
13

Chapter 2 Typology of OCP on Features in OT

2.1 OCP in Previous Research

This chapter will discuss a typological study of the OCP on features. In this

section, I will review the previous research on OCP. First, in section 2.1, I will

examine the OCP in autosegmental phonology, and point out the problems raised

within that framework. Next, I will discuss the OCP in Optimality Theory in section

2.2. In this section, I will make clear how the OCP is considered in OT, how the

problems raised in autosegmental phonology can be solved in OT, and how I treat the

OCP within the framework of OT.

2.1.1 OCP in Autosegmental Phonology

2.1.1.1 Leben (1973) and Goldsmith (1976)

Leben (1973) first proposed a principle to forbid two identical tones from

being adjacent at the melodic level in the analysis of the Tiv Verbal system. He

claimed that a sequence on the tones such as HHL is impossible in the language

because the principle rules it out.

Goldsmith (1976) calls this principle the "Obligatory Contour Principle

(OCP)", and states it as follows:

(1) Obligatory Contour Principle (Leben) (from Goldsmith 1976:36):

At the melodic level of the grammar, any two adjacent tonemes must

be distinct. Thus HHL is not a possible melodic pattern; it

automatically simplifies to HL.

14

Goldsmith is skeptical about the existence of such a principle in UG, because not all

tone languages express the same simplification of HHL into HL. This begins the

debate on the inclusion or rejection of the OCP in the theory.

2.1.1.2 McCarthy (1986), Myers (1987) and Odden (1986, 1988)

The OCP is originally the principle used to prevent underlying representations

from containing identical adjacent elements on autosegmental tiers. For instance, the

principle forces the following multiple linking of the tone to avoid violating the OCP:

(2) Multiply linked high tone in Shona (Myers 1987, Odden 1980):

ha@ka@ta 'diviner's bones'

*(a) hakata (b) hakata
 | | \ /
 H H H

The underlying representation is presumed (b) due to the OCP.

Although the original principle bars only identical adjacent autosegments in

underlying representations, several researchers have tried to extend it into a more

general principle which applies at the level of segments as well as autosegments.

McCarthy (1986) indicates that the principle plays the role of a rule-blocker. He

claims that there are many languages in which a rule of syncope is blocked when the

rule would violate the OCP (antigemination effect). Following McCarthy's paradigm,

Yip (1988) proposes that the OCP also works as a rule-trigger. She notes various

repair strategies to avoid OCP violations, such as degemination (deletion),

dissimilation, assimilation, and epenthesis. The rules that give rise to these processes

are triggered by the OCP.

15

In contrast to those works in which the OCP is extended to a more general

principle, arguments from the opposite viewpoint have also been submitted. Odden

(1986, 1988) criticizes McCarthy's antigemination analysis, because not all languages

show avoidance of identical elements. According to Odden (1986, 1988), this

inconsistency could not be explained if the OCP were a principle of UG.

2.1.1.3 Summary

The status of OCP has thus been debated in autosegmental phonology, and as

Goldsmith (1990) concludes, since the OCP is a "soft" universal principle, the

problem of the universality of OCP is not resolved within the framework.

2.1.2 OCP in OT

The matter of the universality of the OCP constraint as a property of UG, so

central to autosegmental phonology, is not problematic within the OT framework.

The reason is that OT allows for constraint violation, therefore the OCP will be

expected to be active when it is ranked highly enough to be respected, while it will be

violated when it is ranked lower than some other constraints that must be satisfied.

However, another question arises. As already noted in section 1.2, is the

OCP a primitive component of UG by itself as widely assumed, or do the properties

of UG give rise to the effect of the OCP (Itô and Mester 1996, Alderete 1997)?

Following Itô and Mester (1996) and Alderete 1997, I adopt the idea that the OCP is

derived from self-conjunction of markedness. However, I use OCP[F] to refer to the

self-conjoined markedness constraints, i.e.*[DOMAIN [F][F]] for typographical

convenience, and also it does not deny the possibility of the OCP as the primitive

constraint. I leave the issue of the absolute nature of the OCP for future research.

16

Although I also assume that the domain for the OCP constraint is specified language-

specifically in this dissertation, I will consider whether and how the domain is

specified in each language from the viewpoint of language learnability in future

investigation.

This section recapitulates the work of Itô and Mester (1996) and Alderete

(1997) which introduce the idea that the OCP is a self-conjunction of markedness

constraints in certain local domains.

2.1.2.1 OCP as Self-conjunction of Markedness Constraints (Itô and

Mester 1996, Alderete 1997)

Itô and Mester (1996) and Alderete (1997) independently propose that the

OCP is a self-conjunction of markedness constraints in some local domain. This idea

is formulated in the mold of Local Conjunction (Smolensky 1993, 1995, 1997).

Local Conjunction obtains when two lower-ranked constraints are conjoined

in a certain local domain to play the role of one higher-ranked constraint.1

Suppose that constraint A and Constraint B are both relatively low-ranked in

language C so that both are violated to satisfy the higher ranked constraint D.

However, when A and B are conjoined, it is assumed that A&B could be ranked

above D. Then, A&B must be respected at the expense of a violation of D.

(3)
 A&B >> D >> A, B

Thus, the ranking given in (3) is established in language C.

