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Abstract

We analyze the complexity of Harmonic Grammar (HG), a linguistic model in which licit underlying-to-surface-
form mappings are determined by optimization over weightedconstraints. We show that the Vapnik-Chervonenkis
Dimension of HG grammars withk constraints isk − 1. This establishes a fundamental bound on the complexity
of HG in terms of its capacity to classify sets of linguistic data that has significant ramifications for learnability.
The VC dimension of HG is the same as that of Optimality Theory(OT), which is similar to HG, but uses ranked
rather than weighted constraints in optimization. The parity of the VC dimension in these two models is somewhat
surprising because OT defines finite classes of grammars—there are at mostk! ways to rankk constraints—while
HG can define infinite classes of grammars because the weightsassociated with constraints are real-valued. The
parity is also surprising because HG permits groups of constraints that interact through so-called ‘gang effects’ to
generate languages that cannot be generated in OT. The fact that the VC dimension grows linearly with the number
of constraints in both models means that, even in the worst case, the number of randomly chosen training samples
needed to weight/rank a known set of constraints is a linear function ofk. We conclude that though there may be
factors that favor one model or the other, the complexity of learning weightings/rankings is not one of them.
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1. Introduction

Harmonic Grammar (HG; Legendre et al., 1990; Smolensky and Legendre, 2006; Goldsmith, 1990, 1991, 1993a,b)
is a constraint-based linguistic model in which the licit mappings from underlying forms to surface forms are those
that optimally satisfy a linearly weighted set of constraints.1 It is closely related to Optimality Theory (OT; Prince
and Smolensky, 1993/2004), with the crucial difference that the parameters of an HG grammar are a vector of nu-
merical constraint weights rather than a total ordering of the constraint set. For a given threshold on the number of
violations, HG grammars include OT grammars in the sense that there are patterns generated by weighting that cannot
be generated by rankings, while any ranking can be approximated by a weighting.

Though research in HG all but ceased with the emergence of OT,a growing body of work has been reexamining
HG in a variety of cases. Weighted constraints have been argued to be desirable for describing “gang effects” (as in
Potts et al., 2008) in which the action of a strong constraintmay be overwhelmed by a group of weaker constraints, or
multiple violations of a single weaker constraint (for a range of proposed empirical cases, see Itô and Mester, 2003;
Jäger and Rosenbach, 2006; Kager and Shatzman, 2007; Farris-Trimble, 2008a,b, in press). This is straightforward in
HG, but requires special mechanisms such as constraint conjunction (Smolensky, 1995; Zhang, 2007) in OT. Albright
(2007, 2008) has also argued that weighted constraints are useful in analyzing gradient well-formedness judgments,
which seem to show both gang effects and “anti-bottleneck” effects where violations beyond what would be the fatal
violation in OT contribute to relative ill-formedness. Finally, Jesney and Tessier (2008) and Albright et al. (2008)
have argued that weighted constraints better represent aspects of phonological acquisition.
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1See Pater (2009) for a thorough and accessible introductionto HG, as well as a review of previous work.
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Previous computational work on HG has focused on algorithmsfor learning HG grammars. Potts et al. (2008)
formulate HG as linear programming and use the Simplex Algorithm, Boersma and Pater (2008) uses a variant of the
Perceptron Learning Algorithm, and Goldwater and Johnson (2003); Hayes and Wilson (2008) use Maximum Entropy
methods. By contrast, our focus in this paper is not on any particular algorithm or method, but on a property of the
class of HG grammars itself that has ramifications forany learning algorithm. We characterize a basic formal property
of HG called the Vapnik-Chervonenkis dimension Vapnik and Chervonenkis (1971). The VC dimension of a class of
grammars has implications for its learnability and expressiveness. Put simply, if a class of grammars has infinite VC
dimension then it is not learnable, and if a class of grammarshas finite VC dimension then its members can be learned
from a sample whose size is a linear function of the VC dimension (Blumer et al., 1989). Of particular interest in
models like OT and HG is the way that the dimensionality of thegrammar class (i.e. the number of constraints) relates
to the VC dimension.

Because constraint-based grammars for human languages aregenerally assumed to require many constraints, if
the VC dimension of HG/OT grows too quickly with the number ofconstraints, then grammars will not be learnable
without further restrictions. However, Riggle (2009) has shown that the VC dimension of OT grammars withk
constraints isk−1. This tightens the inherent bound of log2(k!) that comes from the finiteness of concept classes in
OT (k! rankings generate at mostk! languages). In HG, on the other hand, the range of positive real valued weights
is infinite, so there is noa priori bound on the number of languages generated byk constraints and thus noa priori
bound on the VC dimension of HG. Furthermore, because it is the case that for any given lexicon HG generates all
the OT languages2 and may also generate languages with gang effects that involve subtle interactions among groups
of constraints, one might expect that HG would be harder to learn in the worst case. It turns out, however, that the VC
dimension of HG withk constraints is alsok−1. In this paper, we prove this result and discuss its ramifications.

Section 2 provides a brief overview and formal description of HG as a grammatical concept class, and illus-
trates the correspondence between HG tableaux and systems of linear inequalities. Section 3 introduces the Vapnik-
Chervonenkis dimension and establishes that one need only consider tableaux of two candidates (“binary tableaux”)
in order to reason about the VC dimension of HG. Section 4 provides a mathematical description of binary tableaux,
then shows that the VC dimension of HG isk− 1 for k constraints. Section 5 concludes with a discussion of this
result’s implications for the learnability of HG.

2. Background

Given a lexiconD of input forms, both OT and HG define a languageL over D by determining for each input
i ∈ D one or more optimal output forms according to a set of constraints CON = {c1, . . . ,ck} and either an ordering of
CON, in the case of OT, or a vector of positive real constraint weights~w ∈ Rk

+ in the case of HG. Thus for fixedD and
CON, an OT grammar is fully specified by any total ordering (or “ranking”) of the constraints, and an HG grammar is
defined by anyk-dimensional non-negative real vector (or “weighting”) ofthe constraints.

