The VC dimension of constraint-based grammars

Max Bané, Jason Rigg® Morgan Sonderegger

aUniversity of Chicago, Department of Linguistics, 1010 East 59th Sreet, Chicago, IL 60637.
bUniversity of Chicago, Department of Computer Science, 1100 East 58th Street, Chicago, |L 60637.

Abstract

We analyze the complexity of Harmonic Grammar (HG), a listjaimodel in which licit underlying-to-surface-
form mappings are determined by optimization over weiglt@ualstraints. We show that the Vapnik-Chervonenkis
Dimension of HG grammars witk constraints ik — 1. This establishes a fundamental bound on the complexity
of HG in terms of its capacity to classify sets of linguistiata that has significant ramifications for learnability.
The VC dimension of HG is the same as that of Optimality Thg@¥), which is similar to HG, but uses ranked
rather than weighted constraints in optimization. Thetpar the VC dimension in these two models is somewhat
surprising because OT defines finite classes of grammarse-tne at mosk! ways to rankk constraints—while
HG can define infinite classes of grammars because the weightgiated with constraints are real-valued. The
parity is also surprising because HG permits groups of caimé$ that interact through so-called ‘gang effects’ to
generate languages that cannot be generated in OT. Thé&the VC dimension grows linearly with the number
of constraints in both models means that, even in the wosst,dhe number of randomly chosen training samples
needed to weight/rank a known set of constraints is a lin@actfon ofk. We conclude that though there may be
factors that favor one model or the other, the complexityeafhing weightings/rankings is not one of them.
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1. Introduction

Harmonic Grammar (HG; Legendre et al., 1990; Smolensky aggthdre, 2006; Goldsmith, 1990, 1991, 1993a,b)
is a constraint-based linguistic model in which the licitppangs from underlying forms to surface forms are those
that optimally satisfy a linearly weighted set of consttai It is closely related to Optimality Theory (OT; Prince
and Smolensky, 1993/2004), with the crucial difference tha parameters of an HG grammar are a vector of nu-
merical constraint weights rather than a total orderinghefd¢onstraint set. For a given threshold on the number of
violations, HG grammars include OT grammars in the senddhbee are patterns generated by weighting that cannot
be generated by rankings, while any ranking can be appragiftsy a weighting.

Though research in HG all but ceased with the emergence o& @figwing body of work has been reexamining
HG in a variety of cases. Weighted constraints have beeredrgube desirable for describing “gang effects” (as in
Potts et al., 2008) in which the action of a strong constraay be overwhelmed by a group of weaker constraints, or
multiple violations of a single weaker constraint (for agarof proposed empirical cases, see Itd and Mester, 2003;
Jager and Rosenbach, 2006; Kager and Shatzman, 2007: Ramitde, 2008a,b, in press). This is straightforward in
HG, but requires special mechanisms such as constraintrectign (Smolensky, 1995; Zhang, 2007) in OT. Albright
(2007, 2008) has also argued that weighted constraintssafelun analyzing gradient well-formedness judgments,
which seem to show both gang effects and “anti-bottleneffktés where violations beyond what would be the fatal
violation in OT contribute to relative ill-formedness. Blly, Jesney and Tessier (2008) and Albright et al. (2008)
have argued that weighted constraints better represeettspf phonological acquisition.
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Previous computational work on HG has focused on algorittim&earning HG grammars. Potts et al. (2008)
formulate HG as linear programming and use the Simplex Atigor, Boersma and Pater (2008) uses a variant of the
Perceptron Learning Algorithm, and Goldwater and John266%); Hayes and Wilson (2008) use Maximum Entropy
methods. By contrast, our focus in this paper is not on antiquéar algorithm or method, but on a property of the
class of HG grammars itself that has ramificationsafor learning algorithm. We characterize a basic formal propert
of HG called the Vapnik-Chervonenkis dimension Vapnik ameé@onenkis (1971). The VC dimension of a class of
grammars has implications for its learnability and expresgess. Put simply, if a class of grammars has infinite VC
dimension then it is not learnable, and if a class of gramimasdinite VC dimension then its members can be learned
from a sample whose size is a linear function of the VC dimamgBlumer et al., 1989). Of particular interest in
models like OT and HG is the way that the dimensionality ofghemmar class (i.e. the number of constraints) relates
to the VC dimension.

Because constraint-based grammars for human languaggsraeeally assumed to require many constraints, if
the VC dimension of HG/OT grows too quickly with the numbercohstraints, then grammars will not be learnable
without further restrictions. However, Riggle (2009) h&®wn that the VC dimension of OT grammars wikh
constraints ik — 1. This tightens the inherent bound of lglg!) that comes from the finiteness of concept classes in
OT (k! rankings generate at motlanguages). In HG, on the other hand, the range of posigaéwvalued weights
is infinite, so there is na priori bound on the number of languages generateld bgnstraints and thus reopriori
bound on the VC dimension of HG. Furthermore, because ita#se that for any given lexicon HG generates all
the OT languagésand may also generate languages with gang effects thavsgabtle interactions among groups
of constraints, one might expect that HG would be harderadmlén the worst case. It turns out, however, that the VC
dimension of HG withk constraints is alsk— 1. In this paper, we prove this result and discuss its rantifica.

Section 2 provides a brief overview and formal descriptibtH@ as a grammatical concept class, and illus-
trates the correspondence between HG tableaux and systdimsap inequalities. Section 3 introduces the Vapnik-
Chervonenkis dimension and establishes that one need ongjder tableaux of two candidates (“binary tableaux”)
in order to reason about the VC dimension of HG. Section 4iges/a mathematical description of binary tableaux,
then shows that the VC dimension of HGKs- 1 for k constraints. Section 5 concludes with a discussion of this
result’s implications for the learnability of HG.

