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If Optimality Theory (Prince & Smolensky 1991, 1993) is correct, Universal Grammar provides a set of
universal constraints which are highly general, inherently conflicting, and consequently rampantly violated
in the surface forms of languages. A language’s grammar ranks the universal constraints in a dominance
hierarchy, higher-ranked constraints taking absolute priority over lower-ranked constraints, so that
violations of a constraint occur in well-formed structures when, and only when, they are necessary to
prevent violation of higher-ranked constraints. Languages differ principally in how they rank the universal
constraints in their language-specific dominance hierarchies. The surface forms of a given language are
structural descriptions of inputs which are optimal in the following sense: they satisfy the universal
constraints, or, when these constraints are brought into conflict by an input, they satisfy the highest-ranked
constraints possible. This notion of optimality is partly language-specific, since the ranking of constraints
is language-particular, and partly universal, since the constraints which evaluate well-formedness are (at
least to a considerable extent) universal. In many respects, ranking of universal constraints in Optimality
Theory plays a role analogous to parameter-setting in principles-and-parameters theory.

Evidence in favor of this Optimality-Theoretic characterization of Universal Grammar is provided
elsewhere; most work to date addresses phonology: see Prince & Smolensky 1993 (henceforth, ‘P&S’)
and the several dozen works cited therein, notably McCarthy & Prince 1993; initial work addressing
syntax includes Grimshaw 1993 and Legendre, Raymond & Smolensky 1993. Here, we investigate the
learnability of grammars in Optimality Theory.

Under the assumption of innate knowledge of the universal constraints, the primary task of the
learner is the determination of the dominance ranking of these constraints which is particular to the target
language. We will present a simple and efficient algorithm for solving this problem, assuming a given
set of hypothesized underlying forms. (Concerning the problem of acquiring underlying forms, see the
discussion of ‘optimality in the lexicon’ in P & S 1993:§9).

The fact that surface forms are optimal means that every positive example entails a great number
of implicit negative examples: for a given input, every candidate output other than the correct form is
ill-formed.1 As a consequence, even a single positive example can greatly constrain the possible
grammars for a target language, as we will see explicitly.

In §1 we present the relevant principles of Optimality Theory and discuss the special nature of
the learning problem in that theory. Readers familiar with the theory may wish to proceed directly to
§1.3. In §2 we present the first version of our learning algorithm, initially, through a concrete example;
we also consider its (low) computational complexity. Formal specification of the first version of the
algorithm and proof of its correctness are taken up in the Appendix. In §3 we generalize the algorithm,
identifying a more general core called Constraint Demotion (‘CD’) and then a family of CD algorithms
which differ in how they apply this core to the acquisition data. We sketch a proof of the correctness and
convergence of the CD algorithms, and of a bound on the number of examples needed to complete
learning. In §4 we briefly consider the issue of ties in the ranking of constraints and the case of
inconsistent data. Finally, we observe that the CD algorithm entails a Superset Principle for acquisition:
as the learner refines the grammar, the set of well-formed structures shrinks.

1 See §4.1 below for a discussion of ties, when more than one form is optimal.
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We offer three related contributions in this paper. First, the existence of the CD algorithms
demonstrates formally that Optimality Theoretic grammars are efficiently learnable. Second, these
algorithms provide a first suggestion of how to analyze the actual language acquisition process within
Optimality Theory, and suggest that acquisition may respect a Superset Principle. Last but not least, the
CD algorithms have a very real practical value for linguists working in Optimality Theory. Given
language data and a hypothesized set of constraints, the algorithms quickly and easily provide a class of
constraint rankings which account for the data, or directly determine that no such rankings exist.

1. The Learning Problem in Optimality Theory

The novel features of the learnability problem, and the character of the learning algorithm, depend on a
number of the detailed properties of Optimality Theory. We begin with a self-contained presentation of
the relevant principles of the theory, to the level of detail required for presentation of the learning
algorithm. We consistently exemplify the principles, and in §2, the learning algorithm, using the Basic
CV Syllable Structure Theory of P&S (§6), which we develop concurrently.

1.1 Constraints and Their Violation

(1) Grammars are functions.
A grammar is a specification of a function which assigns to each input a unique structural
description or output. (A grammar does not provide an algorithm for computing this function,
e.g., by sequential derivation.)

In CV theory, an input is a string of Cs and Vs, e.g., /VCVC/. An output is a parse of the string into
syllables, which we notate as follows:

(1′) a. .V.CVC. = [σ V] [σ CVC]
b. 〈V〉.CV.〈C〉 = V [σ CV] C
c. 〈V〉.CV.C ´ . = V [σ CV] [σ C ´ ]
d. . V.CV.〈C〉 = [σ V] [σ CV] C

(These four forms will be referred to throughout the paper, and will be consistently labelled a−d as in
(1′).) Possible output a is an onsetless open syllable followed by a closed syllable. Parse b contains only
one, open, syllable: the initial V and final C of the input are not parsed into syllable structure; following
ideas related to ‘Stray Erasure’ (McCarthy 1979, Steriade 1982, Itô 1986, 1989), we assume that these
unparsed segments are not phonetically realized when the phonological output b is subjected to phonetic
interpretation. Parse c consists of a pair of open syllables, in which the nucleus of the second syllable is
not filled by underlying material. This is taken to mean that phonetic realization of the phonological
structure c provides an epenthetic segment in the final nucleus, following a well-developed conception of
epenthesis (established, e.g., by Selkirk 1981, LaPointe & Feinstein 1982, Broselow 1982, Archangeli
1984, Kaye & Lowenstamm 1984, Piggott & Singh 1985, Itô 1986, 1989). As in parse b, the initial
underlying V is unparsed in parse c. Parse d is also a pair of open syllables, but this time it is the onset
of the first syllable which is unfilled by underlying material, and the final underlying C which is unparsed.

In derivational terms, the first and second syllables of 1′.c respectively constitute the result of
deletion and epenthesis rules. Optimality Theory lacks derivations and rules; only the output phonological
structure 1′.c, and the input /VCVC/ (which is in fact contained in the output), are recognized. In place
of deletion we have underparsing, in which underlying material is not parsed into syllable structure; in
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place of epenthesis we have overparsing, in which syllable positions in the output are not filled by
underlying material.

What (1) asserts is that the grammar assigns to the input /VCVC/ one structural description, such
as one of the possibilities listed under (1′.a−d). Which one gets assigned is determined by subsequent
principles.

(2) Gen.
Universal Grammar provides the set of possible inputs, the set of possible outputs, and a function
Gen which, given any input i, generates the set of candidate outputs Gen(i), for i. The input i is
a substructure contained within each of its candidate outputs in Gen(i).

