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1. Introduction 

 

This paper proposes that a new characterization of phonological systems, output-driven 

maps, provides the kind of formal structure needed to overcome computational 

difficulties in the learning of constraint rankings and underlying forms. 

 

1.1 Terminology 

 

A candidate is an input, an output, and a correspondence relation between them. An 

input for a word is constructed from the underlying forms for the morphemes of the 

word. A candidate has a set of (zero or more) disparities. A disparity is a difference 

between the input and the output of a candidate, for example when corresponding 

segments differ in the value of a feature. The candidate shown in (1) has two disparities; 

the subscripts are IO correspondence indices. The corresponding segments with index 2 

disagree in stress: the input segment is unstressed, while the output segment is stressed. 

The corresponding segments with index 4 disagree in length: the input segment is long, 

while the output segment is short. 

 

(1) / p1a2k3a:4 / → [ p1á2k3a4 ] 

 

A mapping is a grammatical candidate (the actual assignment of an output to that 

input in the language). A map is a set of grammatical candidates, the well-formed 

structural descriptions of a language. 

 

1.2 A System for Illustration 

 

                                                 
* I would like to acknowledge Crystal Akers for helpfully working through an example with an 

early version of the proposal. Valuable discussion and comments were provided by Alan Prince, and 

audiences at NELS39 and NECPhon2 (NorthEast Computational Phonology Meeting). 
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Each word consists of a root and a suffix (both monosyllabic). Each vowel has two 

features. The length feature has the values long (+) and short (–). The main stress feature 

has the values stressed (+) and unstressed (–). The constraints are as shown in (2). 

 

(2) The constraints (McCarthy and Prince 1993, McCarthy and Prince 1995, Prince 

1990, Rosenthall 1994) 

 

MAINLEFT main stress on the initial syllable 

MAINRIGHT main stress on the final syllable 

*V: no long vowels 

WSP long vowels must be stressed (weight-to-stress principle) 

FAITHSTRESS IO correspondents have equal stress value 

FAITHLENGTH IO correspondents have equal length value 

 

This system defines a typology of 24 languages. One of the languages is shown in 

(3); we will call this case Language A. It is generated by the constraint ranking given in 

(4). Briefly stated, Language A has lexical stress, with stress on the initial syllable by 

default, and long vowels shorten in unstressed position. 

 

(3) Language A 

 

r1 = /pa/ r2 = /pa:/ r3 = /pá/ r4 = /pá:/  

páka pá:ka páka pá:ka s1 = /-ka/ 

páka pá:ka páka pá:ka s2 = /-ka:/ 

paká paká páka pá:ka s3 = /-ká/ 

paká: paká: páka pá:ka s4 = /-ká:/ 

 

(4) WSP ≫ FAITHSTRESS ≫ MAINLEFT ≫ MAINRIGHT ≫ FAITHLENGTH ≫ *V: 

 

2. Learning Phonologies 

 

A phonological learner must simultaneously learn the ranking and lexicon (Hale and 

Reiss 1997, Tesar and Smolensky 1996). This poses a computational challenge, in part 

because of the explosive combinatorial growth in the number of possible combinations of 

constraint rankings and lexica. Exhaustively evaluating all possible lexicon-ranking 

combinations (Hale and Reiss 1997) is hopelessly intractable. Even modest assumptions 

lead to large numbers. In a system where all segments possess 10 binary features and all 

underlying forms have four segments, a morpheme has 2
40

 ≈ 10
12

 possible underlying 

forms. For a lexicon of 1000 morphemes, that yields 2
40 x 1000

 ≈ 10
12041

 possible lexica 

alone (Tesar 2007).
1
 The number of possible rankings grows factorially in the number of 

constraints, and the number of possible lexicon-ranking combinations is the product of 

the number of each. 

 

                                                 
1 By comparison, the number of atoms in the universe is commonly estimated to be about 1080. 
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Versions of this computational challenge appear in recent work on phonological 

learnability. Jarosz (2006), investigating an approach based on likelihood maximization, 

is able to bias the learner towards more restrictive grammars, but the algorithm separately 

evaluates each possible underlying form for each morpheme (as well as each possible 

constraint ranking). Apoussidou (2007), investigating an approach based on lexical 

constraints against possible underlying forms (Boersma 2001), is able to avoid exhaustive 

search of all possible rankings, but the algorithm separately evaluates each possible 

underlying form for each morpheme. 