Given an alphabetΣ from which underlying forms and surface forms are constructed, each constraintci ∈ CON is
a function from “candidate”(i,o)-pairs inΣ∗×Σ∗ to non-negative integers:

(1) ci : Σ∗×Σ∗ → Z+.

For constraintci ∈ CON, if ci((i,o)) = m then we say that the candidate mapping(i,o) “violates” constraintci m
times. For every candidate input-output mapping inΣ∗×Σ∗, we can then define a vector~v ∈ Zk

+ of its violations of
each constraint:

(2) ~v = 〈v1, . . . ,vk〉 = 〈c1((i,o)), . . . ,ck((i,o))〉.

It is in terms of these violation vectors that the grammar specifies the output(s) for each input form. The rankings
and weightings of OT and HG grammars respectively impose partial orderings onZk

+ according to a property called

2An OT tableau can contain at mostk! violation vectors that are not harmonically bounded. Thus, among the non-harmonically-bounded
candidates for any finite lexicon there is a finite maximum number of violations for any constraint. As Bane and Riggle (to appear) point out,
this maximum means that any ranking can be simulated by a constraint weighting (e.g. by using a weighting scheme like thatdescribed by Prince
(2007)).

2



“harmony” (in the case of OT, it is in fact a total order). We refer to the harmony orderings on violation vectors as≻R
for OT and≻~w for HG; these are defined in (3) and (4).

In Optimality Theory, we denote the fact that constraintci outranksc j according to constraint rankingR as
ci ≫R c j (or ci ≫ c j if R is clear from context). For a givenR , violation vector~u is more harmonic than vector~v if
~u has fewer violations of the highest ranked constraint for which~u and~v have different numbers of violations:

~u ≻R ~v iff ∀i such thatui > vi, ∃c j such thatc j ≫R ci andu j < v j(3)

or equivalently

~u ≻R ~v iff ∀i such that(~u−~v)i > 0, ∃c j such thatc j ≫R ci and(~u−~v) j < 0.

In defining harmony for Harmonic Grammar, we follow Prince (2002a) in treating violations as positive integers
and optimization as the selection of violation vectors so asto minimize thedot product of the violation vector and
the weight vector.3 This is equivalent to the characterization in work such as Legendre et al. (2006) that represents
violations as negative integers and optimization as maximization of the dot product. We make the additional assump-
tion that all of the weights are positive and we denote a ‘weighting’ drawn fromRk

+ as~w.4 For a given weighting~w,
violation vector~u is more harmonic than violation vector~v if the weighted sum of the components of~u is less than
the weighted sum of the components of~v:

~u ≻~w ~v iff ~u ·~w <~v ·~w(4)

or equivalently

~u ≻~w ~v iff (~u−~v) ·~w > 0.

A weighting in HG (and respectively a ranking in OT) defines a mapping that selects for each input form the output
form(s) that maximize harmony as defined in (3) and (4). Givena candidate-generating functiongen(i) that maps each
input i ∈ Σ∗ to a set of candidates paired with their constraint violations (i.e.gen : Σ∗ → Σ∗×Zk

+), the(i,o)-pairs that
appear in the languageLR defined by rankingR or languageL~w defined by weighting~w are those whose violation
vectors are maximally harmonic.

(5) L =
{

(i,o) | i ∈ D,(o,v) ∈ gen(i), and∄(o′,v′) ∈ gen(i) such thato′ ≻ o
}

Note that it is possible for multiple candidates for the sameinput form to ‘tie’ with the same violation vector and that
in HG (but not OT) it is possible for candidates that have different violation vectors to be equi-harmonic (e.g. for any
~v,~w ∈ Zk

+ there is an~x ∈ Rk
+ such that~v ·~x = ~w ·~x).

Analyses in OT and HG are usually presented with illustrative tableaux that represent the competition among a set
of carefully chosen candidates. In Fig. 1 we present four hypothetical candidates along with their violation vectors for
three constraints in a standard OT/HG tableau. If the constraints in this tableau are rankedR = 〈c1 ≫ c2 ≫ c3〉 then
candidateb is optimal according toR because it has the fewest violations of the top-ranked constraintc1 along with
candidatea, which it beats with fewer violations of constraintc3. On the other hand, if the constraints are weighted by
~w = 〈0.1,0.3,0.5〉 then candidated is optimal according to~w because the weighted sum of its violations,~w · 〈3,0,1〉,
is 0.8 while those of candidatesa, b, andc are 1.9, 1.4, and 0.9. Candidatea is included in Fig. 1 to illustrate an
instance of a candidate that could never be optimal under anyranking or weighting of the constraints. This occurs
becausea has a constraint-wise superset of the violations of candidate b and thus will be less harmonic thanb under
every ranking/weighting. Prince and Smolensky (1993/2004) callthis “harmonic bounding.”

Candidatec is of particular interest. Note that there is no ranking of the constraints that can makec optimal
because it is harmonically bounded by candidatesb andd together, though it is not bounded by either one individually.
Samek-Lodovici and Prince (1999) call this “collective” harmonic bounding. There is, however, a constraint weighting
~w = 〈0.4,0.5,0.1〉 that makes candidatec most harmonic, with a weighted sum of 1.0, compared to 1.7, 1.6, and 1.3

3The dot product of vectors(a1, . . . ,an) and(b1, . . . ,bn) is the sum of their component-wise products:~a ·~b = ∑n
i=1 aibi.

4We adopt the restriction that weights may not be negative because it provides a sufficient condition to ensure that optimaare well defined. We
return to the possibility of mixed positive and negative weights in §5.
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input

candidatea

candidateb

candidatec

candidated

c1 c2 c3

0 3 2

0 3 1

1 1 1

3 0 1

Figure 1: A tableau with four candidates and three constraints.

for candidatesa, b, andd. Candidatec exemplifies the kind of input-output pair that that can be generated by HG
but not OT. With just two constraints, which allow at most a two-way choice among candidates in an OT tableau, it
is possible to construct an HG tableau with arbitrarily manyrows that are each optimal under a different weighting
(see Legendre et al. (2006) for a concrete example). The factthat HG can generate infinitely many languages with
only two constraints and the fact that there are constraint interactions in HG that are impossible in OT suggests,prima
facie, that learning HG grammars could be more complex than learning OT grammars.