1 A detailed examination of Local Conjunction is given in chapter 4.

17

This concept of Local Conjunction is used to formalize OCP constraints as

self-conjoined markedness constraints. In language E, a markedness constraint *F,

which prohibits the marked element F, is lower-ranked than another markedness

constraint *G, which forbids the marked element G. This ranking lets F surface in

some data of the language unless some faithfulness constraint intervenes, because F

is more unmarked than G.

 However, in some local domain H within the same language E, it is also

possible that the sequence of FF is banned, when *F is conjoined with *F into a self-

conjoined constraint in the domain H: [*F*F]H, and the self-conjoined constraint

[*F*F] H is higher ranked than *G.

(4)
[*F*F] H >> *G >> *F

Itô and Mester (1996), and Alderete (1997) thus reach the conclusion that a constraint

specifically for OCP is redundant because the full set of the self-conjoined

markedness constraints can account for all OCP phenomena.

Their approach has broader empirical coverage than a simple OCP constraint.

First, with a simple OCP constraint it is difficult to account for the variation in

adjacency (so-called "long distance OCP") (Archangeli and Pullyblank 1994, Odden

1994, Suzuki 1998).

This problem is resolved in the self-conjoined markedness constraint model of

the OCP. The first problem is solved by defining the local domain for each local

conjunction (Smolensky 1993, 1995, 1997). For instance, Itô and Mester (1996),

and Alderete (1997) propose a self-conjunction, *[+voice, –sonorant]2stem: two

voiced obstruents are not allowed per stem, to account for Rendaku (Sequential

18

Voicing) and Lyman's Law in Japanese. When two words compound into one in

Japanese, the initial obstruent of the second compound member becomes voiced. This

is called Rendaku (Sequential voicing). However, Rendaku does not take place if the

second member of the compound already contains a voiced obstruent within its

morpheme due to Lyman's Law which prohibits more than one voiced obstruent in a

morpheme. Thus, in order to ban the occurrence of more than one voiced obstruent

within the second member of the compound (within a stem), a self-conjoined

constraint is introduced.

 Second, with only a simple OCP, it is hard to explain OCP effects on

elements other than those on the same autosegmental tier. For instance, vowel length

is not a single autosegmental element. Therefore, it is problematic in the previous

framework how to account for the prohibition of two longs vowels in a certain

domain. This problem is solved by one of Alderete's (1997) self-conjunctions. In his

analysis of vowel length dissimilation in Oromo, he proposes a self-conjunction,

*NOLONGVOWEL2SA: In adjacent syllables, avoid two vowels each dominated by

more than one mora. With this constraint, the fact that more than one long vowel is

prevented from occurring in adjacent syllables (neither segmental nor tier adjacency is

relevant) is accounted for.

Suzuki (1998) argues that the self-conjunction approach to the OCP is too

restrictive because it considers that the OCP prohibits the cooccurrence of the marked

structure. The existence of the single markedness constraint is necessary to bear the

self-conjoined constraint, and it cannot account for the OCP effects on unmarked

features.

However, I argue against Suzuki's claim, because there is no definite

unmarked feature when we consider features within the framework of Optimality

19

Theory. All the features are marked in a sense; therefore, the constraints which

prohibit them exist in the grammar, and some of the features are relatively unmarked

compared to the other features based on the ranking of those markedness constraints.

Thus, for example, although the [cor] feature is relatively unmarked compared to the

[dor] or [lab] feature, it is still marked, and the constraint against the [cor] feature

does exist, namely, *[cor]. The OCP effects on this relatively unmarked feature [cor]

can be accounted for based on the self-conjoined markedness constraint, namely,

*[cor][cor]. In this respect, there are no OCP effects which the self-conjunction

approach cannot explain.2

One thing which I argue against is "Theorem of coronal unmarkedness in

segmental cooccurrence restrictions:" proposed by Alderete (1997) to claim that a

segmental cooccurrence restriction on [coronal] entails the same cooccurrence

restriction for [labial] and [dorsal] (p.29).

 The status of local conjunction as a property of UG is still controversial. As

Fukazawa and Miglio (1996, to appear), and Miglio and Fukazawa (1997) claim,

only the potential of conjunction, namely, the "&-operator" for Local Conjunction, is

a property of UG. Each local conjunction constraint is language-specific. If the

existence of each local conjunction constraint is language-specific, then a segmental

cooccurrence restriction on [coronal] does not have to entail the same cooccurrence

restriction [dorsal] (or [labial]). Such an entailment must be held only when a certain

2 There seems to be a potential problem of the existence of the self-conjoined
constraint of the minus value of some feature. However, as I already mentioned in
section 1.2, I assume featural privativity; therefore, there is no minus value for
features. All features are fully specified. For instance, there is a markedness
constraint for the feature *[voice]; hence, there is a self-conjoined OCP constraint,
*[voice][voice]. On the other hand, there is no minus value for this feature such as
[–voice]. Thus, there is not a constraint *[–voice][–voice]. Dahl's Law in Bantu has
been analyzed this way, but see Lombardi (1995c) for an alternative analysis.

20

language contains both *Coronal2Domain and *Dorsal2Domain (or *Labial2Domain).