2. Background

Given a lexiconD of input forms, both OT and HG define a langudgever D by determining for each input
i € D one or more optimal output forms according to a set of coimts&oN = {cy, ..., ck} and either an ordering of
CoN, in the case of OT, or a vector of positive real constrainglvesw € R‘i in the case of HG. Thus for fixeld and
Con, an OT grammar is fully specified by any total ordering (orkiang”) of the constraints, and an HG grammar is
defined by ank-dimensional non-negative real vector (or “weighting”tloé constraints.

Given an alphabeX from which underlying forms and surface forms are consadiotach constraitwf € CON is
a function from “candidate(i, 0)-pairs inZ* x * to non-negative integers:

Q) G:2' X2 —7Z,.

For constraint; € CoN, if ¢i((i,0)) = mthen we say that the candidate mappi{n@) “violates” constraintc; m
times. For every candidate input-output mappingin< *, we can then define a vectér Zﬁ of its violations of
each constraint:

(2 V={(v1,...,w) = (c1((i,0)),...,ck((i,0))).

It is in terms of these violation vectors that the grammarcHjgs the output(s) for each input form. The rankings
and weightings of OT and HG grammars respectively imposggbarderings oriZk+ according to a property called

2An OT tableau can contain at mdsit violation vectors that are not harmonically bounded. Thamong the non-harmonically-bounded
candidates for any finite lexicon there is a finite maximum banof violations for any constraint. As Bane and Riggle (pear) point out,
this maximum means that any ranking can be simulated by areamsweighting (e.g. by using a weighting scheme like thedcribed by Prince
(2007)).
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“harmony” (in the case of OT, itis in fact a total order). Wéereto the harmony orderings on violation vectors-as
for OT and>y, for HG; these are defined in (3) and (4).

In Optimality Theory, we denote the fact that constrainbutranksc; according to constraint ranking as
Ci >4 Cj (orc > c;j if & is clear from context). For a giveR, violation vectord is more harmonic than vectarif
U has fewer violations of the highest ranked constraint foictvid andv have different numbers of violations:

(3) U4 Viff Vi such that; > vj, 3cj such thatj >4 ¢ andu;j < v;
or equivalently
U >4 Viff Vi such tha(l—V); > 0, 3c;j such thatj >4 ¢ and(i—V); <O0.

In defining harmony for Harmonic Grammar, we follow Princ@@2a) in treating violations as positive integers
and optimization as the selection of violation vectors stoasinimize thedot product of the violation vector and
the weight vecto?. This is equivalent to the characterization in work such agelnelre et al. (2006) that represents
violations as negative integers and optimization as maedton of the dot product. We make the additional assump-
tion that all of the weights are positive and we denote a ‘Wi’ drawn l‘rom}Rk+ asw.* For a given weightingy,
violation vectori is more harmonic than violation vect@iif the weighted sum of the componentsibfs less than
the weighted sum of the componentsiof

(4) U-gV iff O-W<V-W
or equivalently
gV iff (U-V)-w>0.

A weighting in HG (and respectively a ranking in OT) definesapping that selects for each input form the output
form(s) that maximize harmony as defined in (3) and (4). Gaveandidate-generating functigen(i) that maps each
inputi € Z* to a set of candidates paired with their constraint violai@i.e.gen: 2* — Z* x Z‘i), the (i, 0)-pairs that
appear in the languagds; defined by rankingk or languaged.y defined by weightingv are those whose violation
vectors are maximally harmonic.

(5) L={(i,0) |i € D,(0,v) € gen(i), andA(d’,V) € gen(i) such thav’ > o}

Note that it is possible for multiple candidates for the sampeit form to ‘tie’ with the same violation vector and that
in HG (but not OT) it is possible for candidates that havead#ht violation vectors to be equi-harmonic (e.g. for any
V,W € ZKX thereis ark € R such tha¥-X =W ).

Analyses in OT and HG are usually presented with illusteatableaux that represent the competition among a set
of carefully chosen candidates. In Fig. 1 we present foupthygtical candidates along with their violation vectons fo
three constraints in a standard OT/HG tableau. If the camdf in this tableau are ranked= (c; > ¢, > c3) then
candidaté is optimal according t®. because it has the fewest violations of the top-ranked cainst; along with
candidate, which it beats with fewer violations of constramit On the other hand, if the constraints are weighted by
W= (0.1,0.3,0.5) then candidatd is optimal according te¥ because the weighted sum of its violatiows (3,0, 1),
is 0.8 while those of candidates b, andc are 1.9, 1.4, and 0.9. Candidates included in Fig. 1 to illustrate an
instance of a candidate that could never be optimal underamking or weighting of the constraints. This occurs
because has a constraint-wise superset of the violations of catelialand thus will be less harmonic tharunder
every ranking/weighting. Prince and Smolensky (1993/2004)ttédl “harmonic bounding.”

Candidatec is of particular interest. Note that there is no ranking & donstraints that can makeoptimal
because it is harmonically bounded by candidbtasdd together, though it is not bounded by either one individuall
Samek-Lodoviciand Prince (1999) call this “collectivettreonic bounding. There is, however, a constraint weighting
w = (0.4,0.5,0.1) that makes candidatemost harmonic, with a weighted sum of 1.0, compared to 167,dhd 1.3

3The dot product of vector&y, ... ,a,) and(by, ... ,by) is the sum of their component-wise produdsb = S aibi.
4We adopt the restriction that weights may not be negativausit provides a sufficient condition to ensure that optineawell defined. We
return to the possibility of mixed positive and negative gies in 85.

