The perspective is computational and the explicit motivation for minimization 
is that the potential size of ERC sets grows rapidly with the number constraints. The algorithm 
appears to produce the MIB, but emin works by pairwise fusion of ERCs, a different tactic than 
the one employed here, which is to process the whole set recursively. We defer for a future 
occasion the exploration of its relation to FRed. 
 

                                                 
28 It is then possible to produce the MIB, if desired, by testing each e in the Skeletal Basis to see whether it can be 
replaced with L, preserving equivalence to the reference set. 
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7.  Conclusion 
 
The Ranking Problem in OT asks for the necessary and sufficient ranking conditions imposed by 
data in which the desired optima have been previously identified. This problem plays out in the 
realm of comparative tableaux: these display the results of the fundamental calculation that 
extracts the relative performance of each optimum~suboptimum pair on every constraint. At the 
heart of the comparative tableau are the vectors of W, L, and e values recording the relative 
successes, failures, and no-contests involving the desired optima. They support a calculus that 
enables computation of the desired logical properties. 

Because it is the maximally concise and maximally informative equivalent to a reference 
set, the MIB or ‘Most Informative Basis’ provides a definitive and complete answer to the 
Ranking Problem. The Skeletal Basis, which can be derived from MIB elements, gives another 
maximally concise representation, which is superior for certain uses, which range from 
constructing diagrams to connecting ranking restrictions with the data that supports them. The 
Minimal Atomic Generator (MAG), also constructible by FRed in essentially the same way as 
the MIB, gives up absolute conciseness to obtain simplicity of the entailment relation. The 
perspective developed here also sheds new light on RCD, the algorithm that efficiently delivers a 
ranking (often a set of rankings) which suffices to generate a set of data, should any such ranking 
exist; RCD takes its place within the fusion-based family of algorithms as one that involves a 
kind of lossy compression of the constraint set, in contrast to FRed which extracts and reveals 
every scrap of ranking information. 

With FRed in hand, OT analysts can undertake their investigations with the absolute 
certainty that they completely control the ranking content of any data set; and that upon that base 
they can build a thorough understanding of the actual relation between empirical generalizations 
and the theory proposed to explain them. It is to be hoped that these results will lead researchers 
to ask for analogous levels of certainty and depth in the analysis of other theories, including 
variants of OT itself. 
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