As Smolensky (1995) proposes, the ranking *Dorsal2Domain, *Labial2Domain >>

Coronal2Domain is universal, due to the universal of the hierarchy of the markedness

constraints for the place features as introduced in (5).

(5) Universal Ranking for the markedness constraints for place features

(Prince and Smolensky 1993)

*Labial, *Dorsal >> *Coronal

However, it is possible that a language lacks some of the self-conjoined markedness

constraint, such as *Dorsal2Domain, and carries only Coronal2Domain. In that case,

the ranking *Dorsal2Domain, *Labial2Domain >> Coronal2Domain is not possible in

the language.

Suzuki cites Alderete's (1997) theorem to criticize the self-conjunction

approach to OCP by arguing that this theorem does not hold in languages such as

Dakota or Akan, where only a cooccurrence restriction on [coronal] is observed, and

no restriction on the more marked [lab] + [dor] is observed.

However, as I already point out, if local conjunction is language-specific.

Therefore, Alderete's theorem does not hold, and there is nothing problematic in the

self-conjunction approach to OCP.

For example, in Dakota, the sequence of [cor][cor] turns into [dor][cor]. This

is the very case illustrated in (4) above. There is a universal ranking of the marked

21

constraints for place features proposed by Prince and Smolensky (1993)3 as

introduced above in (5).

According to this ranking, the alternation of [coronal] (less marked feature)

into [dorsal] (more marked feature) looks theoretically odd. The single constraint

*Dorsal is surely ranked above the single constraint *Coronal. However, a self-

conjunction of *Coronal outranks single *Dorsal, resulting in the ranking:

*Coronal2Domain >> *Dorsal >> *Coronal. With this ranking, the case of Dakota4 is

correctly accounted for. The single coronal segment is less marked than a single

dorsal segment , and a single dorsal segment is less marked than two cooccurring

coronal segments within a local domain. This is illustrated in the following tableau:

(6)

/cor cor/ *[cor][cor] *[dor] *[cor]

 a. [cor][cor] *! **

☞ b. [dor][cor] * *

Thus, I conclude that the approach of the OCP as self-conjunction can still

deal with the OCP effects within the OT framework.

3 Lombardi (1995b) revises this ranking by adding another place feature
[Pharyngeal], following McCarthy (1989, 1994a). Although I do not introduce this
ranking in this chapter, I will discuss it in section 3.2.2.5, and in 4.5.1 in detail.
4 Dakota coronal dissimilation is analyzed in detail in section 3.2.

22

2.1.2.2 Summary

As I have observed in this section, the question asked in section 1 has been

one of the central issues when we consider the effect of the OCP in OT: whether the

OCP is a component of UG by itself, or whether the properties of UG give rise to the

effect of the OCP. I claim that OCP is derived as the effect of self-conjunction,

following Itô and Mester (1996), and Alderete (1997). However, my claim does not

deny the possibility of OCP as the primitive component of UG. Whether OCP

constraints are derived or primitive, and however they may be derived, it is clear that

the result is that UG contains constraints prohibiting two identical or similar elements

from appearing in the same domain. My focus will be on how such constraints

affecting features interact cross-linguistically to produce the observed typology of

effects. Although I assume OCP is self-conjoined markedness constraints, I use

OCP[F] to refer to *[F][F] in this dissertation. I will leave the issue of primitivity of

OCP for future investigation.

2.2 Typology of OCP on Features

2.2.1 Four Types of Languages

In this section, I consider the factorial typology with respect to OCP effects

on features in OT. In OT, typology accounts for language universality based on the

same set of the relevant constraints, and for language particularity based on the

different rankings of those constraints. I will consider what kinds of constraints are

necessary in the analysis of OCP effects, and how the different constraint interactions

represent different results in each type of language: whether or not the OCP

constraints can be violated, and what kinds of repair strategies are observed. Thus, I

assert that the typology of OCP effects on features is achieved on the basis of the

23

investigation of how the OCP constraints and markedness constraints interact with

faithfulness constraints.

I will provide a classification of languages based on OCP effects on features

drawing on the proposal of Yip (1988). According to Yip's claim, there are logically

five types of languages in terms of OCP on features. Although I will build on Yip's

claim to classify languages, I will reexamine her proposal because my classification is

specifically for OCP on features. I will eliminate some of the possibilities from Yip's

classification such as epenthesis of a segment, and reorganize some of the categories

such as dissimilation, assimilation, and deletion. I will conclude that there are four

types of languages regarding OCP on features.

 In the framework of autosegmental phonology, following McCarthy's (1986)

paradigm, Yip proposes that the OCP sometimes plays the role of a rule trigger. Yip

(1988: 73-74) indicates that there are four kinds of repair strategies to avoid OCP

violations, namely degemination, dissimilation, assimilation, and epenthesis.

Therefore, it seems that there are five types of languages from the perspective of the

OCP effect:

(7) A Hypothetical Typology for the OCP effects:

Type 1: OCP violation is allowed

Type 2: OCP violation is not allowed, and degemination (deletion of one
 segment) takes place.

Type 3: OCP violation is not allowed, and dissimilation is observed.

Type 4: OCP violation is not allowed, and assimilation occurs.

Type 5: OCP violation is not allowed, and epenthesis takes place.

24

Yip claims that this categorization of repair strategies holds at the segmental and

autosegmental levels.