In the CV case, for any input i, the candidate outputs in Gen(i) consist in all possible parsings of the string
into syllables, including the possible over- and underparsing structures exemplified above in (1′.b-d). All
syllables are assumed to contain a Nucleus position, with optional preceding Onset and following Coda
positions. Here we adopt what P&S (§6) dub the Basic CV Syllable Structure Theory, in which the
simplifying assumption is made that the syllable positions Onset and Coda may each contain at most one
C, and the position Nucleus may contain at most one V.2

(3) Universal constraints.
Universal Grammar provides a set of universal constraints which assess the well-formedness of
candidate outputs for a given input in parallel (i.e., simultaneously). Given a candidate output,
each constraint assesses a set of marks each of which corresponds to one violation of the
constraint; the collection of all marks assessed a candidate c is denoted marks(c).

The CV constraints we will deal with here are as follows:

(3′) Universal CV Syllable Structure Constraints.
ONS Syllables have onsets.
−COD Syllables do not have codas.
PARSE Underlying material is parsed into syllable structure.
FILLNuc Nucleus positions are filled with underlying material.
FILLOns Onset positions (when present) are filled with underlying material.

We can illustrate how these constraints assess marks by considering the candidate outputs in
(1′.a−d). Parse (1′.a) = .V.CVC. violates ONS in its first syllable and −COD in its second; the remaining
constraints are satisfied. We denote the single mark which ONS assesses .V.CVC. as *ONS; so the
complete set of marks incurred by the candidate .V.CVC. is

marks(.V.CVC.) = {*ONS, *−COD}

The first candidate is a faithful parse: it involves neither under- nor over-parsing, and therefore
satisfies the faithfulness constraints PARSE and FILL. By contrast the underparsed candidate (1′.b) =

2 The possibility of overparsing means that the candidate set for any input is in fact infinite.
However, it can be shown by examining the constraints of the Basic CV theory that the distribution of
unfilled syllable positions is highly limited, entailing that optimal candidates always reside in a particular
finite subset of the infinite candidate set (P&S §6.2.3).
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〈V〉.CV.〈C〉 violates PARSE, and more than once:

marks(〈V〉.CV.〈C〉) = {*PARSE, *PARSE}

As we will see, it is crucial that multiple marks be maintained (although the theory requires no counting).
The third candidate (1′.c) = 〈V〉.CV.C ´ . combines underparsing with overparsing, violating both

PARSE a FILL constraint:

marks(〈V〉.CV.C ´ ) = {*PARSE, *FILLNuc}

The final candidate (1′.d) = . V.CV.〈C〉 violates FILLOns rather than FILLNuc (as well as PARSE):

marks(. V.CV.〈C〉) = {*PARSE, *FILLOns}

The marks incurred by these candidates are summarized in the following table:

(3″) Marks incurred by Four Candidate Parses of /VCVC/

Candidates ONS −COD PARSE FILLNuc FILLOns

/VCVC/ →

a. .V.CVC. * *

b. 〈V〉.CV.〈C〉 * *

c. 〈V〉.CV.C ´ . * *

d. . V.CV.〈C〉 * *

(The order in which the constraints are listed here is arbitrary.)

1.2 Optimality and Harmonic Ordering

The central notion of optimality now makes its appearance. The idea is that by examining the marks
assigned by the universal constraints to all the candidate outputs for a given input, we can find the least
marked, or optimal, one: this is the one and only well-formed parse that may be assigned to the input.
The relevant notion of ‘least marked’ is not the simplistic one of just counting numbers of violations.
Rather, in a given language, different constraints have different strengths or priorities: they are not all
equal in force. When a choice must be made between satisfying one constraint or another, the stronger
must take priority. The result is that the weaker will be violated in a well-formed surface structure.3

(4) Constraint Ranking, Harmonic Ordering, and Optimality.
The grammar of each language ranks the universal constraints in a dominance hierarchy; when
constraint 1 dominates another 2 in the hierarchy, we write 1 >> 2. The ranking is total: the

3 The notion of harmonic ordering defined here is identical with that of P&S (e.g., §5) but the
formulation differs; the direct link between the two is provided by the Cancellation/Domination Lemma
of P&S (Appendix).
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hierarchy determines the relative dominance of every pair of constraints:

1 >> 2 >> >> n

A grammar’s constraint hierarchy induces on all the candidate outputs a harmonic ordering as
follows. Let a and b be two candidate parses with sets of marks marks(a) and marks(b). To
compare a and b, first cancel all the marks they have in common, getting lists of ‘uncancelled’
marks: marks′(a) and marks′(b); now, no mark occuring in one list occurs in the other. Then
determine which list of uncancelled marks contains the worst mark: a mark assessed by the
highest-ranking constraint violated in the two lists. This candidate is less harmonic or has lower
Harmony than the other; if it is a, then we write: a b. (We also sometimes write marks(a)
marks(b).) The harmonic ordering ranks all pairs of candidates. For a given input, the most
harmonic of the candidate outputs provided by Gen is the optimal candidate: it is the one assigned
to the input by the grammar. Only this optimal candidate is well-formed; all less harmonic
candidates are ill-formed.4

We can illustrate harmonic ordering in the CV case by reexamining the table of marks (3″) under the
assumption that the universal constraints have now been ranked by a particular grammar as follows:

(4.a) Constraint Hierachy for L1:
ONS >> −COD >> FILLNuc >> PARSE >> FILLOns

In the following constraint tableau, the most dominant constraints in L1 appear to the left:

(4.b) Constraint Tableau for L1 = ΣCV
ep,del

Candidates ONS −COD FILLNuc PARSE FILLOns

/VCVC/ →

d. . V.CV.〈C〉 * *

b. 〈V〉.CV.〈C〉 * *

c. 〈V〉.CV.C ´ . * *

a. .V.CVC. * *

The candidates in this tableau have been listed in harmonic order, from highest to lowest Harmony; the

4 If two candidates are assessed exactly the same set of marks by the universal constraints, then they
are equally harmonic (regardless of the constraint ranking). If it should happen that such a tie should
occur for the most harmonic candidate output for an input, then the two outputs are both optimal, both
well-formed, with the interpretation of free alternation.
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optimal candidate is marked manually.5 Starting at the bottom of the tableau, let us verify that a c.
The first step is to cancel common marks: here, there are none. The next step is to determine which
candidate has the worst mark, i.e., violates the most highly ranked constraint: it is a, which violates ONS.
Therefore a is the less harmonic. In determining that c b, we first cancel the common mark *PARSE;
c then earns the worst mark of the two, *FILLNuc. We see the importance of retaining multiple marks in
the comparison of b to d: one *PARSE mark cancels, leaving marks′(b) = {*PARSE} and marks′(d) =
{*FILLOns}. The worst mark is the uncancelled *PARSE incurred by b: so b d.