 

Merchant (Merchant 2008, Merchant and Tesar 2008) proposes evaluating local 

lexica for a small morpheme set, in an approach that determines underlying forms by 

setting one feature at a time (rather than treating underlying forms monolithically). A 

local lexicon is a possible assignment of feature values to unset underlying features, so 

the number of possible local lexica goes down as more features are set. This is better than 

exhaustive search of all possible underlying forms, but the number of local lexica is still 

exponential in the number of unset features. 

 

Each of these recent lines of research has advanced the field in various ways, but 

computationally the techniques are still implausibly slow. Processing all underlying 

forms for even a modest number of morphemes gets expensive very quickly. The claim 

motivating the present work is that faster (and more cognitively plausible) learning will 

require additional posited structure in the space of possible grammars, structure that can 

be exploited by a learner to effectively search the space without exhaustively evaluating 

all (or even most) of the possibilities in the space. The concept of output-driven maps, 

described in the next section, is here proposed as that additional structure. 

 

3. Output-Driven Maps 

 

The concept of output-driven map (Tesar 2008) originates in an old issue in phonological 

theory, the extent to which phonological generalizations can be expressed in terms of 

restrictions on the output (Chomsky 1964, Kiparsky 1971, Kiparsky 1973, Kisseberth 

1970, for an overview see McCarthy 2007). For over three decades, this issue has 

commonly been discussed in terms of the transparency/opacity of phonological processes 

(Kiparsky 1971, Kiparsky 1973). However, the notion of phonological process does not 

fit with some theoretical frameworks as well as it does with others. For example, in 

Optimality Theory (Prince and Smolensky 1993/2004) there is no natural theoretical 

primitive analogous to a phonological process. 

 

The concept of output-driven map formally characterizes the intuitive notion of 

“determined by restrictions on the output” without any reference to phonological 

processes. It refers to the representational elements of structural descriptions (inputs, 

outputs, and the correspondences between them), and can apply equally to analyses 

expressed within SPE (Chomsky and Halle 1968), Optimality Theory, or any other 

framework formalizing phonology in terms of an input-output relation. 
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The definition of an output-driven map, given in (5), is stated in terms of 

candidates and a similarity relation on the candidates. Intuitively, it can be interpreted as 

saying that if an input A maps to X, and an input B is more similar to X than A is, then B 

must also map to X. 

 

(5) A map is output-driven if, for every grammatical candidate A→X of the map, 

if candidate B→X has greater similarity than A→X, 

then B→X is also grammatical (it is part of the map). 

 

The notion of similarity is here characterized in terms of disparities. For present 

purposes, two candidates can only be compared for relative similarity if they have the 

same output form (if two candidates have different output forms, neither can have greater 

similarity than the other). Candidate A→X has greater similarity than B→X if every 

disparity of B→X has an identical corresponding disparity in A→X; B→X has greater 

similarity than A→X if it has a subset of the disparities of A→X. 

 

(6) Candidate B→X has greater similarity than A→X. 

B→X  paká → paká:  Disparities: length in seg. 4 

A→X  páká → paká:  Disparities: stress in seg. 2, length in seg. 4 

 

The diagram in (7) shows the relative similarity relation, which is in fact a lattice, 

for the output paká:. Each node represents a candidate, with the text within each node 

(7) Relative similarity relation for output paká: (higher in the graph means greater 

similarity) 

paká:

páká: pa:ká: paka: paká

pá:ká: páka: páká pa:ka: pa:ká paka

pá:ka: pá:ká páka pa:ka

pá:ka
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indicating the input for that candidate (all candidates have output paká:). Candidate B→X 

of (6) is the last (rightmost) candidate of the second row down, while A→X of (6) is the 

third candidate from the left in the third row down. If one candidate is above another, it 

means that the first (higher) candidate has greater similarity than the other. 

 

It can be easier to visually process the relative similarity order if feature matrices 

are used in place of textual representations of the words. Such a diagram is given in (8), 

where the four features are given in the order [root-stress root-length suffix-stress suffix-

length]. 