I will claim that the above classification of the languages above must be

reconsidered when we examine the typology of the OCP effects specifically on

features. As I already pointed out in section 1.2, OCP on features must be considered

different from OCP on segments, especially when we examine the possible repair

strategies.

 First, it is still controversial whether epenthesis plays a role as a repair for

OCP effects on features. As in the Classic Arabic case which McCarthy (1986)

analyzes, each feature is arrayed on a separate tier.

(8) The ill-formed root */dbt/ (from Clements and Hume 1995: 262)

d b t
 | | |
 Place Place Place
 | | |
 | [labial] |
 [coronal] [coronal]

In (8), since the [coronal] and [labial] tiers are not ordered, or independent from each

other , the two coronals are adjacent, resulting in an OCP violation. Epenthesis of a

segment in this case would not avoid the OCP violation on features.

Previous research has suggested that schwa is inserted between the two

coronals in the plural or the past-tense formations in English as a result of the OCP

effect on [coronal] (Yip 1987, 1989, Borowsky 1987), e.g. 'want'–'wanted(past)'

([want]–[want́ d]), 'miss'–'misses (plural)' ([mIs]–[mIs´z]).

25

However, if tiers are independent, it is not plausible that epenthesis is

effective in avoiding an OCP violation on [coronal], because the two tiers can be still

adjacent despite the fact that the segments are not adjacent:

(9)

(a) (b)
[want ́ d] [mIs ́ z]

 | | | |
 [cor] [cor] [cor] [cor]

Let us analyze this type of example in an actual tableau.

(10)
/t. d/
 | |
[cor] [cor]

OCP[coronal] DEP-IO

☞a. /t. d/
 | |
[cor] [cor]

*

 b. /t ́ d/
 | |
[cor] [cor]

* *!

As illustrated in tableau (10), candidate (b), with epenthesis of schwa, still violates

OCP[coronal]. Moreover, it violates an additional constraint, DEP-IO: all the output

segments have the correspondent in the input (McCarthy and Prince 1995).

Furthermore, many English words even include two adjacent segments which

bearing the feature [coronal]:

(11)
 n e s t
 | |

 [cor] [cor]

26

Words such as (11) obviously show that a constraint for OCP on [coronal] should

not be a high-ranked constraint in English. Thus, some other reason must force the

schwa epenthesis in the English past-tense or plural suffix. The problem which

triggers epenthesis is not only the OCP violation of [cor][cor] in this English case.5

Therefore, this case does not constitute evidence that epenthesis can repair OCP

violations on features.

There would be one possible way for epenthesis to repair OCP on features as

I have already referred in section 1.2. That is when the epenthetic segment bears the

opposite value of the adjacent identical feature.

(12)

 X Y Z
 | | |
 [+F] [–F] [+F]

In the hypothetical example in (12), the two identical features [+F][+F] are not

adjacent anymore when the segment Y which bears the opposite value for the same

feature is epenthesized. However, I assume that all the features are privative.

5 I will not further discuss the schwa epenthesis in English, because the topic is
not relevant to the theme of the dissertation. In order to account for this epenthesis,
we have to examine other elements aside from the OCP on [cor]. If these elements are
also other OCP effects on features, they must involve additional features. For
example, we have to consider the manner feature to account for this of English
epenthesis. For example, schwa insertion is observed in the past tense of the word
ending {t, d}, and also in the plural form of the word ending {s, z}. However,
schwa insertion is not observed in the past tense of the word ending {s, z}, e.g. the
past tense of 'seize' /si:z/ is not [si:z´d] but [si:zd]. Thus, not only the coronal feature
but also the manner feature is also important. Also, schwa insertion is not observed
for every segment which bears coronal, only alveolars. I will not address this further
but see chapter 4 for an analysis of a multiple feature OCP. This case may also
crucially involve restricting the domain of the OCP to a particular type of cluster: I
leave this for future research.

27

Therefore, there is neither [+F] nor [–F], just [F]. Thus, I conclude that there is no

possibility for the epenthesis of a segment to repair the effect of OCP on features.

Therefore, I eliminate epenthesis from my typology of OCP on features, and will not

discuss it further in this dissertation.

 Secondly, degemination, dissimilation and assimilation must be classified as

repair strategies for OCP effects on features. There are several types of degemination,

dissimilation and/or assimilation repair strategies: deletion of a feature, deletion of a

feature with segmental deletion, deletion of a feature with featural insertion, featural

fusion, and so on.

Therefore, I propose that the typology of the OCP effects on features can be

explained on the basis of the following four types.

(13) Typology of the OCP effects on features:

(a) Type 1 language: OCP violation is observed.

(b) Type 2 language: OCP violation is not allowed, and Featural
 Fusion takes place (Dissimilation &

 Assimilation)

(c) Type 3 language: OCP violation is not allowed, and Feature
 Deletion and Feature Insertion both occur.
 (Dissimilation)

(d) Type 4 language: OCP violation is not allowed, and Feature
 Deletion leads to Segmental Deletion.

 (Deletion)

In the following sections, first I will illustrate each type in more detail. Next, on the

basis of this classification, I will actually observe how the OCP and markedness

constraints interact with faithfulness constraints in each type.