This constraint hierarchy given in (4.a) and illustrated in (4.b) is that of a language in which all
syllables have the surface form CV: onsets are required, codas are forbidden. In case of problematic
inputs such as /VCVC/ where a faithful parse into CV syllables is not possible, this language uses
overparsing to provide missing onsets and underparsing to avoid codas (it is the language denoted
ΣCV

ep,del in P&S:§6.2.2.2). We will call this language L1, and explore how the course of learning it
differs from that of another CV-language, L2.

If in L1’s constraint hierarchy we exchange the two FILL constraints, we get L2:

(4.c) Constraint Hierachy for L2:
ONS >> −COD >> FILLOns >> PARSE >> FILLNuc

Now the tableau corresponding to (4.b) becomes (4.d); the columns have been re-ordered to reflect the
constraint re-ranking, and the candidates have been re-ordered to reflect the new harmonic ordering:

(4.d) Constraint Tableau for L2 = ΣCV
del,ep

Candidates ONS −COD FILLOns PARSE FILLNuc

/VCVC/ →

c. 〈V〉.CV.C ´ . * *

b. 〈V〉.CV.〈C〉 * *

d. . V.CV.〈C〉 * *

a. .V.CVC. * *

Like L1, all syllables in L2 are CV; /VCVC/ gets syllabified differently, however. In L2, underparsing is
used to avoid onsetless syllables, and overparsing to avoid codas (L2 is P&S’s language ΣCV

del,ep).

The relation between L1 and L2 illustrates the final central principle of Optimality Theory relevant here:

5 Determining that this candidate is optimal requires demonstrating that it is more harmonic than any
of the infinitely many competing candidates. A general technique for such demonstration, the Method of
Mark Eliminability (P&S §7.3), proceeds by showing that any attempt to avoid the marks incurred by the
putatively optimal output leads to alternatives which incur worse marks.
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(5) Typology by Re-Ranking.
Cross-linguistic variation is principally due to variation in language-specific rankings of the
universal constraints. Analysis of the optimal forms arising from all possible rankings of the
constraints provided by Universal Grammar gives the typology of possible human languages.
Universal Grammar may impose restrictions on the possible rankings of its constraints.

In the CV theory, Universal Grammar imposes no restrictions on the ranking of the constraints we have
discussed here (3). Analysis of all possible rankings of these constraints reveals that the resulting typology
of basic CV syllable structures is an instantiation of Jakobson’s typological generalizations (Jacobson
1962, Clements & Keyser 1983): see P&S:§6.6 In this typology, syllable structures may have required
or optional onsets, and, independently, forbidden or optional codas. In a principles-and-parameters theory,
such a typology might arise from a parameter which governs whether the principle ‘Syllables have onsets’
does or does not apply (unviolated on the surface) in the language. Here, we have a corresponding
principle, ONS (3′), but it is a constraint present in all languages, violable when (and only when)
dominated by conflicting constraints. By ranking the constraint differently in their hierarchies, languages
differ in whether the constraint is surface-unviolated. (But even when ranked low enough to be violated
in well-formed surface forms, ONS still functions: as P&S emphasize, /CVCV/ is universally parsed
.CV.CV. rather than *.CVC.V. even in languages where the syllables .CVC. and .V. of the latter parse are
both well-formed; this is because ONS—and/or −COD—is still operative in the language, even though low-
ranked. A perhaps more dramatic case is provided by FILL; even in languages in which FILL is surface-
violated—as manifest in epenthetic material—FILL still functions absolutely crucially to sharply limit
possible epenthesis sites: P&S:§6.2.3.)

1.3 The Learning Problem

Substantive knowledge of language in Optimality Theory thus consists in knowledge of the universal set
of possible inputs, outputs and Gen (2); of the universal constraints (3); of the ranking of those constraints
particular to the language (4); and of the lexicon providing the particular underlying forms in the
language-particular inputs. Under the assumption that what is universal in this knowledge is not learned
but innate, what remains then to be learned is the lexicon and the constraint ranking.7 Concerning

6 Other explicit Optimality-Theoretic typologies derived from re-ranking universal constraints include
that of sonority-based inventories of onset, nucleus and coda segments, including an explanation of the
onset/coda licensing asymmetry (P&S:§8); feature-based segmental inventories (P&S:§9); and systems of
case marking and grammatical voice (Legendre, Raymond, & Smolensky 1993). These phonological
typologies all involve universal restrictions on constraint rankings, when the constraint set is enlarged
beyond those of (3). By far the most striking case is McCarthy & Prince 1994’s Optimality-Theoretic
formulation of prosodic morphology, which consists largely in the principle that morphological constraints
are universally dominated by prosodic constraints.

7 It may well be that the Optimality-Theoretic constraints of universal grammar will turn out to need
parameters; in this case, parameter-setting will also be part of the learning process. We limit our
discussion to ‘typology by re-ranking’ because that is what has figured most prominently thus far in
Optimality-Theoretic analyses of cross-linguistic variation, and because that is the novel aspect of the
learning problem in comparison with principles-and-parameters theory.

It should also be observed that, while Optimality Theoretic analyses have to date succeeded to a
significant degree in avoiding idiosyncratic, language-particular constraints, such constraints have still
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acquisition of the lexicon, the reader is referred to discussion in P&S:§9. Here we assume that the learner
has a hypothesized lexicon in hand, and faces the problem of learning the ranking of known (or, for that
matter, merely hypothesized) constraints.

The initial data for the learning problem are pairs consisting of an input and its well-formed
(optimal) parse. For example, the learner of the CV language L1 might have as an initial datum the input
/VCVC/ together with its well-formed parse . V.CV.〈C〉 (4.b). Together with this single piece of explicit
positive evidence comes a large mass of implicit negative evidence. Every alternative parse of this input
is known to be ill-formed; for example, the faithful parse *.V.CVC. is ill-formed. Thus the learner knows
that, with respect to the unknown constraint hierarchy,

.V.CVC. . V.CV.〈C〉

Furthermore, corresponding harmonic comparisons must hold for every sub-optimal parse.8

Thus each single piece of positive initial data conveys a large amount of infered comparative data
of the form:

[sub-optimal parse sub-opt of input i] [optimal parse opt of input i]

Such pairs are what feed our learning algorithm. Each pair carries the information that the
constraints violated by the sub-optimal parse sub-opt must out-rank those violated by the optimal parse
opt, that, in some sense, we must have marks(sub-opt) >> marks(opt), or more informally, loser-marks >>
winner-marks The algorithm we now present is nothing but a means of making this observation precise,
and deducing its consequences.

2. The RCD Algorithm

Before giving a general description of the algorithm, we first illustrate its use. In §2.1 we show how the
algorithm learns the language L1 from the single positive example which we have discussed, /VCVC/ →
. V.CV.〈C〉; we then show how the algorithm learns the different language L2 from its (different) parse
of the same input. Then in §2.2 we give a general but somewhat informal statement of the algorithm, and
in §2.3 an informal summary of the proof of its convergence and correctness, and discuss its
computational complexity. More formal treatment is provided in the Appendix.