 

The top node in the similarity relation represents the input with the greatest 

similarity to the output: the output itself. The top candidate has zero disparities. The 

candidates immediately below the top one each have a single disparity with the output 

(one such candidate for each feature). This continues down the order until the bottom is 

reached: the candidate in which the input differs on every feature from the output. 

 

4. Exploiting ODM Structure in Learning 

 

A learner can benefit from the knowledge that the language being learned is output-

driven. Specifically, the learner can capitalize on the entailment relations between 

different candidates to arrive at conclusions about both underlying forms and the ranking 

without having to generate and evaluate all of the relevant possible underlying forms. 

 

(8) Relative similarity relation for output paká: (features version) 

 

- - + +

+ - + + - + + + - - - + - - + -

+ + + + + - - + + - + - - + - + - + + - - - - -

+ + - + + + + - + - - - - + - -

+ + - -
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Output-driven maps are defined by an entailment relation: A→X entails B→X. It 

is easier to see how this can be exploited in learning if one considers the logically 

equivalent contrapositive form: NOT(B→X) entails NOT(A→X). If a learner can 

determine that B is not the correct input for X, then the learner may automatically 

conclude that A cannot be the correct input for X either. 

 

4.1 Learning Underlying Forms 

 

The use of the output-driven map structure for the learning of underlying forms can be 

illustrated by considering the length feature of suffix s4 in language A. The output of 

word r1s4 is [paká:]. The learner can test the length feature of s4 by constructing an input 

with just a single disparity relative to that output, a disparity in the length feature of the 

suffix. That input is /paká/. The learner then constructs the candidate /paká/→[paká:], 

with the output of r1s4 and only a disparity in the suffix length. The full relative 

similarity lattice for [paká:] is given in (9). The shaded sublattice consists of all the 

candidates that have a disparity with the output for the suffix length feature: they all have 

s4 underlyingly –long. The single disparity candidate thus has a subset of the disparities 

of all of the other candidates in the sublattice; /paká/→[paká:] has greater similarity than 

any other candidate for this output with a disparity in the length of the suffix. 

 

The payoff comes if the learner is able to determine that the candidate 

/paká/→[paká:] cannot be optimal. Testing a candidate for consistency with what a 

(9) Setting s4 to +long. This is the relative similarity lattice for the output of r1s4, 

[paká:]. The shaded sublattice contains all candidates with s4 underlyingly –long. 

 

paká:

páká: pa:ká: paka: paká

pá:ká: páka: páká pa:ka: pa:ká paka

pá:ka: pá:ká páka pa:ka

pá:ka
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learner has learned thus far can be done with multirecursive constraint demotion (Tesar 

1997, Tesar 2004). If the learner determines that /paká/→[paká:] cannot be optimal, then 

the learner may conclude, via the contrapositive form of the output-driven map property, 

that none of the candidates in the entire sublattice can be optimal. The only remaining 

viable candidates for the output have something in common: they all have s4 

underlyingly +long. Thus, the learner can conclude that the underlying form for s4 is set 

to +long. 

 

The benefit is one of computational efficiency. Even though half of the possible 

underlying forms have the suffix –long underlyingly, the learner does not need to 

evaluate all of them (as was previously proposed in Merchant 2008, Merchant and Tesar 

2008), only the one at the top of the sublattice. The same benefit applies to every other 

unset feature of the word; only candidates with a single disparity need to be tested. This 

effectively converts exponential search into linear search: the number of possible 

underlying forms is exponential in the number of features, but the number of forms to 

actually be tested is linear in the number of features. 

 

4.2 Simultaneous Consideration of Multiple Words 

 

The strict conversion of exponential to linear is true without qualification when the 

learner is considering one word at a time, as discussed above. Things get a bit more 

complicated when multiple words are considered simultaneously, such as with the 

processing of a contrast pair (Tesar 2006a, Tesar 2006b). Specifically, the wrinkle occurs 

when more than one word in the set under consideration contains a particular morpheme, 

and a feature of that morpheme alternates within that set of words. For such a feature, 

there is no single underlying value that will match the surface everywhere; no matter 

what underlying value is chosen, it will create a disparity with at least one of the words of 

the set. 