28

2.2.1.1 Type 1: OCP Violation

In a Type 1 language, the OCP violation for some feature is observed as the

following example shows:

(14) A hypothetical example for type 1:

/t o t/ -> [t o t]
 | | | |

[cor][cor] [cor][cor]

There are many languages which allow OCP violation for various features. In

English, [tot] is a well-formed sequence despite an OCP[coronal] violation.

2.2.1.2 Type 2: Feature Fusion

In this type, features are fused to avoid a violation of the OCP on features.

(15) A hypothetical example for type 2:

/t o t/ -> [t o t]
 | | \ /
[cor][cor] [cor]

Many languages whose grammars contain Morpheme Structure Constraints (MSC)

belong to this type. For example, in Ponapean, two [labial] features which do not

share the same value for backness cannot be adjacent at the tier level, while those

which share the same backness can be next to each other.

29

(16) Ponapean Labials (Mester 1986):

p + p paip 'boulder'
pap 'swim'

m + m mem 'sweet'
kamam 'to enjoy kava'

p + m parem 'nipa palm'
madep 'species of sea cucumber'

pw + pw pwupw 'to fall'
pwopwe 'shoulder'

mw + mw sumwumw 'trouchus'
kamwamw 'to exhaust'
mwaamw 'fish'

mw + pw mwopw 'out of breath'

*pw ap *pw ap DOES NOT EXIST

Mester (1986) accounts for these Ponapean domain using the OCP. pw indicates not

labialized, but velarized. Therefore, [p] does not bear the [back] feature, while

velarized [pw] bears [back]. Mester claims that the [back] feature is dependent on the

[lab] feature tier. When two [labial] features share the same value for backness, they

can be fused into one labial. Hence, the OCP violation on [labial] does not take place.

On the other hand, when the two [labial] features do not share the same value for the

[back] feature, they cannot be fused, resulting in an OCP violation on [labial].

Consequently, two [labial] features with different values for backness will never

surface in this language.

(17) Possible and Impossible sequences in Ponapean:

(a). [back] (b). *(c). [back]
 | |
 [lab] [lab] [lab] [lab]
 / \ / \ | |
 C a C C a C C a C
 pw a pw p a p pw a p
 (possible) (possible) (impossible)

30

Thus, the sequences in (17a) and (17b) are possible, while a sequence like (17c)

is never observed in Ponapean. I will analyze these phenomena in Ponapean in detail

in section 3.1.

Mester (1986) examines several other similar cases. For instance, in Alur, the

alveolar stops [t] and [d], and the interdental stops [T] and [D] are mutually exclusive

in CVC roots. In many languages, vowel harmony is observed such as in Ngbaka

(Mester 1986), Ainu (Mester 1986, Itô 1984), Yawelmani Yokuts (Mester 1986 etc.),

Turkish (Mester 1986), and Kirghiz (rounding harmony: Mester 1986). When two

vowels become identical as a result of vowel harmony, they can be fused, resulting in

the satisfaction of the OCP. According to Mester's claim, two adjacent features fuse

so as not to violate the OCP in all these languages. I conclude that all these languages

belong to Type 2.

2.2.1.3 Type 3: Feature Deletion and Insertion

In this type, one of the two adjacent features is deleted to avoid an OCP

violation. Moreover, a new feature is inserted in order to avoid a subsequent ill-

formed structure.

(18) A hypothetical example for Type 3:

 [lab]
 |

/t o t/ -> [t o p]
 | | |
[cor][cor] [cor]

In the example in (18), a new feature [lab] is inserted. Otherwise, the segment would

be placeless due to deletion of the [coronal] feature. Building on Padgett's (1994,

31

1995a) proposal of a constraint against placeless segments, I assume that placeless

segments do not surface in this type of language, because of his constraint,

HAVEPLACE.

Suzuki (1998) examines previous research and identifies a number of

languages in which both feature deletion and insertion are observed. Among the cases

which Suzuki identifies, I believe that the following cases belong to Type 3:

Table I: Example Languages in Type 3:

Language Phenomenon References
(a) Latin /l.l/ → [r.l] Kent 1945:153, Odden 1994:314,

Steriade 1987, 1995:154,
Walsh-Dicky 1997:159

(b) Akkadian /m.lab/ → [n.lab] Hume 1992:113, Odden 1994:321

(c) Cantonese (a
secret
language)

/lab.lab/ → [lab.cor] Yip 1982:657, 1988:83,
Hume 1992:111

(d) Dakota /cor.cor/ → [dor.cor] Shaw 1980, 1985:184

(e) Kuman /l.l/ → [l.r] Walsh-Dicky 1997:155

(f) Yimas /r.r/ → [r.t] Forely 1991:56, Odden 1994: 316,
Walsh-Dicky 1997:155

(g) Georgian /r.r/ → [r.l] Odden 1994:314, Walsh-Dicky
1997:155-156

(h) Tashlhiyt
 Berber

/m.lab/ → [n.lab] Odden 1994:319

(i) Yidin /l.l/ → [r.l] Dixon 1977:99, Steriade 1995:154,
Walsh-Dicky 1997:161

(j) Ainu /r.r/ → [n.r] Shibatani 1990:13

(k) Modern
 Greek

/r.r/ → [l.r] Walsh-Dicky 1997:155

In these languages, new features are inserted to avoid the ill-formed structure brought

about by deletion of a feature.