2.1 An Example: Learning CV Syllable Structure

In the first language we consider, L1, the correct parse of /VCVC/ is . V.CV.〈C〉. This fact forms our
starting point, one initial datum. Table (3″) gives the marks incurred by the well-formed parse (labelled
d) and by three ill-formed parses. From this table we form the following table of mark-data pairs:

sometimes proved necessary, and learning them may need to be part of a comprehensive learning theory
for Optimality Theory.

8 Unless the grammar leads two candidate outputs to tie for most harmonic, yielding two optimal
outputs, all candidates other than the observed output can be inferred to be sub-optimal. The case of ties
is taken up in §4.1 below.
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(6) Mark-data Pairs (L1)

sub-opt opt loser-marks =
marks(sub-opt)

winner-marks =
marks(opt)

a d .V.CVC. . V.CV.〈C〉 {*ONS, *−COD} {*PARSE, *FILLOns}

b d 〈V〉.CV.〈C〉 . V.CV.〈C〉 {*PARSE, *PARSE} {*PARSE, *FILLOns}

c d 〈V〉.CV.C ´ . . V.CV.〈C〉 {*PARSE, *FILLNuc} {*PARSE, *FILLOns}

In order that each sub-optimal output sub-opt be less harmonic than the optimal output opt, the marks
incurred by the former, marks(sub-opt) must collectively be worse than marks(opt). According to (4),
what this means more precisely is that sub-opt must incur the worst uncancelled mark, compared to opt.
So the first step in the learning algorithm is to cancel the common marks in (6):

(7) Mark-data Pairs after Cancellation (L1)

sub-opt opt
loser-marks =

marks′(sub-opt)
winner-marks =

marks′(opt)

a d .V.CVC. . V.CV.〈C〉 {*ONS, *−COD} {*PARSE, *FILLOns}

b d 〈V〉.CV.〈C〉 . V.CV.〈C〉 {*PARSE *PARSE} {*PARSE *FILLOns}

c d 〈V〉.CV.C ´ . . V.CV.〈C〉 {*PARSE *FILLNuc} {*PARSE *FILLOns}

The cancelled marks have been struck out. Note that the cancellation operation which transforms marks
to marks′ is only well-defined on pairs of sets of marks; e.g., *PARSE is cancelled in the pairs b d and
c d, but not in the pair a d. Note also that cancellation of marks is done token-by-token: in the row
b d, one but not the other mark *PARSE in marks(b) is cancelled. As we will see, the algorithm is
sensitive not to absolute numbers of marks, but only to whether sub-opt or opt incurs more marks of a
given type. (Optimality Theory recognizes a relative distinction between more- or less-violation of a
constraint, but not an absolute quantitative measure of degree of constraint violation.)

The table (7) of mark-data after cancellation is the data on which the rest of the algorithm
operates.

The second part of the algorithm proceeds recursively, finding first the constraints that may be ranked
highest while being consistent with the mark-data pairs, then eliminating those constraints from the
problem and starting over again to rank the remaining, lower, constraints. Conceived as a sequence of
passes, the first pass through the data determines the highest-ranking constraints, the next pass the next-
highest ranking constraints, and so forth down the hierarchy. If the data provide enough information to
completely determine the total ranking, then only one constraint will be returned by each pass. In general,
however, the result of the algorithm will be a stratified hierarchy of the form:

(8) Stratified Domination Hierarchy
{ 1, 2, ..., 3} >> { 4, 5, ..., 6} >> ... >> { 7, 8, ..., 9}

The constraints 1, 2, ..., 3 comprise the first stratum in the hierarchy: they are not ranked with respect
to one another, but they each dominate all the remaining constraints. A stratified hierarchy may not totally
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harmonically order all candidate outputs for a given input, since it fails to specify the relative ranking of
constraints which may conflict. This has the consequence, discussed below in §4.1, that the output of the
algorithm may fail to decide between candidates for which relevant training data is unavailable.

N.B.: Unless qualified as ‘totally ranked,’ henceforth, ‘hierarchy’ will mean ‘stratified
hierarchy’ .

The initial state of the learner can be taken to be the completely degenerate stratified hierarchy
in which all the constraints are lumped together in a single stratum. Learning proceeds to refine this
hierarchy into a sequence of smaller strata. Each pass of the algorithm begins with a set of not-yet-ranked
constraints, and ends by selecting some of them to constitute the next-lower stratum in the hierarchy.
At each step, mark-data pairs which are accounted for by the already-ranked constrants are eliminated
from the mark-data table (7), so that only not-yet-ranked constraints are left in the table.

The key observation is this:

(9) Key observation.
For any given pair, if an uncancelled mark is incurred by the winner, then it must be dominated
by a mark incurred by the loser: otherwise, the winner wouldn’t win (this is the
Cancellation/Domination Lemma of P&S:130,148,221). Therefore, any constraint assessing an
uncancelled mark to the winner cannot be among the highest ranked constraints in the set, and
cannot be output as part of the next stratum. Conversely, any constraint that does not assess a
mark to any winner can enter the next stratum, since no evidence exists that it is dominated by
any of the remaining constraints.

We illustrate how this process deduces the hierarchy for L1 from the data in (7).

When the algorithm begins, the not-yet-ranked constraints comprise the entire universal set (3.a−e):

not-yet-ranked-constraints = {ONS, −COD, PARSE, FILLNuc, FILLOns}

Examining the rightmost column of the mark-data table (7) we see that two marks, *PARSE and *FILLOns,
appear in the list of uncancelled winner marks. So the two constraints PARSE and FILLOns must be
dominated by other constraints (those violated by the corresponding losers); they cannot be the highest-
ranked of the not-yet-ranked-constraints. This leaves:

(9.a) highest-ranked-constraints = {ONS, −COD, FILLNuc}

which constitutes the output of the first pass: these three constraints form the highest stratum in the
hierarchy. The data do not support any distinctions in ranking among the three, so none are made. Now

(9.b) not-yet-ranked-constraints = {PARSE, FILLOns}

Now that the highest ranked constraints have been determined, the list of mark-data pairs can be
trimmed down by removing any mark-data pairs that are completely accounted for by the constraints
selected as highest. This is the case if at least one of the marks incurred by the loser of a pair is among
the highest ranked constraints. Such a mark is guaranteed to dominate all of the corresponding winner’s
marks, because all of the winner’s marks were disqualified from being ranked highest.

So we eliminate from the mark-data table every row in which any of the highest-ranked constraints
appear. In the current example, we eliminate the pair a d because *ONS appears (or, alternatively,
because *−COD appears), and also the pair c d, because *FILLNuc appears. The new mark-data table
is thus:
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(9.c) Mark-data Pairs (L1, After First Pass)

sub-opt opt loser-marks winner-marks

b d 〈V〉.CV.〈C〉 . V.CV.〈C〉 {*PARSE *PARSE} {*PARSE *FILLOns}

At the end of the first pass, we now have the first (highest) stratum (9.a), a reduced list of not-
yet-ranked constraints (9.b), and a reduced mark-data table (9.c). Crucially, the reduced mark-data table
involves only the not-yet-ranked-constraints, so we can now recursively invoke the same algorithm, using
the remaining data to rank the remaining constraints. This initiates the next pass.