3. The Vapnik Chervonenkis Dimension

The VC dimension comes from the work of Vapnik and Chervonenkis (Vapnik and Chervonenkis, 1971).5 It is a
powerful metric that is often used in computational learning theory to quantify the maximum degree of independence
among the data that can be classified by a given set of classification functions. VC dimension is usually described
in terms of “concept classes,” where a concept classC is a (possibly infinite) set of “concepts” or “classifiers” that
evaluate the elements of a (possibly infinite) setX called the “instance space.” OftenC is taken to contain boolean
classifiers, so for eachc ∈ C , and for eachx ∈ X , the conceptc mapsx to 1 if x is “in” the concept and to 0 if it is
“out.”

A simple example may illustrate the terminology. Suppose that we wish to characterize any person by two quan-
tities: weight and height. A personpi is then represented by a pair of postive real numbers(wi,hi), wherewi and
hi are her weight and height (in some units). The set of all possible such pairs (i.e.R2

+) is then our instance space
X , the set of all possible weight-height combinations. A boolean concept on this space is any function from these
pairs to 0 or 1 (i.e. any “classification function”). For instance, we might define a conceptcstout of “stoutness,” such
thatcstout((wi,hi)) = 1 if a person with weightwi and heighthi is heavy and short enough to be called “stout,” and 0
otherwise. We could define an analogous concept of “slenderness” that is true of people sufficiently light and tall, or
infinitely many other binary concepts for this instance space. One possible definition ofcstout might be:

(6) cstout((wi,hi)) =

{

1 if wi
hi

> 2;
0 otherwise.

Here any point in the instance space is classified as “stout” if the weight is more than twice the height. The choice
of 2 as the threshold is arbitrary, and different values would result in different concepts (corresponding to different
definitions of stoutness). Aconcept class onX is simply any set of concepts onX ; for instance the class of all concepts
with the form in (6), for different threshold values. We might call this the “weight-to-height threshold” concept class,
Cw/h>k, and define it as:

(7) Cw/h>k = {c : X → {0,1} | ∃k such that∀(wi,hi) ∈ X , c((wi,hi)) =

{

1 if wi
hi

> k;
0 otherwise.

}

}.

There are infinitely many other possible concept classes on this space, for example the set of concepts defined by
some linear combination ofwi andhi being greater than some threshold (i.e. “linear classification functions”). Any

5See Kearns and Vazirani (1994) and Vapnik (1998) for introductions to computational learning theory.
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c b
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{b,c}

c b

a

{a,b}
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{a,c}

c b

a

{ }

c b

a
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c b

a

{c}

c b

a
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Figure 2: A set of three points that is shatterable by half-spaces inR2.

set of concepts constitutes a concept class, but usually we are interested in concept classes that are defined by some
parametrization—that is, sets of concepts that result fromvarying the value(s) of some parameter(s) in a defining
formula, such ask in (7)—and how a concept class’ properties, like the VC dimension, change as its parameters are
varied.

The VC dimension of a binary concept classC is the largest set of elementsS = {a1, . . . ,an} ⊆ X that isshatterable
as in (8):

(8) {a1, . . . ,an} is shatterable iff∀(v1, . . . ,vn) ∈ {0,1}n,∃c ∈ C such thatc(ai) = vi.

Less formally, for any division of the members ofS into two discrete groups, there must be a concept inC that
classifies all the members of one group as “in” and all the members of the other group as “out.” TheVC dimension of
concept classC is the size (cardinality) of the largest shatterableS ⊆ X .

A classic example used to illustrate shatterability of boolean concept classes is half-spaces in the real plane. Let
X = R2 (thex-y plane) and letC be all half-spaces in thex-y plane. We will show that many (but not all) sets of 3
points in the plane are shatterable, while no set of 4 points is shatterable, so the VC dimension of half-spaces inR2 is
3.

Consider a set of three pointsa,b,c ∈ R2 that are not collinear (i.e. do not all lie on one line). A conceptc ∈ C
that includes all the points{a,b,c} is obtained by drawing a line off to one side of them and selecting the half-space
on the side of the line facing the points. For any pair of points {b,c}, {a,b}, or {a,c}, a c ∈ C that includes that
pair but excludes the third point is obtained by drawing a line between the excluded point and the pair, then selecting
the half-space on the side of the line facing the pair. These four cases are illustrated in the top row of Fig. 2. The
other four cases—a conceptc ∈ C that includes none of the points, and concepts that uniquelyinclude{a}, {c}, and
{b}—are obtained by inverting the half-spaces in the first four cases; these are illustrated in the bottom row of Fig. 2.

Because there is a shatterable set of three points, the VC dimension is at least 3. This does not mean that all 3-point
sets must be shatterable: any set of three collinear points cannot be shattered by half-spaces because one of the points
lies between the other two, making it impossible to include the outer points while excluding the middle one.

This situation also illustrates why no set of four points canbe shattered. With four points it is either the case that
one point lies in the interior of the triangle whose corners are the other three points, or that the four points are the
corners of a 4-sided convex polygon. In the former case, no half-space can include the three corners while excluding
the interior point; in the latter case, if we label the corners clockwisea, b, c, d then no half-space can includea andc
while excludingb andd. (If this is too abstract, we suggest the exercise of trying to replicate Fig. 2 for four points.)