32

Let us examine some of the examples in Table I. In Akkadian, two labial

features are adjacent. Therefore, in order to avoid the violation of OCP[lab], the first

lab feature deletes, resulting in a placeless segment. Then, a relatively unmarked place

feature is inserted so as not to violate HAVEPLACE which prohibits a placeless

segment.

(19) (b) Akkadian: /m. lab/→ [n.lab]

/m. X/
 | |
 [lab] [lab]

 ⇓

 [cor]
 |
 [n, X]
 ‡ |
 [lab] [lab]

Cantonese and Tashlhiyt Berber are accounted for in a similar way to

Akkadian.

Similarly, in the case of Dakota, there are two coronals adjacent. Therefore,

one of the coronal feature deletes in order not to violate OCP[cor], and the dorsal

place feature is inserted so as not to violate HAVEPLACE.6

All the other cases in Table II are related to liquids. Walsh-Dicky (1997)

argued against previous research such as Steriade (1987, 1995) etc. which analyzed

the OCP effect on liquids from the aspects of the plus and the minus values.

6 As for the reason why the inserted place feature is dorsal, see the detailed
analysis of Dakota later in section 3.2.2.

33

Let us take a look at an actual example. In the case of Latin, Steriade (1987,

1995) analyzed that the alternation of /l/ into [r] in the sequence as the change of

[+lateral] into [–lateral] so as not to violate OCP[+lateral].

Walsh-Dicky argued against Steriade's claim from the viewpoint of feature

privativity. She claimed that there is no feature such as [lateral], and proposed a new

structure of liquids. All the liquids possess the feature [liquid] which is depended on

by the place feature as the first articulation. Another place feature, the secondary

articulation depends on the place feature of the first articulation. Therefore, liquids are

formulated as follows:

(20)
R

 |
 [liquid]
 |
 [Place/first articulation]
 |
 [Place/secondary articulation]

Laterals such as [l] are defined as liquids with a coronal first articulation, and with a

dorsal secondary articulation. On the other hand, Rhotics such as [r] are defined as

liquids with a coronal first articulation, and with a coronal (apical and/or laminal)

secondary articulation.

Thus, the sequence of /l. l/ bear two adjacent dorsal place features. The place

feature of the secondary articulation [dor] deletes so as not to violate OCP[dor:

secondary articulation)], resulting in lack of a secondary articulation. Some constraint

prohibits liquids without a secondary articulation node. Hence, the default place

feature is inserted illustrated:

34

(21) /l . l/
 | |

 [liquid][liquid]
 | |

 [cor] [cor]
 | |
 [dor] [dor]

 ⇓

 [r . l]
 | |
 [liquid][liquid]
 | |
 [cor] [cor]
 r ‡ |
 r [dor] [dor]

[cor]

In the other cases of liquids, a similar explanation can be applied to. Thus, in Type 3,

some privative feature deletes so as not to violate the OCP on that feature, and another

feature is inserted in order to avoid the violation of the constraint which prohibits

some ill-formed structure.

2.2.1.4 Type 4: Featural and Segmental Deletion

When a feature deletes, the segment on which the feature depends sometimes

deletes, too. This is another kind of repair strategy which not only avoids an OCP

violation, but also avoids ill-formedness due to the lack of a feature.

(22) A hypothetical example for type 4:

/t o t/ -> [t o]
 | | |

 [cor][cor] [cor]

35

In this type, when the feature deletes from the segment, it creates the ill-formed

structure similar to that seen in the Type 3 language above. In Type 3, however, the

ill-formedness is rescued by insertion of another feature, while the entire ill-formed

segment deletes in Type 4.

In Basque, when two stops are adjacent, the second [stop] feature deletes,

resulting in the entire segment deleting (Hualde 1987, 1988, 1991, Lombardi 1990a,

b). In Catalan, when two adjacent segments share the same place features, one of the

features deletes, resulting in entire segment deletion (Morales 1992). Seri exhibits

segmental deletion as the result of deleting an adjacent [constricted glottis] feature

(Marlett and Stemberger 1983:628, Yip 1988:75). I conclude that these cases belong

to Type 4 in which both featural and segmental deletions are observed.

The next section will discuss how these four types are explained on the basis

of the difference of constraint rankings.

2.3 The Difference of the Constraint Ranking Representing Each Type

in Typology

2.3.1 The Constraints for OCP on Features

Now, I will examine the kinds of constraints which account for the typology.

I will observe how the OCP and markedness constraints interact with faithfulness

constraints. First, I will discuss the constraints for OCP on features. As discussed in

section 2.1.2.1, I assume that OCP as self-conjoined markedness constraints.

However, for the sake of discussion throughout this dissertation, I will use

"OCP[F]" to refer to the constraint in my analysis:

36

(23) OCP[F]:

Adjacent identical features are prohibited (Leben 1973; Goldsmith

1976; Mester 1986; McCarthy 1986)

When this OCP constraint outranks the relevant faithfulness constraints, some

alternations are forced to take place so that the OCP constraints can be satisfied.