Repeating this process with the reduced mark-data table (9.c), we examine the rightmost column of the
table, and observe that of the two not-yet-ranked-constraints (9.b), only one, FILLOns, appears. The
remaining constraint, then, is output as the next stratum of highest-ranked constraints:

(9.a′) highest-ranked-constraints = {PARSE}

This leaves

(9.b′) not-yet-ranked-constraints = {FILLOns}

The final step of the second pass is to trim the mark-data table, eliminating rows in which the highest-
ranked-constraints appear. This eliminates the only row in the table, so that the new mark-data table is
empty.

(9.c′) Mark-data Pairs (L1, After Second Pass): none

The result of the first two passes is the highest segment of the stratified hierarchy:

{ONS, −COD, FILLNuc} >> {PARSE}

The third pass operates on an empty mark-data table. Since there are no marks in the rightmost column
of such a table, no remaining constraints must be dominated: all the not-yet-ranked constraints are output
as the highest-ranked. In this case, that is the one remaining constraint FILLOns.

(9.a″) highest-ranked-constraints = {FILLOns}

This leaves

(9.b″) not-yet-ranked-constraints = {}

so the algorithm terminates, with the final result:

(10) Learned Stratified Hierarchy for L1:
{ONS, −COD, FILLNuc} >> {PARSE} >> {FILLOns}

This result represents a class of all totally-ranked constraint hierarchies which give rise to the target
language L1: the same optimal outputs arise regardless of the ranking of the three highest constraints.
One of these refinements of the learned stratified hierarchy (10) is the particular total ranking given in
(4.a): this is but one of the correct hierachies for the target language.
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It is easy to see how the course of learning L2 differs from that of L1, assuming the learner’s initial datum
is the parse of the same input, /VCVC/, which is now 〈V〉.CV.C ´ . (candidate c in (1′); see the tableau
(4.d)). The mark-data table used by the algorithm, containing the marks of sub-opt opt pairs after
cancellation, is now:

(11) Mark-data Pairs after Cancellation (L2)

sub-opt opt loser-marks winner-marks

a c .V.CVC. 〈V〉.CV.C ´ . {*ONS, *−COD} {*PARSE, *FILLNuc}

b c 〈V〉.CV.〈C〉 〈V〉.CV.C ´ . {*PARSE *PARSE} {*PARSE *FILLNuc}

d c . V.CV.〈C〉 〈V〉.CV.C ´ . {*PARSE *FILLOns} {*PARSE *FILLNuc}

This table is identical to its L1 counterpart (7) except that the marks *FILLNuc and *FILLOns are
interchanged. The result of the algorithm is therefore the same as before, (10), with this exchange made.

(12) Learned Stratified Hierarchy for L2:
{ONS, −COD, FILLOns} >> {PARSE} >> {FILLNuc}

Again, this stratified hierarchy is correct: its further refinements into totally-ranked hierarchies, including
the one we singled out in (4.d), all give rise to L2.

That these CV languages can each be learned completely from a single positive example attests to the
power of the implicit negative data which comes with each positive example in Optimality Theory.

2.2 General Statement of the RCD Algorithm (Informal Version)

Given:
universal-constraints = a set of universal constraints
initial-data = a set of well-formed outputs of the target language L

We assume that L arises from some (not necessarily unique) total ranking R of the universal constraints.

To Find:
A stratified hierarchy in which these are the optimal parses of their corresponding inputs.

We proceed via an intermediate step in which initial-data is prepared for the algorithm.
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2.2.1 Data Preparation

Given:
universal-constraints = a set of universal constraints
initial-data = a set of well-formed outputs of the target language L

Generate:
a. For each output in initial-data (opt), choose a set of sub-optimal competitors (sub-opt)
b. Make a table of these pairs, sub-opt opt, listing the marks incurred by the sub-opts in one

column, loser-marks, and the marks incurred by opts in another, winner-marks.
c. The result is mark-data =

sub-opt opt
loser-marks

= marks(sub-opt)
winner-marks
= marks(opt)

... ... ...

2.2.2 Recursive Constraint Demotion (RCD)

Given:
universal-constraints = a set of universal constraints
mark-data = a table of pairs of mark lists (loser-marks, winner-marks)

To Find:
A stratified hierarchy with respect to which each of the loser-marks is less harmonic than its

corresponding winner-marks.

RCD Algorithm:

Set not-yet-ranked-constraints = universal-constraints

I. Mark Cancellation
For each pair (loser-marks, winner-marks) in mark-data:

a. For each occurence of a mark * in both loser-marks and winner-marks in the
same pair, remove that occurence of * from both.

b. If, as a result, no winner-marks remain, remove the pair from mark-data.

II. Recursive Ranking
a. Output highest-ranked-constraints = all the constraints in not-yet-ranked-constraints

which do not appear in the column winner-marks of mark-data; these form the
highest-ranked stratum of the not-yet-ranked constraints.

b. Remove the highest-ranked-constraints from the not-yet-ranked-constraints.
c. Remove all rows from mark-data which contain any marks assessed by the highest-

ranked-constraints.
d. Call Recursive Ranking again, with the reduced mark-data and the reduced not-yet-

ranked-constraints.
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Note that in step c of Recursive Ranking, the relevant marks (those assessed by the highest-ranked-
constraints) can only appear in the column loser-marks; for any constraint contributing a mark to the
column winner-marks is not, by step a, among the relevant constraints (those in highest-ranked-
constraints).

2.3 Informal Analysis of the Algorithm

Observe first that multiple uncancelled tokens of the same type of mark in the mark-data table, either for
winner or loser, have the same effect as a single token. For in step a, we simply determine which
constraints assess no marks at all in the winner-marks column: whether a single or multiple tokens of a
mark appear makes no difference. Then in step b, a row is removed from mark-data if it contains any
marks at all assessed by the highest-ranked-constraints; multiple tokens of a mark type have the same
effect as a single token. Thus, for efficiency considerations below, we can assume that in Initialization
step c, if a row of the mark-data table contains multiple tokens of the same type of mark, duplicates are
eliminated, leaving at most one token of each type. In other words, in the initial mark-data table prior
to cancellation, what really matters is, for each constraint, which of sub-opt or opt incurs more violations
of the constraint ; if it is sub-opt, then a token of the mark * appears in the column loser-marks; if it
is opt, then the token of * appears instead in the column winner-marks. What matters in the assessment
of optimality is only which of two candidates more seriously violates each constraint: not any absolute
magnitude of violation.