In many cases, the point of analyzing the VC dimension of a concept class is to determine how the VC dimension
grows as a function of some parameters of the concept class. Particularly important is the way that the “dimension-
ality” of the concept class relates to its VC dimension. For half-spaces inRn, the dimensionality of the concepts isn
and the VC dimension of isn+1 (then = 2 case was illustrated above; see Kearns and Vazirani (1994)for the general
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input 1

candidatea

candidateb

candidatec

c1 c2 c3

1 4 0

0 0 4

0 1 2

input 2

candidated

candidatee

candidatef

c1 c2 c3

2 2 0

3 1 0

0 5 1

Figure 3: Two tableaux with three candidates and three constraints, shatterable in HG.

candidatea

candidateb

candidated

candidatee

1 4 0

0 0 4

2 2 0

3 1 0

candidatea

candidatec

candidated

candidatef

1 4 0

0 1 2

2 2 0

0 5 1

candidateb

candidatec

candidatee

candidatef

0 0 4

0 1 2

3 1 0

0 5 1

Figure 4: Representation of the tableaux in Fig. 3 as two setsof three binary tableaux.

case). The fact that the growth of the VC dimension is a linearfunction of dimensionality of the concepts is important
because it means that half-spaces can be learned from sets ofrandomly drawn samples whose size is a linear function
of their dimensionality (Blumer et al., 1989).

For OT or HG with a given constraint set CON, we take the concept classC to be the set of all possible grammars
over CON (i.e. all rankings or weightings of the constraints). In this case the dimensionality ofC is the number of
constraints in CON, and the ‘samples’ that the learner must classify are sets oftableaux where each tableau consists
of a set of output candidates for the same input form, where each output candidate is paired with its violations of the
constraints (see Fig. 3).

Thus far, we have been characterizing concepts as boolean classifiers that take points in some multidimensional
space and map them to 1 if they are ‘in’ the concept and 0 if theyare ‘out.’ Though tableaux in HG and OT usu-
ally represent competition among more than two candidates they can be straightforwardly reduced to sets of binary
decisions. Abinary tableau is one that contains just two candidates. Any tableau with n candidates can be seen as
comprising(n2−n)/2 binary tableaux (one for each pair of candidates). Thus thetwo tableaux in Fig. 3 can be recast
as two sets of three binary tableaux as in Fig. 4.

If we adopt the convention that binary tableaux represent the proposition that the first candidate is more harmonic
than the second candidate, then a grammar (i.e. a concept) inOT/HG maps each binary tableau to 1 if the first candidate
is more harmonic and to 0 if the second is more harmonic. If thecandidates are equi-harmonic, either because they
have the same violation vector or because the dot product of their violations with the constraint weighting are equal,
then the grammar will return a third value such as ‘undecided.’ These cases are not relevant to the discussion at hand
because tableaux that contain candidates with the same violation profile cannot occur in shatterable samples—no
grammar could include one of two tied candidates while excluding the other—and the fact that some weighting might
fail to distinguish between two candidates is irrelevant aslong as there exists a weighting that does so.

The VC dimension of a concept class comprising all weightings/rankings ofk constraints in HG/OT is the car-
dinality of the largest set of tableaux that can be shatteredin the sense that, for every possible way of selecting one
winner per tableau, there is a grammar that chooses that pattern of winners. This quantity is relevant for learning
because it represents an absolute worst-case bound on any learner’s ability to generalize. Given a shatterable set ofn
tableaux, if we present the tableaux in any order and tell thelearner which candidates are optimal in the firstn−1 of
them, the learner will still be left with no recourse but to guess which candidate is optimal in then-th tableau.

Generally speaking, tableaux with more candidates give thelearner more information, so the worst cases will
involve tableaux with only two candidates. In fact, by deconstructing tableaux into sets of binary tableaux as in Fig. 4,
it is simple to demonstrate that every set ofn shatterable tableaux must contain a shatterable set ofn binary tableaux.
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This means that establishing the VC dimension of sets of binary tableaux will bound the VC dimension for all sets of
tableaux.

Theorem 3.1. Every shatterable set of n tableaux contains a shatterable set of n binary tableaux.

Proof. Assume, for a contradiction, thatT is a shatterable set ofn tableaux that contains non-binary tableaux but not
a shatterable set ofn binary tableaux. Consider the set of tableauxT2 where each tableau inT2 is the first two rows of a
tableau inT . If T2 is not shatterable then there is some choice of winners that is not supported by a ranking/weighting.
This means that for some choice of winnersW it is the case that for someR ⊂ T and for some tableaut ∈ T −R the
ranking/weighting entailed byW makes one of the candidates int more harmonic than the other. If this were so, then
there would be a pattern of winners inT that is not supported by any ranking/weighting, contrary tothe assumption
thatT is shatterable.

The VC dimension for a specific set of constraints, a specific set of input forms, or a specific set of tableaux, will
usually be far lower than the bound that we derive for the general case.6 The advantage of making no assumptions
about the constraints (other than that there arek of them) and no assumptions about what kinds of inputs or tableaux
are possible, is that we establish a bound on the complexity of the class of HG grammars that is independent of these
details. Moreover, because the general worst-case VC dimension is so tame, there is no need to attempt to formulate
variants of the weighting/ranking problem to ensure that grammars are learnable.

Riggle (2009) reduces sets of binary tableaux in OT to sets ofstatements in the three-valued logic of Prince’s
(2002b) Elementary Ranking Conditions (ERCs) and shows that the cardinality of the largest shatterable set of ERCs
for k constraints isk−1. In the next section, we take a parallel approach and reducesets of binary tableaux in HG
to sets of linear inequalities over constraint weightings,then show that the largest shatterable set of linear inequalities
for k constraints isk−1 if all constraint weights are positive andk if weights are positive and negative.

4. The VC dimension of Harmonic Grammar

As noted by Potts et al. (2008), tableaux containing sets of candidates correspond to systems of linear inequalities.
Consider a tableau ofn candidates in an HG grammar overk constraints, with weights~w = 〈w1, . . . ,wk〉. Once a
winner is specified, there aren−1 winner/loser pairs, each of which specifies a linear inequality in the weights. For
a set of tableauxT , any choice of winners (one winner for eacht ∈ T ) yields system of linear inequalities that select
each winner.