3



input C1 C2 C3
candidatea 0 3 2
candidateh 0 3 1
candidate 1 1 1
candidatel 3 0 1

Figure 1: A tableau with four candidates and three condain

for candidates, b, andd. Candidatec exemplifies the kind of input-output pair that that can beegated by HG
but not OT. With just two constraints, which allow at most atway choice among candidates in an OT tableau, it
is possible to construct an HG tableau with arbitrarily mamys that are each optimal under a different weighting
(see Legendre et al. (2006) for a concrete example). ThdalfatHG can generate infinitely many languages with
only two constraints and the fact that there are constrafatactions in HG that are impossible in OT suggestsia
facie, that learning HG grammars could be more complex than legr@iT grammars.

3. The Vapnik Chervonenkis Dimension

The VC dimension comes from the work of Vapnik and Chervoige@¥apnik and Chervonenkis, 1979)t is a
powerful metric that is often used in computational leagrtimory to quantify the maximum degree of independence
among the data that can be classified by a given set of claggificfunctions. VC dimension is usually described
in terms of “concept classes,” where a concept class a (possibly infinite) set of “concepts” or “classifiers’ath
evaluate the elements of a (possibly infinite) setalled the “instance space.” Oftenis taken to contain boolean
classifiers, so for eache ¢, and for eactx € x, the concept mapsx to 1 if x is “in” the concept and to O if it is
“out.”

A simple example may illustrate the terminology. Supposg we wish to characterize any person by two quan-
tities: weight and height. A persop is then represented by a pair of postive real numipergh), wherew; and
h; are her weight and height (in some units). The set of all pssuch pairs (i.eRi) is then our instance space
X, the set of all possible weight-height combinations. A leaol concept on this space is any function from these
pairs to 0 or 1 (i.e. any “classification function”). For iagte, we might define a concegi, Of “stoutness,” such
thatcsioud (Wi, hy)) = 1 if a person with weighty; and height; is heavy and short enough to be called “stout,” and 0
otherwise. We could define an analogous concept of “slerdsfrihat is true of people sufficiently light and tall, or
infinitely many other binary concepts for this instance sp&ane possible definition @fu:might be:

1if ﬂl' > 2;
0 otherwise

6) Cotou (Wi, ) = {

Here any point in the instance space is classified as “stbtiteiweight is more than twice the height. The choice
of 2 as the threshold is arbitrary, and different values waekult in different concepts (corresponding to different
definitions of stoutness). goncept classon.x is simply any set of concepts an for instance the class of all concepts

with the form in (6), for different threshold values. We migiall this the “weight-to-height threshold” concept class

Cw/h>k» @nd define it as:

_ 1if 1 > k;
@) Cw/h>k = {€: X — {0,1} | 3k such that/(wi,hi) € x, c((wi,hi)) = { 0 otherwise }}.

There are infinitely many other possible concept classesisnspace, for example the set of concepts defined by
some linear combination af; andh; being greater than some threshold (i.e. “linear classifingunctions”). Any

5See Kearns and Vazirani (1994) and Vapnik (1998) for intatidns to computational learning theory.
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Figure 2: A set of three points that is shatterable by hadfesp inR2.

set of concepts constitutes a concept class, but usuallyeveterested in concept classes that are defined by some
parametrization—that is, sets of concepts that result franying the value(s) of some parameter(s) in a defining
formula, such a& in (7)—and how a concept class’ properties, like the VC disi@m change as its parameters are
varied.

The VC dimension of a binary concept classs the largest set of elemer8s- {a,...,an} C x thatisshatterable
asin (8):

(8) {ay,...,an} is shatterable iff/(v1,...,vn) € {0,1}", 3c € ¢ such that(a) = vi.

Less formally, for any division of the members 8finto two discrete groups, there must be a concept ithat
classifies all the members of one group as “in” and all the mesbf the other group as “out.” Th&C dimension of
concept clasg is the size (cardinality) of the largest shatterabie x.

A classic example used to illustrate shatterability of leaol concept classes is half-spaces in the real plane. Let
x = R? (thex-y plane) and let be all half-spaces in they plane. We will show that many (but not all) sets of 3
points in the plane are shatterable, while no set of 4 poirghatterable, so the VC dimension of half-spacé’iis
3.

Consider a set of three poirasb, c € R? that are not collinear (i.e. do not all lie on one line). A ceptc € ¢
that includes all the point&a, b, c} is obtained by drawing a line off to one side of them and si&lgdhe half-space
on the side of the line facing the points. For any pair of poifit c}, {a,b}, or {a,c}, ac € ¢ that includes that
pair but excludes the third point is obtained by drawing a lixetween the excluded point and the pair, then selecting
the half-space on the side of the line facing the pair. These ¢ases are illustrated in the top row of Fig. 2. The
other four cases—a concepé ¢ that includes none of the points, and concepts that uniqoelyde{a}, {c}, and
{b}—are obtained by inverting the half-spaces in the first f@asges; these are illustrated in the bottom row of Fig. 2.

Because there is a shatterable set of three points, the Véndion is at least 3. This does not mean that all 3-point
sets must be shatterable: any set of three collinear pantsat be shattered by half-spaces because one of the points
lies between the other two, making it impossible to incluteduter points while excluding the middle one.

This situation also illustrates why no set of four points barshattered. With four points it is either the case that
one point lies in the interior of the triangle whose corneesthe other three points, or that the four points are the
corners of a 4-sided convex polygon. In the former case, ffespace can include the three corners while excluding
the interior point; in the latter case, if we label the com@bckwisea, b, ¢, d then no half-space can includeandc
while excludingb andd. (If this is too abstract, we suggest the exercise of tryingeplicate Fig. 2 for four points.)