 

The solution to this is to test with respect to all values of the alternating feature, 

not just one. This is illustrated with the situation shown in (10), which features the 

contrast pair consisting of the words r1s1 and r1s3. The current lexicon is also shown, 

with four of the six underlying features for the relevant morphemes still unset (denoted 

with a question mark, ‘?’). Both words contain the root morpheme r1, and r1 alternates in 

the set: it surfaces as stressed in r1s1 and as unstressed in r1s3. Significantly, the stress 

feature of r1 is unset in the current lexicon (if an alternating feature is set, the learner 

needn’t consider it further, and there is no complication). 

 

(10) Contrast Pair:  r1s1 [páka] r1s3 [paká] 

 Current Lexicon: r1 /?,–/ s1 /?,?/ s3 /?,–/ 

 

Testing the stress feature of r1 itself involves adopting the surface realization of 

each of the other three (non-alternating) features, and testing a pair of inputs for each 

value of r1: the pair of inputs {r1s1 / – – – – /  r1s3 / – – + – /} for r1 with –stress, and 

{r1s1 / + – – – /  r1s3 / + – + – /} for r1 with +stress. If both pairs of candidates prove to 

be consistent with current ranking information (as is the case in this example), then the 
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learner will not be able to set the stress feature of s1 at this point, but can attempt to set 

one of the other features. 

 

Testing the stress feature for s3, for example, is slightly more complicated. The 

learner already knows that the value matching s3’s surface realization in r1s3, +stress, 

will be consistent; it is not an alternating feature in this set. Setting the stress feature for 

s3 here requires showing that the other value, –stress, is inconsistent. Because of the 

potential for interaction between the values of the stress features for r1 and s3, the learner 

needs to test the –stress value for s3 with all values for the stress feature of r1. This 

means testing two pairs of inputs: the inputs {r1s1 / – – – – /  r1s3 / – – – – /} for r1 with 

–stress, and {r1s1 / + – – – /  r1s3 / + – – – /} for r1 with +stress (note that both pairs 

have s3 set to –stress in the second word). In this case, both pairs prove to be inconsistent 

with current ranking information; neither value of the stress feature for r1 can bail out s3 

set to –stress. Thus, learner can set s3 to +stress. 

 

Computational complexity becomes an issue when there are multiple alternating 

features within a set of words being simultaneously considered. All values of each 

alternating feature must be considered independently, and there will be exponential 

growth in the number of combinations of values of such features. Fortunately, the 

potential for such growth is limited: it is only exponential growth in the number of unset 

features that alternate within the set of words under simultaneous consideration. 

 

4.3 Learning the Ranking 

 

Once a feature has been set for a given underlying form, the value is fixed for any word 

containing that morpheme. That fact, combined with output-driven structure, can be 

exploited to learn further, non-phonotactic ranking information. The key is to find a 

different word containing the same morpheme (in this case, s4), in which the set feature 

surfaces unfaithfully (Tesar 2006b). In Language A, such a word is r3s4 [páka]. 

 

The lattice of candidates for the output of r3s4 are shown in (11). Because s4 has 

been set to be +long, none of the inputs that have s4 as –long are still under 

consideration. The still-viable inputs, the ones with s4 as +long, are shaded. Notice that 

these form a sublattice, with a top element. The form of the top element is predictable: it 

is the candidate in which the only disparities are those resulting from features that have 

been previously set; all features unset in the lexicon match the surface form of the word 

in the top element. In (11), the top element of the shaded sublattice, corresponding to the 

candidate /páka:/→[páka], has only one disparity, the one involving the length of s4. 

 

Again, the learner can encapsulate the information from this entire subspace of 

possible inputs into a single form, the top of the sublattice. The top candidate in the 

sublattice has greater similarity than any other candidate in the sublattice. Because the 

sublattice contains all viable candidates, one of them must be grammatical. The learner 

doesn’t know which one is the “true” underlying form for this word (r3s4), but the learner 

does know that the top candidate is a grammatical mapping, because if any viable 

candidate is grammatical, then the top one is. Thus, the learner can correctly deduce that 
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the mapping /páka:/→[páka] is part of the map. This mapping is non-phonotactic, 

because it is not fully faithful, and so it is an opportunity for the learner to obtain non-

phonotactic ranking information. 