The correctness of the algorithm should be clear. The highest-ranked-constraints output at each
pass of the algorithm are exactly the constraints which need not be dominated in order to explain the
available data; the remaining not-yet-ranked-constraints, by contrast, must be dominated and so cannot
be highest-ranked. We now show that the algorithm must terminate.

On each pass of the algorithm, at least one constraint must be output. For suppose not. That
would mean that every one of the not-yet-ranked-constraints appears in the column winner-marks, i.e., as
an uncancelled mark of an optimal form. But that would mean that every one of the not-yet-ranked-
constraints must be dominated by one of the other not-yet-ranked-constraints: which means there is no
ranking of these constraints which is consistent with the mark-data, in contradiction to the basic
assumption that the mark-data derive from some ranking of the given constraints.

So on each pass, at least one constraint is eliminated from the not-yet-ranked-constraints. Thus
the number of passes required cannot be more than the number of universal constraints: call this Nconstr.
The number of steps required for each pass cannot exceed the number of uncancelled marks in the mark-
data table: each mark in the column winner-marks is examined in step a to ensure that its corresponding
constraint will not be output as a highest-ranked-constraint, and, in the worst case, each mark in the
column loser-marks must be examined in step c to determine which rows must be eliminated from data.
The number of uncancelled marks per row of the table can’t exceed the number of constraints Nconstr, so
the total number of steps per pass can’t exceed NconstrNpairs, where Npairs is the number of rows in the
initial mark-data table, i.e., the number of pairs sub-opt opt used.

So the number of steps required for all the passes can’t exceed

(Nconstr)
2Npairs

In the worst case, the RCD algorithm is quadratic in the number of constraints, and linear in the number
of mark-data pairs. This makes the algorithm quite efficient, although further work is required to
investigate efficiency issues in the choice of sub-opt opt pairs.
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3. General Constraint Demotion

In this section, we pull out the core part of the RCD algorithm, which we call the Core CD Algorithm,
and show how it can be used in a number of ways to yield a family of CD Algorithms which differ
primarily in how much data they process at one time.

3.1 The Core CD Algorithm

Given:
= a stratified hierarchy of constraints

mark-data = a table of pairs of mark lists loser-marks winner-marks

To Find:
A stratified hierarchy with respect to which each of the loser-marks is less harmonic than its

corresponding winner-marks.

Prior to use of CD, as for RCD (see §2.2.2) mark-data must be prepared as appropriate for the version
of CD which will be used (see §3.2).

Core CD Algorithm

I. Mark Cancellation: As for RCD (§2.2.2)

II. Constraint Demotion (repeat this step until no demotions occur)
for each pair loser-marks winner-marks in mark-data

i. find the mark * loser in loser-marks which is highest-ranked in
ii. for each * winner in winner-marks

if loser does not dominate winner in , then demote constraint winner to
the stratum in immediately below that of loser (creating such
a stratum if it does not already exist)

Output

3.2 Versions of the CD Algorithm

Now we present several ways of using the Core CD Algorithm to learn a language. All start, like RCD,
with the stratified hierarchy in which all the universal constraints are in the top stratum: we call this 0.
The constraints in this stratified hierarchy are then demoted as demanded by the data.

(13) Batch CD
a. Compile all available output forms into initial-data.
b. Perform Data Preparation, generating mark-data.
c. Set = 0
d. Execute Core CD on mark-data and (once).

Batch CD is closely related to RCD (see §3.4): all the data is processed simultaneously by Core CD.
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(14) On-line CD
a. Set = 0

Execute repeatedly:
b. Select one optimal output opt and one suboptimal competitor sub-opt.
c. Set mark-data = {marks(sub-opt) mark(opt)}.
d. Execute Core CD on mark-data and current .

On-line CD operates by applying Core CD separately to each sub-opt opt pair.

(15) I/O CD
a. Set = 0

Execute repeatedly:
b. Select one optimal output opt.
c. Perform Data Preparation, generating mark-data.
d. Execute Core CD on mark-data and current .

I/O CD is one way of using Core CD in between the extremes of Batch CD (all data processed at once)
and On-Line CD (one mark-data pair processed at a time). One form opt from the language is processed
at a time, but a number of competitors sub-opt to opt may be processed at once.

3.3 Example

We exemplify On-Line CD using the language L1 above. Recall that On-Line CD operates on one loser-
marks winner-marks pair at a time.

Step a of On-Line CD has us set the initial stratified hierarchy to

= 0 = {PARSE, FILLNuc, FILLOns, ONS, −COD}

Step b has us pick a sub-opt opt pair; suppose we pick b d of (6). Step c has us generate the
corresponding pair of mark lists, as shown in the second row of (6). Step d has us execute Core CD.

Step I of Core CD is Mark Cancellation; the result is:

(16) Mark-pair for On-Line CD, Step 1 (L1)

sub-opt opt loser-marks winner-marks

b d 〈V〉.CV.〈C〉 . V.CV.〈C〉 {*PARSE *PARSE} {*PARSE *FILLOns}

Step II of Core CD is Constraint Demotion. We first find the highest-ranked (uncancelled) mark * loser
in ; this is *PARSE. We next check to see whether the winner-marks are dominated by *PARSE. The
only winner mark is * winner = *FILLOns, which is not so dominated. So Core CD calls for demoting

winner = FILLOns to the stratum immediately below loser = PARSE. Since no such stratum currently
exists, we create it. The hierarchy is now

= {PARSE, FILLNuc, ONS, −COD} >> {FILLOns}

This completes the execution of Core CD, so we return to step b of the On-Line CD procedure:
picking another sub-opt opt pair. Suppose this is a d of (6):
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(17) Mark-pair for On-Line CD, Step 2 (L1)

sub-opt opt loser-marks winner-marks

a d .V.CVC. . V.CV.〈C〉 {*ONS, *−COD} {*PARSE, *FILLOns}

We proceed to the Constraint Demotion step of CD, which calls first for finding the highest-ranked of the
loser-marks; since ONS and −COD are both top ranked, either will do: choose, say, ONS. We next check
whether each of winner-marks is dominated by ONS. FILLOns is so dominated, so no demotion results.
PARSE is not, however, so it is demoted to the stratum immediately below that of ONS; the hierarchy is
now:

= {FILLNuc, ONS, −COD} >> {PARSE, FILLOns}

Suppose now that the next sub-opt opt pair is:

(18) Mark-pair for On-Line CD, Step 3 (L1)

sub-opt opt loser-marks winner-marks

c d 〈V〉.CV.C ´ . . V.CV.〈C〉 {*PARSE *FILLNuc} {*PARSE *FILLOns}

Since the uncancelled loser mark, *FILLNuc already dominates the uncancelled winner mark, *FILLOns, no
demotion results, and is unchanged. This is an example of an uninformative pair, given its location in
the sequence of training pairs, since no demotions result.