In many cases, the point of analyzing the VC dimension of @&eptclass is to determine how the VC dimension
grows as a function of some parameters of the concept classcutarly important is the way that the “dimension-
ality” of the concept class relates to its VC dimension. Falf-spaces iR", the dimensionality of the conceptsris
and the VC dimension of is+ 1 (then = 2 case was illustrated above; see Kearns and Vazirani (188#he general

5



input 1 C1 C2 C3 input 2 C1 C2 C3
candidatea 1 4 0 candidated 2 2 0
candidaté 0 0 4 candidates 3 1 0
candidate 0 1 2 candidatef 0 5

Figure 3: Two tableaux with three candidates and three ming, shatterable in HG.

candidatea 1 4 0 candidated 2 2
candidated 0 0 4 candidatee 3 1
candidatea 1 4 0 candidated 2 2 0
candidates 0 1 2 candidatef

candidateo 0 0 4 candidates 3 1 0
candidate 0 1 2 candidatef 0 5

Figure 4: Representation of the tableaux in Fig. 3 as twoafdtgee binary tableaux.

case). The fact that the growth of the VC dimension is a lifieaction of dimensionality of the concepts is important
because it means that half-spaces can be learned from satgdoimly drawn samples whose size is a linear function
of their dimensionality (Blumer et al., 1989).

For OT or HG with a given constraint seb®, we take the concept classto be the set of all possible grammars
over CoN (i.e. all rankings or weightings of the constraints). Instbase the dimensionality af is the number of
constraints in ©N, and the ‘samples’ that the learner must classify are sesbtéaux where each tableau consists
of a set of output candidates for the same input form, whech eatput candidate is paired with its violations of the
constraints (see Fig. 3).

Thus far, we have been characterizing concepts as boolassifers that take points in some multidimensional
space and map them to 1 if they are ‘in’ the concept and 0 if #rey'out.” Though tableaux in HG and OT usu-
ally represent competition among more than two candid&is ¢an be straightforwardly reduced to sets of binary
decisions. Abinary tableau is one that contains just two candidates. Any tabléth n candidates can be seen as
comprising(n? — n) /2 binary tableaux (one for each pair of candidates). Thusabeableaux in Fig. 3 can be recast
as two sets of three binary tableaux as in Fig. 4.

If we adopt the convention that binary tableaux represanptbposition that the first candidate is more harmonic
than the second candidate, then a grammar (i.e. a conc&ptyHiG maps each binary tableau to 1 if the first candidate
is more harmonic and to O if the second is more harmonic. Ictredidates are equi-harmonic, either because they
have the same violation vector or because the dot produbeaftiolations with the constraint weighting are equal,
then the grammar will return a third value such as ‘undeciddtkse cases are not relevant to the discussion at hand
because tableaux that contain candidates with the samatigiolprofile cannot occur in shatterable samples—no
grammar could include one of two tied candidates while eiclythe other—and the fact that some weighting might
fail to distinguish between two candidates is irrelevaribag as there exists a weighting that does so.

The VC dimension of a concept class comprising all weiglgiiramkings ok constraints in HG/OT is the car-
dinality of the largest set of tableaux that can be shatteréde sense that, for every possible way of selecting one
winner per tableau, there is a grammar that chooses tharpatf winners. This quantity is relevant for learning
because it represents an absolute worst-case bound onaaingris ability to generalize. Given a shatterable set of
tableaux, if we present the tableaux in any order and telldhmer which candidates are optimal in the first 1 of
them, the learner will still be left with no recourse but taega which candidate is optimal in theh tableau.

Generally speaking, tableaux with more candidates givdehmer more information, so the worst cases will
involve tableaux with only two candidates. In fact, by destomcting tableaux into sets of binary tableaux as in Fig. 4,
it is simple to demonstrate that every sehathatterable tableaux must contain a shatterable sebivfary tableaux.
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This means that establishing the VC dimension of sets ofrpitadbleaux will bound the VC dimension for all sets of
tableaux.

Theorem 3.1. Every shatterable set of n tableaux contains a shatterable set of n binary tableaux.

Proof. Assume, for a contradiction, th@itis a shatterable set oftableaux that contains non-binary tableaux but not
a shatterable set ofbinary tableaux. Consider the set of tabledpwhere each tableau ih is the first two rows of a
tableau inT. If T, is not shatterable then there is some choice of winners that isuppisted by a ranking/weighting.
This means that for some choice of winnersit is the case that for somfe C T and for some tableauc T — Rthe
ranking/weighting entailed byw makes one of the candidategimore harmonic than the other. If this were so, then
there would be a pattern of winnersTnthat is not supported by any ranking/weighting, contrarthiassumption
thatT is shatterable. O

The VC dimension for a specific set of constraints, a spea@fiotinput forms, or a specific set of tableaux, will
usually be far lower than the bound that we derive for the garease®. The advantage of making no assumptions
about the constraints (other than that therekawéthem) and no assumptions about what kinds of inputs oeéaix
are possible, is that we establish a bound on the complekiheaclass of HG grammars that is independent of these
details. Moreover, because the general worst-case VC gimers so tame, there is no need to attempt to formulate
variants of the weighting/ranking problem to ensure thatgmnars are learnable.

Riggle (2009) reduces sets of binary tableaux in OT to setaiéments in the three-valued logic of Prince’s
(2002b) Elementary Ranking Conditions (ERCs) and showtsieecardinality of the largest shatterable set of ERCs
for k constraints ik — 1. In the next section, we take a parallel approach and resketseof binary tableaux in HG
to sets of linear inequalities over constraint weightinigen show that the largest shatterable set of linear inémsal
for k constraints ik — 1 if all constraint weights are positive akdf weights are positive and negative.