 

The learner can obtain ranking information from this mapping by (again) using 

multirecursive constraint demotion. This is summarized in (12). The known non-faithful 

mapping, /páka:/→[páka], is adopted as the winner. An appropriate loser is then selected 

via production-directed parsing on the input (Tesar 1998), in this case yielding the 

candidate with output identical to the input. Comparing the winner and loser yields the 

ERC listed in the fourth row of (12). 

 

We can get a sharper sense of what new information has been obtained by 

combining this new ERC with a previously obtained ERC, one obtainable from purely 

phonotactic information. The relevant phonotactic ERC is shown in the fifth row. The 

phonotactic ERC simply expresses the observation that long vowels sometimes appear on 

the surface, and in this system that requires that faithfulness to length dominate the 

markedness constraint against long vowels. Taking the fusion of the two ERCs (Prince 

2002), shown in the last row, reveals what the learner has obtained: WSP must dominate 

both *V: and FAITHLENGTH. The conclusion that the faithfulness constraint must be 

dominated relies on the non-faithful element of the winner, the failure to faithfully 

preserve the underlying length on the suffix. 

 

(11) The possible inputs for r3s4 (possible inputs are shaded). 

 

páka

paka pá:ka páká páka:

pa:ka paká paka: pá:ká pá:ka: páká:

pa:ká pa:ka: paká: pá:ká:

pa:ká:
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(12) Additional ranking information 

 

/ páka:/  WSP MAINL MAINR *V: FAITHSTRESS FAITHLENGTH 

páka (winner)      * 

páka: (loser) *   *   

ERC  W   W  L 

Phonotactic ERC    L  W 

Fusion  W   L  L 

 

The new ERC, along with the prior phonotactic ERC, combine to provide a partial 

picture of the desired ranking: WSP ≫ FAITHLENGTH ≫ *V:. The learner was able to 

obtain this information from the word r3s4 despite not knowing the complete input for 

the word (a consequence of not knowing the complete underlying forms for r3 and s4). 

Whenever a feature has been newly set in the lexicon, the learner can identify possible 

sources of additional ranking information by finding those words that do not faithfully 

preserve the feature. Each such word can be tested by constructing an input in which all 

features not set in the lexicon are taken to have the same value as their output 

counterparts. Output-driven map structure ensures that these mappings are valid in the 

target language, and any additional ranking information required to ensure that these 

mappings are optimal may be adopted by the learner. 

 

5. Discussion 

5.1 Initial Lexicon Construction 

 

Initial lexicon construction (Tesar et al. 2003) is a procedure for early setting of some 

features in the lexicon. It examines the surface realizations of each morpheme, and sets 

each non-alternating feature to match its (single) surface realization. The original virtue 

of this was computational: a reduction in the number of unset features when the 

‘complex’ learning began. Since in general the space of lexical hypotheses being 

considered is exponential in the number of unset features, an easy way to set even some 

features in advance can significantly reduce the space of lexical hypotheses being 

considered (‘exponential shrinkage’), benefitting learning procedures with computational 

requirements that are proportional to the number of lexical hypotheses. 

 

Initial lexicon construction has always had a concern attached to it, however: to 

be fully correct, the learner has to have a representative sample of the possible surface 

realizations of each morpheme, so that it can accurately determine which features 

alternate. This would seem to require the learner to hold off on doing much learning until 

they had seen a healthy collection of forms with at least some morphemes. Further, it 

makes the learner potentially vulnerable if key surface realizations of some morphemes 

occur only infrequently. 

 

The adoption of output-driven map structure in learning changes things. In the 

approach described in this paper, the computational demands of learning are linear, not 

exponential, in the number of unset features. Therefore, initial lexicon construction does 
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add much benefit for such a learner. Output-driven map structure has vitiated the virtue, 

and the learner is likely better off without it (and its attendant concerns). 

 

5.2 The Final Lexicon 

 

Abandoning initial lexicon construction means that features are only set when they are 

necessary, that is, when setting the feature to some other value would result in an 

incorrect output for some input containing the relevant morpheme. If the value of a 

particular feature for a particular morpheme never matters, then that feature will never be 

set underlyingly. In a sense, one could label a feature that isn’t set as non-contrastive: it 

doesn’t play a role in distinguishing the phonological identity of the morpheme from 

other possible morphemes. 