(24) Alternation observed:

OCP[F] >> faithfulness constraints

Type 2, 3 and 4 languages discussed above demonstrate such a constraint ranking,

because repair strategies are observed to satisfy the OCPs in those types of

languages. The different strategies used to repair OCP violations among these three

types is determined according to the type, and ranking, of faithfulness constraints.

The detailed interactions of faithfulness constraints will be examined in the next

section.

On the other hand, when the faithfulness constraints are higher ranked than

the OCP, the surface form will contain some OCP violation.

(25) OCP violation observed:

all the relevant faithfulness constraint(s) >> OCP[F]

This constraint ranking is observed in Type 1 languages. The OCP constraint can be

violated to let the candidate which is faithful to the input win.

37

2.3.2 The Faithfulness Constraints for Features

This section will discuss what kind of faithfulness constraints are necessary to

show the OCP effects on features. As already illustrated in section 2.3.1, OCP[F]

must outrank some faithfulness constraints to produce alternations as repair strategies

to avoid OCP violations in types 2, 3, and 4 languages.

However, there is a full set of faithfulness constraints for each type of

faithfulness relation or for each linguistic string in Universal Grammar according to

McCarthy and Prince's (1995) Correspondence Theory. These faithfulness

constraints are not ranked together, but rather some of them are higher ranked than

others or than the markedness constraints depending on the particular grammar. The

difference in the ranking of faithfulness constraints, therefore, will define the

difference in the repair strategies among types 2, 3, and 4.

The next section first reviews Correspondence Theory (McCarthy and Prince

1995), and considers how we can apply this theory to account for the typology.

2.3.2.1 Correspondence Theory (McCarthy and Prince 1995)

Correspondence Theory (McCarthy and Prince 1995) revises the original

approach to input-output faithfulness in Optimality Theory (Prince and Smolensky

1993):

(26) Correspondence (McCarthy and Prince (1995), pp. 262))

Given two strings S1 and S2, correspondence is a relation R from the

elements of S1 to those of S2. Elements α∈ S1 and β∈ S2 are referred to as

correspondents of one another when α R β.

38

All correspondence relations are generalized under this definition. Attention is given

to correspondence between representations, and faithfulness constraints are itemized

from the segmental, featural, or structural viewpoint: {MAX , DEP, IDENT[F],

CONTIGUITY, LINEARITY, INTEGRITY, UNIFORMITY, ANCHOR, ALIGN}.

(27) Definitions for each corresponding constraint (McCarthy and Prince 1995: 370-

372):

(a) MAX: Every element of S1 has a correspondent in S2.
Domain (R) = S1

(b) DEP: Every element of S2 has a correspondent in S1.
Range (R) = S2

(c) IDENT[F]: Correspondent segments have identical values for the feature F.
If xR y and x is [γF], then y is [γF].

(d) CONTIGUITY:

(d-1) I-CONTIGUITY ("No Skipping")
The portion of S1 standing in correspondence forms a contiguous
string.
Domain (R) is a single contiguous string in S1.

(d-2) O-CONTIGUITY ("No Intrusion")
The portion of S2 standing in correspondence forms a contiguous
string.
Range (R) is a single contiguous string in S2.

(e) {RIGHT, LEFT}-A NCHOR(S1,S2): Any element at the designated periphery of S1
has a correspondent at the designated periphery of S2.

(f) LINEARITY ("No Metathesis"): S1 is consistent with the precedence structure of
S2, and vice versa.

(g) UNIFORMITY ("No Coalescence"): No element of S2 has multiple correspondents
in S1.

(h) INTEGRITY ("No Breaking"): No element of S1 has multiple correspondents in
 S2.

39

Moreover, Correspondence Theory recognizes identity between distinct types

of the representations such as Input-Output (IO), Output-Output (OO), Base-

Reduplicant (BR), Tone-Tone-bearer (TT), etc. The definition of correspondence in

(26) subsumes all types of linguistic relations, and every relation generates a full set

of faithfulness constraints: IO:{MAX-IO, DEP-IO, IDENT[F]-IO, INTEGRITY-IO, ...};

OO:{MAX-OO, DEP-OO, IDENT[F]-OO,...}; BR:{MAX-BR, DEP-BR, ...}; etc.

Although the full set of faithfulness constraints can be instantiated for every

linguistic string as indicated above, the faithfulness constraints proposed in McCarthy

and Prince (1995) target the corresponding relationships only at the segmental level,

and featural identity is evaluated only from the perspective of the segment, i.e.

IDENT[F].

Table II: Correspondence Constraints for Segments
Type of Constraint prohibits
MAX Segmental Deletion
DEP Segmental Epenthesis
IDENT[F] Featural Change

 w.r.t. the segments
(I,O)-CONTIGUITY Segmental Skipping (I-CONTIG)

 Segmental Intrusion (O-CONTIG)
ANCHOR
ALIGNMENT

 Segmental Misalignment

LINEARITY Segmental Metathesis
UNIFORMITY Segmental Coalescence
INTEGRITY Segmental Splitting

Thus, each phonological alternation such as deletion, epenthesis, skipping, and so on

at the segment level is constrained by the distinct type of correspondence constraint

above.

40

However, the only faithfulness constraint on features is IDENT[F]. This

constraint cannot restrict featural faithfulness when the segment upon which the

feature depends deletes. For instance, consider the following hypothetical tableau.