Suppose the next sub-opt opt pair results from a new input, /VC/:

(19) Mark-pair for On-Line CD, Step 4 (L1)

sub-opt opt loser-marks winner-marks

〈VC〉 . V.〈C〉 {*PARSE *PARSE} {*PARSE *FILLOns}
Since the loser mark *PARSE does not dominate the winner mark *FILLOns, we must demote FILLOns to
the stratum immediately below PARSE, resulting in the hierarchy:

= {FILLNuc, ONS, −COD} >> {PARSE} >> {FILLOns}

This stratified hierarchy actually gives rise exactly to L1, so no further data will be informative. It is the
same hierarchy as that learned by RCD, (10).
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3.4. Analysis

Here’s a sketch of the proof that the procedures of §3.3 based on the CD algorithm converge to a correct
stratified hierarchy for the target language L.

The basic idea is this: If at any point CD places a constraint 3 in the third stratum, it is only because
the data seen so far entail a sequence of constraint dominations in which two other constraints 1 and 2
form a domination chain over 3:

1 >> 2 >> 3.

Constraints start at the top of the hierarchy and are only demoted by CD when they have to be in order
to accomodate the data currently being evaluated. Each constraint is demoted until, eventually, it arrives
in the highest stratum permitted it by the language. Each demotion brings the constraint demoted at least
one stratum closer to its final destination; since constraints are never promoted, the hierarchy converges
monotonically, in a sense defined precisely below, to a correct hierarchy.

We present a few definitions and then a series of propositions leading to the convergence result. In this
section, we assume that all constraint hierarchies involve the same set of constraints.

(20) Def. The offset of a constraint in a hierarchy is the number of strata above . is in a lower
stratum in 1 than in 2 if the offset of in 1 is greater than in 2. is in the same stratum in

1 and 2 if it has the same offset in both.

(21) Def. A constraint hierarchy 1 h-dominates 2 if every constraint is in the same or a lower stratum
in 2 than in 1.

This concept must be clearly distinguished from a more obvious relation between hierarchies:

(22) Def. A constraint hierarchy 2 is a refinement of 1 if every domination relation >> ′ of 1
preserved in 2.

(23) Prop. For any language L generated by an underlying total constraint ranking, there exists a unique
stratified hierarchy L which generates L and which has the property that each constraint is ranked
as high as possible; that is, for any other hierarchy ′ which generates L, every constraint is in
the same stratum or a lower stratum in ′ relative to L. We term L the h-dominant target
stratified hierarchy for L, or simply the target for L.

(24) Cor. The target for L h-dominates every total constraint ranking which generates L.

(25) Prop. The hierarchy output by CD h-dominates the input hierarchy.

This holds because CD only demotes constraints.

(26) Prop. If the input hierarchy h-dominates the target, so does the output hierarchy.
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This holds because CD will never demote a constraint lower than necessary; the constraint is as low as
necessary in the target.

(27) Def. The h-distance between a hierarchy 1 and a hierarchy 2 h-dominated by 1 is the sum,
over all constraints , of the difference between the offset of in 1 and in 2.

(28) Lemma. The h-distance between the current hierarchy and the target decreases by at least 1 for
each demotion/informative pair.

(29) Lemma. The h-distance from the maximal hierarchy to the target cannot exceed
½(Nconstr−1)Nconstr.

(30) Thm. Starting with 0 and presenting the CD algorithm with data according to any of the
procedures Batch CD, On-Line CD, or I/O CD, the procedure converges on the target hierarchy

L for L after at most ½(Nconstr−1)Nconstr informative examples.

(31) Prop. The relation of Batch CD to RCD is this. The first iteration of Batch CD runs once through
all the data, demoting a certain number of constraints. The contraints which remain in the top
stratum at the end of this first iteration can never be demoted in subsequent iterations through the
data; and other constraints can never be promoted into this stratum. So after the first iteration,
the top stratum has its final form. All mark-data pairs containing these constraints can be
removed and ignored in subsequent iterations. This same property then holds recursively for
subsequent iterations. In general, nth iteration of Batch CD definitively determines the nth stratum
from the top. This is the same at the corresponding stratum output by RCD on the nth call to
RCD (a recursive call for n > 1).

In other words, the real difference between Batch CD and RCD is slight: Batch CD demotes constraints
to a number of levels simultaneously, never demoting any constraints in the top n strata after iteration n,
while the nth call to RCD in effect just demotes constraints from the nth to the n-1st stratum. This is why
we have used the term Recursive Constraint Domination even though, unlike the other algorithms we have
discussed, RCD does not explicitly employ Core CD.
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4. Consequences and Extensions

4.1 Ties

The way we have approached the learning problem assumes that all competitors to an observed output are
suboptimal. This might fail to be the case in two different ways. First, a single input may give rise to
multiple optimal outputs which all earn the same set of marks (i.e., the constraints fail to distinguish
them). In this case, while it is not actually correct to assume that all competitors of a given observed
output are sub-optimal, no errors in the learning result. Recall that the first step in the CD algorithm is
the cancellation of common marks. Thus if the ‘sub-optimal’ form selected is in fact a second optimal
form, then all marks cancel and this pair is discarded.

Two forms which do not incur identical marks can only tie for optimality if the underlying
constraint hierarchy is not totally ranked, for two different marks must in this case have the same rank:
neither can dominate the other. In this case, observing one of the optimal forms and assuming that all
others are sub-optimal can lead to errors.

It is currently unknown whether it is possible to extend CD to learn languages in which some
inputs have multiple optimal outputs which do not earn identical sets of marks. We might, for example,
suppose that the target language derives from an underlying stratified hierarchy rather than a totally ranked
hierarchy. We might also assume that the learner’s initial data consists in a set of inputs, and for each
input, all its optimal outputs, should there be more than one. Much of the analysis extends to this setting,
although the Core CD Algorithm needs to be extended with an addition step to handle pairs opt1 ∼ opt2
of tying optima. In this step, each mark in marks′(opt1) must be placed in the same stratum as a
corresponding mark in marks′(opt2): a somewhat delicate business. Indeed, achieving ties for optimality
between forms which incur different marks is a tricky matter. It may be that learning languages which
do not derive from a totally-ranked hierarchy is much more difficult than the case we have studied here.
In that case, demands of learnability would suggest that universal grammar rules out such languages.

Even though the set of target languages is generated from the set of totally ranked hierarchies of
the universal constraints, the hypothesis space employed by the CD learning algorithm is the larger space
of stratified hierarchies. That learning can be much less difficult when the hypothesis space is larger than
the target space is a theme of recent work in Computational Learning Theory. While we cannot at this
point rule out the possibility of an equally efficient learning algorithm which operates purely in the smaller
space of totally-ranked hierachies, it seems quite unlikely to us.