For example, if the winners in Fig. 5 are candidatesa, c, ande, we obtain three linear inequalities (one for each
winner/loser pair). Taken together with the condition thatweights be positive, this set of tableaux and choice of
winners imply six inequalities:

a ≻~w b =⇒ w1−w3 > 0

c ≻~w d =⇒ −w1 + w2−w3 + w4 > 0

e ≻~w f =⇒ 2w2−w4 > 0

positive weights =⇒ w1 > 0, w2 > 0, w3 > 0

A choice of winners is selected by any vector of weights satisfying the system of inequalities implied by that choice
of winners; the set of such vectors is called thefeasible region of the choice of winners. If the feasible region for a
choice of winners is empty, then there is no setting of weights that selects those winners. If every choice of winners in
a set of tableaux has a non-empty region of the weighting space that supports it, then that set of tableaux is shatterable.

Given a set ofn binary tableaux overk constraints, each tableau defines ahyperplane which splits the spaceRk of
possible weights into two openhalf-spaces, one corresponding to the set of weightings under which the first candidate

6This result applies to tableaux withany number of candidates, even abstract tableaux containing aninfinite range of candidates (say, one
for each language in an infinite HG typology). Tableaux with fewer than two candidates do not require learners to make decisions and are thus
irrelevant to the VC dimension, and if a set of tableaux is to be shattered then even if one of its members has infinitely manyrows it must still be
the case that any pair of rows we extract from the infinite tableau can be included among a shatterable set of binary tableaux.
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input 1

candidatea

candidateb

c1

1

0

c2

1

1

c3

1

2

c4

0

0

Implication:a ≻ b iff w1 > w3

Implication:b ≻ a iff w3 > w1

input 2

candidatec

candidated

c1

1

0

c2

0

1

c3

2

1

c4

0

1

Implication:c ≻ d iff w2 + w4 > w1 + w3

Implication:d ≻ c iff w1 + w3 > w2 + w4

input 3

candidatee

candidatef

c1

0

0

c2

0

2

c3

2

2

c4

1

0

Implication:e ≻ f iff 2w2 > w4

Implication: f ≻ e iff w4 > 2w2

Figure 5: A shatterable set of three tableaux and linear inequalities for possible winners.

a ≻ b

b ≻ a

w1

w3

Figure 6: The feasible regions fora ≻ b andb ≻ a.

is more harmonic and the other to the weightings under which the second is more harmonic.7 This representation,
used by Potts et al. (2008), affords a straightforward interpretation where the linear inequalities for the half-spaces
correspond to intuitive statements like “a is more harmonic thanb if the weight assigned toc1 is greater than that
assigned toc3.” (An equivalent but less intuitive representation can be obtained by casting the half-spaces as points
and the constraint weightings as linear classifiers separating them. We discuss this “point representation” in the
appendix.) Each hyperplane at the boundary between opposing half-spaces passes through the origin of the weighting
space (i.e. the point 0k) because any pair of candidates that violate no constraintsat all must be equally harmonic.

As a concrete example, consider in Fig. 6 the half-spaces corresponding to the first tableau of Fig. 5. Whena≻~w b,
the inequality isw1−w3 < 0; whenb ≻~w a, it is w1−w3 > 0. In Fig. 6 we consider only thew1 andw3 dimensions
because they are the only relevant dimensions in the comparison. For larger sets of tableaux over many constraints we
will have regions in high-dimensional space. Forn tableaux this is formalized as follows.

An arrangement is a setA = {P1, . . . ,Pn} of n hyperplanes inRk. Each hyperplane in an arrangement splitsRk into
two open half-spaces. The arrangement partitionsRk into a setS (A ) of 2n sectors, each of which is an intersection of
n open half-spaces. Put otherwise, each sector corresponds to choosing a vector

~o = 〈o1, . . . ,on〉, oi ∈ {−1,1}

designating which side of each of then hyperplanes the sector lies on. Each~o ∈ {−1,1}n is called anorientation
of the n hyperplanes. If all members ofA intersect at the origin, the arrangement ishomogeneous. Because each

7The weightings on the boundary between the two half-spaces are those where the candidates are equi-harmonic.
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~x1

~x2

~x1

~x2

P1

P2

P1

P2

Figure 7: The arrangement{P1,P2} is shatterable (left), but not shatterable in the positive orthant (right).~x1,~x2 are the normal vectors ofP1, P2.

binary tableau maps to a hyperplane including the origin, weare interested only in homogeneous arrangements. For
a homogeneous arrangementA , the hyperplanesPi are completely specified by their normal vectors~xi. Specifying on
which side ofPi a point~p ∈ Rk lies corresponds to specifying the sign of~p ·~xi (∈ {−1,1}).8 We can therefore say
that a point~p lies in the sector of arrangementA specified by orientation~o if and only if sign(~p ·~xi) = oi for each
i = 1, . . . ,n. This identification is used in the proofs below.

We can now define shatterability for a homogeneous arrangement of n hyperplanes inRk, which is equivalent to
shatterability for a set ofn binary tableaux in an HG grammar withk constraints.

Definition 1. A homogeneous arrangementA of n hyperplanes ink dimensions isshatterable if all its sectors (S ∈
S (A )) are non-empty.

In HG terms, each sectorS ∈ S (A ) corresponds to a vector~W ∈ {0,1}n specifying a winner for each of then
binary tableaux. Non-emptyS means there exist weights~w ∈ Rk under which the winners are~W . Our assumption that
constraint weights are non-negative adds one final condition to the definition of shatterability in HG.

Definition 2. A arrangementA of n hyperplanes ink dimensions isshatterable in the positive orthant Rk
+ =

{(x1, . . . ,xk) |xi > 0, i = 1, . . . ,k} if, for each sectorS ∈ S (A ), S∩Rk
+ 6= /0.