4. The VC dimension of Harmonic Grammar

As noted by Potts et al. (2008), tableaux containing setsiodlitlates correspond to systems of linear inequalities.
Consider a tableau af candidates in an HG grammar oveconstraints, with weights/ = (wy,...,wy). Once a
winner is specified, there are- 1 winner/loser pairs, each of which specifies a linear inbtyua the weights. For
a set of tableauX, any choice of winners (one winner for edch T) yields system of linear inequalities that select
each winner.

For example, if the winners in Fig. 5 are candidadgs, ande, we obtain three linear inequalities (one for each
winner/loser pair). Taken together with the condition thatights be positive, this set of tableaux and choice of
winners imply six inequalities:

ar-gb — w;—w3>0
cr-q¢d — —wi+wo—w3+ws>0
e-gf = 2wo—wW;>0

positive weights =— w; >0, w, >0, w3 >0

A choice of winners is selected by any vector of weights Batig the system of inequalities implied by that choice
of winners; the set of such vectors is called feasible region of the choice of winners. If the feasible region for a
choice of winners is empty, then there is no setting of weidiit selects those winners. If every choice of winners in
a set of tableaux has a non-empty region of the weightingesieat supports it, then that set of tableaux is shatterable.
Given a set of binary tableaux ovek constraints, each tableau defingsyperplane which splits the spacgX of
possible weights into two opdmalf-spaces, one corresponding to the set of weightings under which teedandidate

6This result applies to tableaux witimy number of candidates, even abstract tableaux containirigfiaite range of candidates (say, one
for each language in an infinite HG typology). Tableaux wetvér than two candidates do not require learners to maksidesiand are thus
irrelevant to the VC dimension, and if a set of tableaux isdésbattered then even if one of its members has infinitely mang it must still be
the case that any pair of rows we extract from the infinitegablcan be included among a shatterable set of binary tableau
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input 1 Ci|C|C|Ca

candidatea 1 1 1 0 Implication:a > b iff wy > ws

candidatéb 0 1 2 0 Implication: b > aiff ws > wy

input 2 CL|C|C|Ca
candidates 1 0 2 0 Implication: c > d iff wa 4wy > w1 + W3

candidated 0 1 1 1 Implication:d > ciff wy + W3 > W + Wy

input 3 Ci|C|C|C
candidatee 0| O 2 1 Implication: e~ f iff 2wy > wy

candidatef 0| 2| 2| 0| Implication: f > eiff wa > 2w»

Figure 5: A shatterable set of three tableaux and linearialtes for possible winners.
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Figure 6: The feasible regions far- b andb > a.

is more harmonic and the other to the weightings under whiehsecond is more harmoriicThis representation,
used by Potts et al. (2008), affords a straightforward pritation where the linear inequalities for the half-sgace
correspond to intuitive statements lika iIs more harmonic thab if the weight assigned to; is greater than that
assigned taz.” (An equivalent but less intuitive representation can b&amed by casting the half-spaces as points
and the constraint weightings as linear classifiers sepgrétem. We discuss this “point representation” in the
appendix.) Each hyperplane at the boundary between opgpbalfispaces passes through the origin of the weighting
space (i.e. the pointPbecause any pair of candidates that violate no constraire must be equally harmonic.

As a concrete example, consider in Fig. 6 the half-spacesgmonding to the first tableau of Fig. 5. Wreery, b,
the inequality isvy —ws < 0; whenb >y a, it is wy —ws > 0. In Fig. 6 we consider only the; andws dimensions
because they are the only relevant dimensions in the cosgari-or larger sets of tableaux over many constraints we
will have regions in high-dimensional space. dableaux this is formalized as follows.

An arrangement is a seta = {Py, ..., P,} of nhyperplanesifR¥. Each hyperplane in an arrangement sfiitsnto
two open half-spaces. The arrangement partitRhito a sets () of 2" sectors, each of which is an intersection of
n open half-spaces. Put otherwise, each sector correspmotsdsing a vector

6:<017"'50n>7 Oie{_lvl}

designating which side of each of thenyperplanes the sector lies on. Eathk {—1,1}" is called anorientation
of the n hyperplanes. If all members of intersect at the origin, the arrangemenh@nogeneous. Because each

"The weightings on the boundary between the two half-spaeethase where the candidates are equi-harmonic.
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Figure 7: The arrangemefiP;,P, } is shatterable (left), but not shatterable in the positithant (right).X;, X, are the normal vectors &, Ps.

binary tableau maps to a hyperplane including the originareeinterested only in homogeneous arrangements. For
a homogeneous arrangementthe hyperplaneB are completely specified by their normal vectgrsSpecifying on
which side ofP, a pointp € RX lies corresponds to specifying the signf% (¢ {—1,1}).8 We can therefore say
that a pointp lies in the sector of arrangementspecified by orientatiod if and only if signp- %) = o; for each
i =1,...,n. This identification is used in the proofs below.

We can now define shatterability for a homogeneous arrangeofie hyperplanes irRK, which is equivalent to
shatterability for a set af binary tableaux in an HG grammar wikiconstraints.

Definition 1. A homogeneous arrangementof n hyperplanes irk dimensions ishatterable if all its sectors §&
5(a)) are non-empty.

In HG terms, each sect@e s(4) corresponds to a vectV e {0,1}" specifying a winner for each of the
binary tableaux. Non-empymeans there exist weighiisc R* under which the winners ak&. Our assumption that
constraint weights are non-negative adds one final comditidhe definition of shatterability in HG.