 

There is a potential confusion to be avoided here. In the sense just described, 

contrastiveness is a property of feature tokens, not feature types. In general, some 

occurrences (in underlying forms) of a feature like length can be contrastive and others 

not, within the same language. Recall Language A, as listed in (3). Observe that suffixes 

s1 and s2 are phonologically indistinguishable on the surface: they surface identically in 

every morphological context (as do the entire words in which they appear). They differ 

underlyingly only in the value of the length feature. The length feature is not contrastive 

for suffixes s1 and s2. Length is contrastive for s3 and s4, as evidenced by the context of 

root r1: r1s3 surfaces as paká (with a short final vowel), while r1s4 surfaces as paká: 

(with a long final vowel). The difference between the sets of suffixes lies in the 

underlying value of the stress feature. Because default stress position is initial, suffixes 

can only be stressed on the surface if they are +stress underlyingly. Suffixes s1 and s2 are 

–stress underlyingly, so they will never surface as stressed. Because long vowels are 

shortened in unstressed position, the length of underlyingly –stress suffixes is predictably 

short: if underlyingly long, it will be shortened, and if underlyingly short, it will remain 

short. In Language A, there are only three phonologically distinguishable suffixes: –

stress, +stress with –long, and +stress with +long. 

 

The tokenness of feature contrast extends beyond relations with the underlying 

values of other features within the segment. Consider a language in which stress is 

predictably word-initial, vowels are shortened in unstressed position, and roots can be 

multisyllabic, so that a root could contain multiple vowels always surfacing in distinct 

syllables. In a two-syllable root, the first vowel would be contrastive for length, but the 

second vowel wouldn’t be, because it would never be word-initial, and thus never surface 

as stressed.
2
 

 

The concept here of permanently unset features should also not be confused with 

underspecification, in particular with temporary (input-only) underspecification 

(Archangeli 1984, Archangeli 1988, Kiparsky 1982, Steriade 1987, as cited in Steriade 

1995). An unset feature is a construct of the learner, not the linguistic theory itself. A 

                                                 
2 A similar case involves languages with syllable-final / word-final obstruent devoicing, and 

contrastive obstruent voicing in other obstruent-friendly environments. 
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feature left unset by the learner described here could be set to any value without effect, 

whereas an underspecified feature is such that assigning a value to the feature might well 

have phonological effects. 

 

5.3 Expanding the Scope 

 

Output-drivenness appears to hold for much of basic phonology. But there are a number 

of phenomena for which the standard analyses result in non-output-driven maps, such as 

synchronic chain shifts (Tesar 2008). Short of reanalyzing all such cases in purely output-

driven terms, how such phenomena could be accommodated in learning will be highly 

dependent on how one chooses to account for them within core linguistic theory. 

 

One possibility would be to develop a theory of phonological maps that is less 

restrictive than purely output-driven maps, but retains restrictive properties that could be 

exploited for learning along the same lines as is done with output-driven maps in this 

paper. This would be a plausible approach if non-output-driven maps are dealt with by 

using constraints that can introduce non-output-driven effects into the maps defined by 

Optimality Theoretic systems. 

 

Another possibility would account for non-output-driven phenomena with Stratal 

Optimality Theory (Kiparsky 2003), in which the output is derived from the input by a 

series of OT grammars, each with distinct rankings. Adapting a line of thinking suggested 

by Bermudez-Otero (2003), one could propose that each of the individual OT grammars 

be output-driven, with non-output-driven effects resulting solely from interaction 

between the different grammars. Learning in such a theory could depend to a great extent 

on the proposals made here for learning each of the individual stratal grammars, and 

would require further principles for working out the relations between the different 

grammars as part of the process of learning them. 

 

6. Conclusion 

 

Output-driven maps are a good approximation to the structure of basic phonology. It 

provides structure in the space of possible grammars that goes beyond the structure 

provided by Optimality Theory, structure that can be exploited to great effect in learning, 

in particular in the mutual learning of underlying forms and constraint rankings. The 

lattice structure imposed on the space of possible inputs allows single input forms to 

stand in for entire sublattices, reducing an exponential exhaustive search to a linear 

search of just the key forms. This improvement from exponential to linear computation 

applies both to the learning of underlying forms and the learning of ranking information 

based on incomplete input forms. The theory of output-driven maps, in addition to 

providing insight into the nature of phonology, provides the kind of structure necessary to 

account for the efficiency of child language learning. 
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