Fig. 7 illustrates that fork = 2, a homogeneous arrangement of 2 non-identical hyperplanes (n = 2) will be shat-
terable, but not shatterable in the positive orthant. In this example, any arrangement{P1,P2} of non-identical, ho-
mogeneous planesP1 andP2 define four non-empty sectors in thex− y plane, but at most three of these intersect the
positive orthant.9 From here on we use “shatterable” to mean “shatterable in thepositive orthant.”

Theorem 4.1. The VC dimension of homogeneous arrangements of hyperplanes in Rk
+ is n−1.

Proof of lower bound. We show that there is a homogeneous arrangement ofk−1 hyperplanes inRk
+ which is shatter-

able. Consider the set ofn−1 hyperplanesP1 : w1 = w2, . . . ,Pn−1 : wn−1 = wn. Let~o = (o1, . . . ,on−1) be an orientation
of these hyperplanes defining a sector. Construct a weight vector~w = (w1, . . . ,wk) as follows:

1. Choosew1 > 0.
2. For i = 2, . . . ,k: If oi−1 = 1, choosewi such thatwi−1 > wi andwi > 0. If oi−1 = −1, choosewi such that

wi−1 < wi andwi > 0.

For any~o, ~w lies in the positive orthant and in the sector defined by~o.

8This is because~p·~x
|~p||~x| = cosθ, whereθ is the angle between~p and~x, θ ∈ (0◦,180◦). If θ ∈ (0◦,90◦), then~p ·~x > 0, while if θ ∈ (90◦,180◦),

~p ·~x < 0
9The case where bothP1 andP2 cross the positive orthant is shown. If only one ofP1 andP2 crosses the positive orthant, two sectors intersect

it; if neither plane crosses the positive orthant, only one sector intersects it.
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input 1

candidatea

candidateb

c1

0

1

c2

1

0

c3

0

0

c4

0

0

Implication:a ≻ b iff w1 > w2

Implication:b ≻ a iff w2 > w1

input 2

candidatec

candidated

c1

0

0

c2

0

1

c3

1

0

c4

0

0

Implication:c ≻ d iff w2 > w3

Implication:d ≻ c iff w3 > w2

input 3

candidatee

candidatef

c1

0

0

c2

0

0

c3

0

1

c4

1

0

Implication:e ≻ f iff w3 > w4

Implication: f ≻ e iff w4 > w3

Figure 8: A shatterable set of three tableaux.

~yi

ki~e1
~xi

Figure 9:~yi is the component of~xi perpendicular to~e1

The idea is that fork constraints we can construct a set of tableaux{t1, ...,tk−1} in which eachti has equal but opposite
non-zero violations for pairs of constraints(ci,ci+1). For such a set of tableaux, all that is necessary for shatterability
is that the relative weight of constraintsci andci+1 be set to favor the desired winner in binary tableauxi andi+1. A
shatterable set of three tableaux fork = 4 that uses this construction is given in Fig. 8.

Proof of upper bound. We show that a homogeneous arrangement ofn = k hyperplanes ink dimensions is not shat-
terable in the positive orthant.

Then = 1 case is trivial. Assumen ≥ 2 and that there exists such an arrangementA = {P1, . . . ,Pk}, and let~xi be
the normal vector of hyperplanePi. Let~e1 be the unit vector in the direction of the first coordinate axis, and let~yi be
the component of~xi perpendicular to~e1 (Fig. 9), i.e.

(9) ~yi =~xi − ki~e1 (i = 1, . . . ,k)

whereki is~xi ·~e1, the first coordinate of~xi. Since~y1, . . . ,~yk lie in a k−1 dimensional subspace, they span a subspace
of dimension at mostk−1, so one of the~yi is linearly dependent on the others. Without loss of generality, assume~y1

is linearly dependent on~y2, . . . ,~yk, so that
~y1 = c2~y2 + · · ·+ ck~yk

for somec2, . . . ,ck ∈ R. Substituting from (9),

~x1− k1~e1 =
k

∑
i=2

ci(~xi − ki~e1)

=⇒ ~x1 = K~e1 +
k

∑
i=2

ci~xi

for K = k1−∑k
i=2 ciki. For any~z ∈ Rk,

(10) ~z ·~x1 = K(~z ·~e1)+
k

∑
i=2

ci(~z ·~xi)
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input 1

candidatea

candidateb

c1

0

1

c2

1

0

c3

0

0

Implication:a ≻ b iff w1 > w2

Implication:b ≻ a iff w2 > w1

input 2

candidatec

candidated

c1

0

0

c2

0

1

c3

1

0

Implication:c ≻ d iff w2 > w3

Implication:d ≻ c iff w3 > w2

input 3

candidatee

candidatef

c1

0

1

c2

0

0

c3

1

0

Implication:e ≻ f iff w1 > w3

Implication: f ≻ e iff w3 > w1

Figure 10: A set of three tableaux that cannot be shattered.

Now assumeK ≥ 0 and consider the sectorS defined by the orientation(−1,sign(c2), . . . ,sign(ck)). By shatterability
in the positive orthant,S has non-empty intersection with the positive orthantRk

+, so choose~y ∈ S∩Rk
+. As above,

ci(~y ·~xi) ≥ 0 (i = 2, . . . ,k) and~y ·~x1 < 0, while~z has a positive first coordinate=⇒ ~z ·~e1 > 0, so from (10),

(11) 0>~z ·~x1 = K(~z ·~e1)+
k

∑
i=2

ci(~z ·~xi) ≥ 0

a contradiction.
TheK < 0 case is analogous.10

We illustrate the argument used in this proof by example, using the set of three binary tableaux (k = 3, n = 3) in
Fig. 10. Subtracting the second from the first row of each tableau gives the normal vectors defining 3 planes inR3,

~x1 = (−1,1,0), ~x2 = (0,−1,1), ~x3 = (−1,0,1)

Using (9) then gives vectors~yi perpendicular to~e1 = (1,0,0):

~y1 = (0,1,0), ~y2 = (0,−1,1), ~y3 = (0,0,1)

andk1 = −1, k2 = 0, k3 = −1.~y1 can be written as a linear combination of~y2 and~y3 (~y1 = −~y2+~y3), givingc2 =−1,
c3 = 1 andK = k1− c2k2− c3k3 = −1+0+1= 0.