Definition 2. A arrangementz of n hyperplanes irk dimensions isshatterable in the positive orthant RX =
{(X1,---,%) | >0,i =1,....k} if, for each sectoB e 5(a), SNRK # 0.

Fig. 7 illustrates that fok = 2, a homogeneous arrangement of 2 non-identical hyperplane 2) will be shat-
terable, but not shatterable in the positive orthant. Is thiample, any arrangemefR;, P>} of non-identical, ho-
mogeneous plandy andP, define four non-empty sectors in tke- y plane, but at most three of these intersect the
positive orthan®. From here on we use “shatterable” to mean “shatterable ipdBgive orthant.”

Theorem 4.1. The VC dimension of homogeneous arrangements of hyperplanesin R‘i isn—1.

Proof of lower bound. We show that there is a homogeneous arrangemdnt dfhyperplanes imﬁ which is shatter-
able. Consider the set of- 1 hyperplaneB; : wy =wo,...,Py_1:Wn_1 =Wy,. LetG=(01,...,0n_1) be an orientation
of these hyperplanes defining a sector. Construct a weighomg = (w1, ..., wy) as follows:

1. Choosev; > 0.
2. Fori=2,...,k If 0j_1 = 1, choosew; such thatw;_1 > w; andw; > 0. If 0j_; = —1, choosew; such that
wi_1 < w; andw; > 0.

For anyd, w lies in the positive orthant and in the sector define@by O

8This is becaus gl'é,‘ = cos, where®f is the angle betweefi andX, 6 € (0°,180). If 6 € (0°,90°), thenp-X > 0, while if 6 € (90°,180C°),
p-X<0

9The case where bof® andP; cross the positive orthant is shown. If only oneRafandP; crosses the positive orthant, two sectors intersect
it; if neither plane crosses the positive orthant, only oeear intersects it.



input 1 Ci|C|C|Ca

candidatea 0 1 0|0 Implication:a > b iff wy > wp

candidatéb 1 0 0|0 Implication: b > aiff wy > wy

input 2 CL|C|C|Ca

candidates 0|0 1 0 Implication: c > d iff wy > wg

candidated 0 1 0|0 Implication:d > ciff ws > w»

input 3 Ci|C|C|C

candidatee 0| O 0 1 Implication: e = f iff w3 > wy

candidatef 0| 0| 1| O Implication:f > eiff wg > ws

Figure 8: A shatterable set of three tableaux.

e

%

yi
Figure 9:V; is the component of; perpendicular t@&

The idea is that fok constraints we can construct a set of tablegtyx..,tx_1} in which each; has equal but opposite
non-zero violations for pairs of constrairits, ¢ 1). For such a set of tableaux, all that is necessary for slaitity

is that the relative weight of constrairgsandc; 1 be set to favor the desired winner in binary tableaardi + 1. A
shatterable set of three tableaux kot 4 that uses this construction is given in Fig. 8.

Proof of upper bound. We show that a homogeneous arrangememt-efk hyperplanes ik dimensions is not shat-
terable in the positive orthant.

Then =1 case is trivial. Assume > 2 and that there exists such an arrangenzest {Py,... R}, and letx; be
the normal vector of hyperplari®. Let & be the unit vector in the direction of the first coordinatesaaind lefy; be
the component of; perpendicular t& (Fig. 9), i.e.

9) Vi=X-ké (i=1....k

wherek; is X; - 8, the first coordinate af;. Sinceys, ...,k lie in ak— 1 dimensional subspace, they span a subspace
of dimension at modt— 1, so one of th@j is linearly dependent on the others. Without loss of geftgrakssumeyy
is linearly dependent oy, . .., Yk, So that

Y1 =Co¥2 + - + Gk

for somecy, ..., ck € R. Substituting from (9),
k

X—ki€ = ZZCi(X’i—kiéﬂ

k
= % = Kéﬁ—%Ci%

for K =k — Y¥ ,ciki. For anyZ € R,
K

(10) 2% =Kz &)+ Y azx)
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input 1 Ci|C|C3

candidatea 0 1 0 Implication:a > b iff wy > wy

candidatéb 1 0 0 Implication: b > aiff wy > wy

input 2 Ci1|C|C3

candidates 0|0 1 Implication: ¢ > d iff wp > w3

candidated 0 1 0 Implication:d > ciff ws > wy

input 3 Ci1|C|C3

candidatee 0| O 1 Implication: e > f iff wi > wjs

candidatef 1| 0| 0| Implication: f > eiff w3 >w;

Figure 10: A set of three tableaux that cannot be shattered.

Now assumé& > 0 and consider the sect8defined by the orientatiof+-1,sign(c,), .. .,signc)). By shatterability
in the positive orthantS has non-empty intersection with the positive ortthq; so choosd € SN Rﬁ. As above,
Gi(Y-%)>0({=2,...,kandy-%X; <0, whileZ has a positive first coordinate= Z-& > 0, so from (10),

k
(11) 0> 2~21:K(2-é1)+_%ci(2~25)20

a contradiction.
TheK < 0 case is analogous. O

We illustrate the argument used in this proof by exampleygitie set of three binary tableauk=€ 3, n = 3) in
Fig. 10. Subtracting the second from the first row of eactetablyives the normal vectors defining 3 planeRin

X1=(-1,1,0), X=(0,—-1,1), X3=(-1,0,1)
Using (9) then gives vectogs perpendicular t& = (1,0,0):
yl = (O’ 1’ O)’ VZ = (Oa _17 1)7 V3 = (Oa Oa 1)

andk; = —1,ky, = 0, ks = —1. y; can be written as a linear combinationygfandys (Y1 = —Y2 +V3), givingc, = —1,
cz=1andK =k; —cokp —c3sks=—-1+0+1=0.