Learning in the context of initial data which contains outright errors is almost certainly a problem
of much greater complexity than that addressed here. It is worth noting, however, that if the initial data
presented to the RCD algorithm are not consistent with any total ranking of the given constraints, the
algorithm discovers this fact: At some stage of its execution, it fails in its attempt to find a constraint
which does not appear among the winner-marks (Step II.a; see the discussion of convergence in §2.3).

4.2 The Superset Principle

Taken seriously as a model of language acquisition, the CD algorithm suggest a Superset Principle in
which the languages hypothesized earlier in learning are larger than, or supersets of, later languages. The
initial state 0 is a completely unrefined stratified hierarchy in which all constraints form a single stratum.
In the CV syllable structure example considered above, in this initial state, all the candidate parses we
considered are tied for optimality, therefore all are accepted initially as well-formed. Data is then used
to successively refine this hierarchy — in a somewhat loose sense: the output of CD at any stage is not
in general literally a refinement of its input, but the number of strata is strictly non-decreasing. The end
result in the syllable structure example is that all but one of the initially accepted outputs is rejected by
the final grammar.
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Appendix. Formal Statement of the RCD Algorithm and Proof of Its Correctness

A.1 The RCD Algorithm

Given:
A list of constraints
A list of mark-data pairs:

mark-data = {(loser-marksi , winner-marksi)}
where each loser-marksi and winner-marksi is a list of marks = {*m}

Part I: Mark Cancellation

for each pair i in mark-data
for each occurrence of a mark *m in both loser-marksi and winner-marksi

remove *m from winner-marksi; remove *m from loser-marksi
if winner-marksi is empty, remove (loser-marksi, winner-marksi) from mark-data

endfor

Part II: Recursive Ranking

while not-yet-ranked-constraints not empty do

set highest-ranked-constraints to empty
copy not-yet-ranked-constraints to highest-ranked-constraints

for each pair i in mark-data
for each constraint j in highest-ranked-constraints matching a mark *m in winner-marksi
remove j from highest-ranked-constraints

endfor

for each constraint j in highest-ranked-constraints
remove j from not-yet-ranked-constraints

endfor

for each pair i in mark-data
if a mark *m in loser-marksi matches a constraint j in highest-ranked-constraints

then remove (loser-marksi, winner-marksi) from mark-data
endfor

OUTPUT highest-ranked-constraints

endwhile

This algorithm sequentially outputs lists of constraints, with the first list containing the constraints ranked
the highest, the second list containing the constraints ranked second highest, etc.
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A.2 Proof of Correctness of the Algorithm

The algorithm is correct if it outputs a partial ranking of the constraints which assigns strictly higher
harmony to opt than to sub-opt for each pair sub-opt opt. Thus, any totally ranked hierarchy consistent
with the output (partially ranked) stratified hierarchy will correctly evaluate all of the data presented.

Part I of the algorithm, where common marks are cancelled within mark-data pairs, is justified by
the Cancellation Lemma (P&S:139) which says precisely that the relative harmony of two structures will
be correctly determined if all common marks are cancelled, and only the remaining marks are considered.
Further, if cancellation results in the winner of a pair having no remaining marks, then the winner will
be assigned higher harmony than the loser no matter which way the constraints are ranked. Consequently,
the mark-data pair is guaranteed to be satisfied by the algorithm’s output, and it contains no useful
information to constrain the ranking, so it may be discarded.

Part II of the algorithm may be proven recursively by demonstrating that:
(a) an iteration correctly finds and outputs the subset of the given constraints that may be

ranked highest;
(b) at the end of an iteration, the remaining mark-data pairs may only be explained on the

basis of the constraints not yet output. Thus, what is left over is itself a
well-defined problem, and the next set of constraints to be output is precisely the
set of constraints that may be highest ranked in the remaining problem;

(c) each iteration is guaranteed to output a list with at least one constraint, so long as a
solution exists that is consistent with all of the mark-data pairs. This ensures that
the algorithm converges.

First, we prove that an iteration outputs those constraints which may be ranked highest (of the
given constraints). From the set of constraints not yet output, a constraint is removed if a corresponding
mark is found in at least one of the winners’ lists of marks. The Cancellation/Domination Lemma
(P&S:130,148,221) states that one parse is assigned higher relative Harmony than another if and only if
every uncancelled mark incurred by the winner is dominated by an uncancelled mark of the loser. The first
part of the algorithm insures that only uncancelled marks are considered. If an uncancelled mark incurred
by the winner is dominated by one incurred by the loser, then the mark incurred by the winner cannot be
among the highest ranked. Thus, all constraints eliminated by this step cannot be among the highest
ranked.

Each of the constraints remaining at the end of the step may or may not appear in any particular
loser’s list of marks. If it doesn’t, then the constraint is neutral with respect to that mark-data pair, so
ranking it highest is (vacuously) consistent with that mark-data pair. If it does, then ranking the constraint
highest guarantees that the winner will be more harmonic, as the constraint’s mark dominates all
uncancelled marks of the winner, so ranking the constraint highests is (non-vacuously) consistent with the
mark-data pair. Thus, ranking all constraints remaining in the list highest is consistent with all of the
mark-data pairs.

Next, we prove that, at the end of an iteration, the remaining mark-data pairs may only be
explained on the basis of the constraints not yet output. First observe that no constraints that were output
during the iteration may have marks appearing in any of the winner-marks lists, because any constraint
with a mark appearing in any winner-marks was automatically disqualified from being output. Further,
the step of the algorithm following the output step removes all mark-data pairs in which an outputted
constraint has a mark in the Lose mark list. Thus, the remaining mark-data pairs have no marks
corresponding to constraints already output.

The constraints and mark-data pairs remaining at the end of an iteration may then be viewed as
a problem set of their own. The next set of constraints to be output is exactly the set of constraints that
may be ranked highest given the remaining constraints and the remaining mark-data pairs. This recursion
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bottoms out when no mark-data pairs are left. Because mark-data pairs with empty winner-marks were
removed in Part I of the algorithm, it is guaranteed that while there are mark-data pairs in the datalist,
there will be constraints not yet output, including each constraint with a mark in at least one of the win
lists of the remaining mark-data pairs.

If no mark-data pairs remain in the list, then no constraints will be removed from the list of
remaining constraints, and all of them will be output. This is correct, because each of the constraints
(vacuously) satisfies the remaining data (since there is none).

Finally, we prove that the algorithm converges whenever a solution exists. Suppose, to the contrary, that
during an iteration, all (not yet output) constraints were disqualified from being highest-ranked. This
means that each of the constraints has a mark appearing in the winner-marks list of at least one mark-data
pair. This means that the mark-data pairs collectively require each constraint to be dominated by another
constraint, which violates the requirement that constraint domination be non-circular. Thus, no solution
exists which will satisfy all of the mark-data pairs. So, if a solution does exist, then each iteration will
output a list containing at least one constraint, and reduce the list of constraints not yet output. This
guarantees that the algorithm will converge.
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