Eqns. 10–11 show how the fact that~y1 can be written in terms of~y2, . . . ,~yn implies that then tableaux are not
shatterable, by showing that now1, . . . ,wk satisfy one of the 2n orientations. For our example, consider the orientation
(−1,sign(c2),sign(c3)) = (−1,−1,1), meaninga ≻ b, c ≻ d, f ≻ e. Thenw1 > w2,w2 > w3 =⇒ w1 > w3 (from
tableaux 1 and 2), butw3 > w1 (from tableau 3), a contradiction.

10The upper bound proof is similar to Vapnik’s (1998) proof of the VC dimension of indicator variables of linear combinations of functions. This
is because the (coefficients of) hyperplanes correspondingto binary tableaux in HG can equivalently be considered as points, and weight vectors
as hyperplanes separating them (see appendix), which form alinear family of functions. The HG case is slightly different because not all points
(binary tableaux) are in the domain, only those not in the positive or negative orthants, and not all weight vectors are considered, only those that
define hyperplanes which pass through the positive orthant.We characterize tableaux as orientations of hyperplanes here because it corresponds
more transparently to the consequences of different optimafor the constraint weightings (i.e. in Fig. 10 candidatea is more harmonic thanb just in
casew1 is greater thanw2).
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5. Discussion

Our result establishes an upper bound on the VC dimension that is based only on the dimensionality (i.e. number
of constraints) of an HG grammar. Specific sets of constraints and/or specific sets of tableaux can have much lower
VC dimension. Though results for specific cases will surely be of interest, our results show that in the general case
the complexity of the weighting/ranking problem is alreadyquite manageable. It is reasonable to ask whether lifting
the restriction to positive weights changes the VC dimension of the problem. As it turns out, the VC dimension of ar-
rangements of homogeneous half-spaces inRk is k, just one greater than the VC dimension with all positive weights.11

If the concept space is recast in the point representation described in the appendix, this question is addressed by a rel-
atively well-known result in machine learning (Vapnik, 1998, 156), that the VC dimension of homogeneous linear
classifiers ink dimensions isk. This connection illustrates an important aspect of the kind of analysis presented here.
By formalizing linguistically-familiar problems in ways that show them to be familiar problems in other disciplines,
we make it easier to take advantage of research that has already been done in those disciplines.

The VC dimension of a concept class has broad ramifications for the learnability of that class. First, note that all
finite concept classes have finite VC dimension because it takes 2n concepts to shatter a sample of sizen.12 Infinite
concept classes can have infinite VC dimension, but not all do. For example, the main result of this paper is that the
infinite class of languages generated by positive real-valued weightings of a set ofk constraints under HG isk−1.
On the other hand, the VC dimension of the infinite class of languages generated by HG/OT grammars made up of
arbitrary sets of constraints is clearly infinite (forn binary tableaux, a set of 2n constraints can select each patten of
winners). For concept classes with infinite VC dimension, there is no upper bound on the number of samples that
might be required for a learner to converge on the correct hypothesis. On the other hand, for concept classes with
finite VC dimensiond, a sequence of training samples whose size is essentially linear ind is sufficient to learn any
concept in the class in the framework ofPAC-learnability (Probably Approximately Correct; Valiant, 1984)

Blumer et al. (1989) show that in the PAC model, for arbitrarily smallδ andε, with probability 1−δ, a hypothesis
whose probability of misclassification is less thanε will be found by any learning algorithm that isconsistent in the
sense that it always correctly labels data from previously seen samples. Moreover, the number of samplesm that are
required to guarantee such a hypothesis for any concept froma class with VC dimensiond is:

(12) m = max

(

4
ε

log2
2
δ
,

8d
ε

log2
13
ε

)

=⇒ m ≤
4
ε

(

2d log2
13
ε

+ log2
2
δ

)

.

In other words, even in the worst case, with the most adversarial probability distribution on the sample space, and with
the worst consistent learning algorithm, a sample of size linear in the VC dimension of the class guarantees (PAC)
learnability. Thus withk constraints, any consistent HG learning algorithm needs toobserve the outcomes of only
linearly many (ink) binary tableaux to have probability 1− δ of finding a hypothesis grammar (vector of constraint
weights) that misclassifies the language the sample represents with less thanε probability.

In addition to this worst-case upper bound on sample size, Blumer et al. (1989) show that the VC dimensiond of
a concept class establishes a minimal sample size, below which no learning algorithm can generate, with confidence
δ, a hypothesis better than chance (ε < 1

2):

(13) m ≥ max

(

1− ε
ε

ln
1
δ
, d(1−2(ε(1− δ)+ δ))

)

.

That the VC dimension of HG is finite is thus a positive result for the learnability of HG in general, and that it is
linear in the dimensionality of the model (i.e. the number ofconstraints) is a positive result for the worst case behavior
of any HG learning algorithm. Unlike the VC dimension of OT, which was guaranteed to be finite simply by the fact

11The lower and upper bound proofs are simpler without the restriction to the positive orthant. For the lower bound, letA be all planes
perpendicular to the coordinate axes; the sectors are the 2k orthants. For the upper bound, assume there is a homogeneousarrangementA =
{P1, . . . ,Pk+1} of k + 1 hyperplanes ink dimensions, with~xi the normal vector of hyperplanePi. One of the~xi must be linearly dependent on
the others; without loss of generality say~x1 = c2~x2 + · · ·+ ck+1~xk+1. Then considering the orientation(−1,sign(c2), . . . ,sign(ck+1)) leads to a
contradiction as in Proof 4.