Egns. 10-11 show how the fact thatcan be written in terms ofs, ..., y, implies that then tableaux are not
shatterable, by showing that ma, ..., w satisfy one of the Rorientations. For our example, consider the orientation
(—1,sign(cp),sign(cz)) = (—1,—1,1), meaninga > b, ¢ d, f > e. Thenw; > wy,wp > ws = wy > ws (from
tableaux 1 and 2), bwtz > wy (from tableau 3), a contradiction.

10The upper bound proof is similar to Vapnik's (1998) prooftué &C dimension of indicator variables of linear combinasiof functions. This
is because the (coefficients of) hyperplanes corresportdibgnary tableaux in HG can equivalently be considered astpoand weight vectors
as hyperplanes separating them (see appendix), which fdimeax family of functions. The HG case is slightly diffetdmecause not all points
(binary tableaux) are in the domain, only those not in thetpesor negative orthants, and not all weight vectors anesttered, only those that
define hyperplanes which pass through the positive orthAlktcharacterize tableaux as orientations of hyperplanesbezause it corresponds
more transparently to the consequences of different ogftimhhe constraint weightings (i.e. in Fig. 10 candidate more harmonic thah just in
casews is greater thamv,).
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5. Discussion

Our result establishes an upper bound on the VC dimensiamstbased only on the dimensionality (i.e. number
of constraints) of an HG grammar. Specific sets of conssaint/or specific sets of tableaux can have much lower
VC dimension. Though results for specific cases will sureyobinterest, our results show that in the general case
the complexity of the weighting/ranking problem is alreapljte manageable. It is reasonable to ask whether lifting
the restriction to positive weights changes the VC dimamsithe problem. As it turns out, the VC dimension of ar-
rangements of homogeneous half-spac@iis k, just one greater than the VC dimension with all positiveghes 11
If the concept space is recast in the point representatiseritied in the appendix, this question is addressed by a rel-
atively well-known result in machine learning (Vapnik, B99456), that the VC dimension of homogeneous linear
classifiers irk dimensions ik. This connection illustrates an important aspect of the kihanalysis presented here.
By formalizing linguistically-familiar problems in waysat show them to be familiar problems in other disciplines,
we make it easier to take advantage of research that hasalean done in those disciplines.

The VC dimension of a concept class has broad ramificatiarthéolearnability of that class. First, note that all
finite concept classes have finite VC dimension becauseéstdkconcepts to shatter a sample of siz¥ Infinite
concept classes can have infinite VC dimension, but not alFdo example, the main result of this paper is that the
infinite class of languages generated by positive realedhiueightings of a set & constraints under HG ik— 1.

On the other hand, the VC dimension of the infinite class oflemges generated by HG/OT grammars made up of
arbitrary sets of constraints is clearly infinite (fobinary tableaux, a set of'Zonstraints can select each patten of
winners). For concept classes with infinite VC dimensioeyé¢his no upper bound on the number of samples that
might be required for a learner to converge on the correcothgsis. On the other hand, for concept classes with
finite VC dimensiond, a sequence of training samples whose size is essentiadigrlind is sufficient to learn any
concept in the class in the frameworkRAC-learnability (Probably Approximately Correct; Valiant, 1984)

Blumer et al. (1989) show that in the PAC model, for arbityesmall & ande, with probability 1— 8, a hypothesis
whose probability of misclassification is less thrawill be found by any learning algorithm that @ensistent in the
sense that it always correctly labels data from previousinssamples. Moreover, the number of sampidisat are
required to guarantee such a hypothesis for any conceptdrdass with VC dimensiod is:

(12) m= max(%1 log, %, 8—: log, 1?3) = m< g (Zd log, 1?3+ log, ?25) )
In other words, even in the worst case, with the most adviatgapbability distribution on the sample space, and with
the worst consistent learning algorithm, a sample of sizedi in the VC dimension of the class guarantees (PAC)
learnability. Thus withk constraints, any consistent HG learning algorithm needsbserve the outcomes of only
linearly many (ink) binary tableaux to have probability-15 of finding a hypothesis grammar (vector of constraint
weights) that misclassifies the language the sample rapsesith less tham probability.

In addition to this worst-case upper bound on sample siaanBf et al. (1989) show that the VC dimensibof
a concept class establishes a minimal sample size, beloghwoi learning algorithm can generate, with confidence

0, a hypothesis better than chaneeq%):

(13) m> max<¥ln%, d(1—2(£(1—6)+6))>.

That the VC dimension of HG is finite is thus a positive resaitthe learnability of HG in general, and that it is
linear in the dimensionality of the model (i.e. the numbecafistraints) is a positive result for the worst case betavio
of any HG learning algorithm. Unlike the VC dimension of OThish was guaranteed to be finite simply by the fact

11The lower and upper bound proofs are simpler without theriotisin to the positive orthant. For the lower bound, ketbe all planes
perpendicular to the coordinate axes; the sectors aretiweti?ants. For the upper bound, assume there is a homogeee@mgementz =
{P1,...,P1} of k+ 1 hyperplanes ik dimensions, with the normal vector of hyperplari@. One of theX; must be linearly dependent on
the others; without loss of generality s&y= coX + --- + ck11%+1. Then considering the orientatidr-1,sign(cz), ... ,sign(ck;1)) leads to a
contradiction as in Proof 4.