12For example, the VC dimension of the class of languages generated by rankings of a set ofk constraints in OT could be at most log2 k!, which
is on the order ofk log2 k. Yet, as Riggle (2009) shows, the VC dimension is actuallyk−1.
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that there are onlyk! grammars fork constraints, the VC dimension of HG had noa priori guarantee of finiteness.
Even though the infinite range of grammars obtained by considering all vectors ofk constraint weights yields an
infinite typology of languages (depending on the constraints; see Smolensky and Legendre, 2006; Pater et al., 2007),
the VC dimensions of the infinite (HG) and finite (OT) models are exactly the same. This means that although HG and
OT models may differ greatly in the typological predictionsthey make, they are the same in terms of the worst-case
behavior of learning algorithms for them. Further, the worst case is linear, and thus not at all bad. At least from the
perspective of worst-case sample complexity, then, OT and HG are equally reasonable models of human grammar.

Yet OT and HG have significant differences, both in grammars generated and typological predictions. If not in
worst-case learnability, where should we look for these differences to manifest themselves? One possibility is to
examine OT and HG not just in the worst case but also in the average case, for example using the related notion ofVC
entropy (see Vapnik, 1998, ch. 4; Bousquet et al., 2004). Another is to examine the typologies generated by OT and
HG in concrete cases to understand what grammars are generated by HG but not OT, and how they affect learnability
(see ongoing work by Pater et al., 2007; Pater, 2009; Bane andRiggle, to appear).

A further point of divergence between OT and HG is in the worst-case mistake bounds for online learning (see
Blum (1998) for a survey of on-line learning). For OT, ranking algorithms such as Tesar and Smolensky’s (2000)
Recursive Constraint Demotion algorithm or Riggle’s (2008) r-volume learner are guaranteed to make no more than
on the order ofk2 mistakes andk logk mistakes respectively when learning rankings ofk constraints. For HG on
the other hand, there is no upper bound on the number of mistakes that a learner can make because the mistake
bound is a function of particular properties of the set of training data that are totally independent of the number of
constraints. This fact about HG follows directly from the fact that learning weightings is a linear classification problem
on separable data (see Vapnik, 1998, 377).

The robustness and the simplicity of the connection betweenthe VC dimension and learnability have led some
researchers such as Niyogi (2006, 941) to speculate that finite VC dimension may be a necessary property for the
class of human grammars. However, most learnability problems in linguistics—such as learning Minimalist grammars
(Chomsky, 1995), Tree Adjoining grammars (Joshi et al., 1975), or Head-driven Phrase Structure grammars (Pollard
and Sag, 1994)—have infinite VC dimension. In fact, any formalism that is at least as powerful as regular grammars
also has infinite VC dimension (Nowak et al., 2002). By this same token, the problem of learning OT/HG grammars
over arbitrary sets of regular constraints has infinite VC dimension. These facts lead Stabler (2009) to suggest that
one of the central problems in learnability and natural language is finding the right characterization of the way that the
“actual” problem of grammar learning differs from the most general characterizations of the problem. This is precisely
what we have done here. Though the problem of learning constraint-based grammars over arbitrary constraints has
infinite VC dimension, if the constraints are a known and finite set and if the training data consist of violation vectors
for optimal and suboptimal candidates, then the problem of learning weightings/rankings is not hard: even the worst
case requires a set of training samples whose size is only linear in the number of constraints. This positive result
provides a baseline against which it will be possible to evaluate learning from noisy data, data with (partially) hidden
structures, or learning where some of the constraints are unknown.

Appendix: Point representation

Consider a set ofn binary tableaux overk constraints. Each tableau can be represented by a hyperplane as in
§4, however, we can give an alternative “point representation” where each binary tableau is represented as thek-
dimensional normal vector of the hyperplane, which is the difference of the violation vectors corresponding to the two
candidates, ordifference vector.

input

candidatea

candidateb

c1

1

0

c2

1

1

c3

2

1

c4

0

1

Implication:a ≻ b iff (−1,0,−1,1)∈ c

Implication:b ≻ a iff (1,0,1,−1) ∈ c

Figure 11: Point representation using difference vectors.

13



The concept classC defined by HG grammars overk constraints in this representation is the set of homogeneous half-
spaces corresponding to weight vectors~w ∈ Rk

+. A candidate is selected by ac ∈C just in case the difference vectors
obtained by subtracting its violations from its competitors violations lie in the half-spacec. In this representation, the
proof that the VC dimension isk−1 can be greatly simplified.

Lower bound. Consider the set ofk−1 points~a1 = (1,−1,0, . . . ,0),~a2 = (0,1,−1,0, . . . ,0), . . .,~ak−1 = (0, . . . ,1,−1).
By a similar argument as in Thm. 4.1, this set is shatterable by C .

Upper bound. SupposeS = {~a1, . . . ,~ak} is a set ofk points shatterable byC . Shatterability implies these points are
linearly independent (Burges, 1998, 160); they thus form a basis forRk. In particular, the point~1 = (1, . . . ,1) ∈ Rk

can be written as a linear combination of the~ai:

~1 =
k

∑
i=1

ci~ai (for someci ∈ R)

By the assumption thatS is shatterable, there exists a weight vector~w∗ ∈ Rk
+ such that for each~ai ∈ S, ~w∗ ·~ai > 0 if

ci < 0 and~w∗ ·~ai < 0 if ci > 0. Then

~w∗ ·~1 =
k

∑
i=1

ci~w
∗ ·~ai < 0.

This contradicts the assumption that~w∗ ∈ Rk
+ because one of~w∗’s components must be negative and thus no set ofk

points is shatterable by homogeneous hyperplanes with normal vectors inRk
+.

In this representation, shatterability is closely tied to linear separability. A shatterable set of binary tableaux
corresponds to a set of difference vectors inRk, each with at least one positive and one negative component (either
candidate can win under some weighting), such that for each partition of the set into two parts (a choice of winner for
each tableau), the two parts are linearly separable by a hyperplane with normal vector inRk

+.
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