12For example, the VC dimension of the class of languages gtatkby rankings of a set &fconstraints in OT could be at most lgg, which
is on the order oklogy k. Yet, as Riggle (2009) shows, the VC dimension is actuaHyl.
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that there are onlk! grammars foik constraints, the VC dimension of HG had a@riori guarantee of finiteness.
Even though the infinite range of grammars obtained by cenisig all vectors ok constraint weights yields an
infinite typology of languages (depending on the constsasge Smolensky and Legendre, 2006; Pater et al., 2007),
the VC dimensions of the infinite (HG) and finite (OT) models exactly the same. This means that although HG and
OT models may differ greatly in the typological predictichsy make, they are the same in terms of the worst-case
behavior of learning algorithms for them. Further, the weesse is linear, and thus not at all bad. At least from the
perspective of worst-case sample complexity, then, OT aBdke equally reasonable models of human grammar.

Yet OT and HG have significant differences, both in grammarsegated and typological predictions. If not in
worst-case learnability, where should we look for theséedinces to manifest themselves? One possibility is to
examine OT and HG not just in the worst case but also in theagestase, for example using the related notiovi®f
entropy (see Vapnik, 1998, ch. 4; Bousquet et al., 2004). Another examine the typologies generated by OT and
HG in concrete cases to understand what grammars are gethbsaHHG but not OT, and how they affect learnability
(see ongoing work by Pater et al., 2007; Pater, 2009; Ban®aygle, to appear).

A further point of divergence between OT and HG is in the woeste mistake bounds for online learning (see
Blum (1998) for a survey of on-line learning). For OT, rarialgorithms such as Tesar and Smolensky’s (2000)
Recursive Constraint Demotion algorithm or Riggle’s (2008olume learner are guaranteed to make no more than
on the order ok? mistakes andklogk mistakes respectively when learning rankingsafonstraints. For HG on
the other hand, there is no upper bound on the number of restdiat a learner can make because the mistake
bound is a function of particular properties of the set oifniray data that are totally independent of the number of
constraints. This fact about HG follows directly from thetfthat learning weightings is a linear classification peoil
on separable data (see Vapnik, 1998, 377).

The robustness and the simplicity of the connection betviieeryC dimension and learnability have led some
researchers such as Niyogi (2006, 941) to speculate thet W@ dimension may be a necessary property for the
class of human grammars. However, most learnability problia linguistics—such as learning Minimalist grammars
(Chomsky, 1995), Tree Adjoining grammars (Joshi et al. 5)9@r Head-driven Phrase Structure grammars (Pollard
and Sag, 1994)—have infinite VC dimension. In fact, any fdisnathat is at least as powerful as regular grammars
also has infinite VC dimension (Nowak et al., 2002). By thimedoken, the problem of learning OT/HG grammars
over arbitrary sets of regular constraints has infinite V@etision. These facts lead Stabler (2009) to suggest that
one of the central problems in learnability and natural leage is finding the right characterization of the way that the
“actual” problem of grammar learning differs from the moshgral characterizations of the problem. This is precisely
what we have done here. Though the problem of learning ainsibased grammars over arbitrary constraints has
infinite VC dimension, if the constraints are a known and disiét and if the training data consist of violation vectors
for optimal and suboptimal candidates, then the probleneafiing weightings/rankings is not hard: even the worst
case requires a set of training samples whose size is omgrlim the number of constraints. This positive result
provides a baseline against which it will be possible toeatd learning from noisy data, data with (partially) hidden
structures, or learning where some of the constraints doeawn.

Appendix: Point representation

Consider a set ofi binary tableaux ovek constraints. Each tableau can be represented by a hyperasaim
84, however, we can give an alternative “point represesmtativhere each binary tableau is represented akthe
dimensional normal vector of the hyperplane, which is tlfiedince of the violation vectors corresponding to the two
candidates, odifference vector.

input Ch|C|C3|C4

candidatea 11| 2| 0| Implication:a> biff (—1,0,—1,1)ec
candidatep 0| 1| 1| 1| Implication:b> aiff (1,0,1,-1)€cc

Figure 11: Point representation using difference vectors.
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The concept class defined by HG grammars ovkiconstraints in this representation is the set of homogesiealf
spaces corresponding to weight vectrs Rﬁ. A candidate is selected bycae C just in case the difference vectors
obtained by subtracting its violations from its compestwoiolations lie in the half-spaag In this representation, the
proof that the VC dimension is— 1 can be greatly simplified.

Lower bound. Considerthe set &— 1 pointsd; = (1,-1,0,...,0),8=(0,1,-1,0,...,0),...,8-1=(0,...,1,-1).
By a similar argument as in Thm. 4.1, this set is shatteraple.b

Upper bound. Supposeés= {ay,...,d} is a set ok points shatterable by. Shatterability impllies these points are
linearly independent (Burges, 1998, 160); they thus fornasisoforRK. In particular, the poinf = (1,...,1) € R¥
can be written as a linear combination of e

k
= Zlcié,- (for somec; € R)

=l

By the assumption th&is shatterable, there exists a weight veatdre R¥ such that for eachj € S, w* - & > 0 if
¢ <Oandw*-g < 0if ¢ >0. Then

k
We1l=YS W - & <O0.
2,6

This contradicts the assumption thit € R‘i because one af*'s components must be negative and thus no skt of
points is shatterable by homogeneous hyperplanes withalaeators in[R{ﬁ. O

In this representation, shatterability is closely tied iteér separability. A shatterable set of binary tableaux
corresponds to a set of difference vector&lf) each with at least one positive and one negative compoeithe(
candidate can win under some weighting), such that for eaditipn of the set into two parts (a choice of winner for
each tableau), the two parts are linearly separable by arpigme with normal vector imﬁ.
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