(28) Hypothetical Tableau

/tot/ IDENT[stop]

a. [to] √

b. [tot] √

In tableau (28), a segment deletes in candidate (a), while no alternation is observed in

candidate (b). Although not only the segment but also the [stop] feature delete in

candidate (a), the featural faithfulness constraint IDENT[stop] is vacuously satisfied.

This is because IDENT[[stop] is relevant only when a corresponding segment exists.

Consequently, there is no difference between candidate (a) and (b) in terms of

IDENT[stop].

2.3.2.2 Featural Faithfulness in Optimality Theory

As we have observed in section 2.3.2.1, faithfulness constraints proposed in

Correspondence Theory cannot (or can only in a limited way) independently account

for featural identity. To determine which faithfulness constraints are necessary to

account for the typology, we should first consider how to treat features with respect

to faithfulness constraints, and how to set the faithfulness constraints for features.

As I have already stated, when features are treated as independent elements of

segments, a full set of faithfulness constraints specifically for features are instantiated

41

in grammar, (e.g. MAX [F], DEP[F], UNIFORMITY[F], etc.). On the other hand,

when features are dependents of segments, featural faithfulness is evaluated on the

basis of the set of segmental faithfulness constraints, namely, IDENT[F]. I claim that

features are independent elements of segments; therefore, an independent set of

faithfulness constraints for features is established. The reason behind this decision is

that some of the effect of OCP on features cannot be explained without the

independent set of faithfulness constraints for features.

First, let us consider why we cannot deal with the typology when we treat

features as dependents on segments by examining a hypothetical example /tot/. If

features are treated as dependents, then we have only IDENT[F], thus featural

faithfulness is regulated through segments. There are at least four output candidates

for the input /tot/: (a) OCP violation; (b) Feature Fusion; (c) Feature Deletion and

Insertion; and (d) Feature Deletion and Segmental Deletion. Among them, the

candidate of featural fusion will always be optimal regardless of the ranking of the

constraints, as seen in (29).

42

(29) a hypothetical tableau:
 /t o t/
 | |
 [cor][cor]

OCP[F1] IDENT[F1] IDENT[F2] MAX-IO

a. OCP violation

 [t o t]
 | |
 [cor][cor]

*

b. Feature Fusion7

 [t o t]
 \ /
 [cor]

c. Feature Deletion
and Feature Insertion

 [lab]
 |
 [t o p]
 |
 [cor]

* *

d. Feature Deletion
and Segmental
Deletion

 [t o]
 |
 [cor]

*

Since candidate (b) in which featural fusion takes place does not violate any

constraint, it will always be optimal regardless of the ranking of constraints. If this

were true, then there should be no language in which OCP violation, feature deletion

& segmental deletion, or feature deletion & feature insertion is observed. Thus, we

7 I consider that the structure of featural fusion will not result in the OCP
violation, because I consider that the two coronal features are fused into one. Thus,
the structure does not contain [cor][cor] anymore.

43

cannot explain the typology of the OCP effects on features as long as features are

treated as dependents on segments.

Consequently, I treat features as independent elements of segments in order to

introduce a full set of featural faithfulness constraints. Next, let us review how

features are treated in previous studies, and how featural faithfulness constraints are

considered.

As mentioned in chapter 1, McCarthy (1996a, 1997a) indicates that there are

two possible ways for us to treat features within the Optimality Theory: one is to treat

features as dependent elements on the segments, and the other is to treat them as

independent components. Following McCarthy, I call the former "features as

attributes", and the latter "features as entities".

It is very important to determine if features should be treated as attributes or as

entities when we consider the featural faithfulness constraints. If features are

attributes, then, we could expect only the set of faithfulness constraints established

for the segments introduced in section 2.3.2.1.

On the other hand, an independent full set of faithfulness constraints for the

features could be instantiated, if features were entities. McCarthy (1996a, 1997a)

indicates that correspondence relation holds only of segments if features are

attributes, while it applies to segments and features if the latter are entities. Also, he

warns that the independent set of featural faithfulness constraints should not be

introduced unless additional constraints which can prohibit the features from moving

freely around to other segments are also posited.

McCarthy's warning is based the tradition of the treatment of the features in

autosegmental phonology. In the framework of autosegmental phonology, all

autosegments are considered to hang on segments on different tiers. Dependency or

44

independency of each autosegment, therefore, is determined by whether the

autosegment can stand by itself without the existence of the segment on which it

depends. In this sense, most of the suprasegments, and very few of the features such

as [nasal] are regarded as independent elements because they are still retained after the

sponsoring segment deletes. On the other hand, most of the features are considered to

be dependent on segments because they disappear along with deletion of the

sponsoring segment. That is why McCarthy claims that the treatment of the features

as entities should not be freely introduced.

In spite of his claim, several researchers such as Itô, Mester, and Padgett

(1995), Lamontagne and Rice (1995), Lombardi (1995a), McCarthy (1996a, 1997a),

Causley (1997), and More@n and Miglio (1998) have indicated on the basis of various

evidence that the features should be treated as entities so that faithfulness constraints

for features can be instantiated. These researchers have shown that certain phenomena

could not be explained unless features are treated as independent of segments.

Lombardi (1995a) and Lamontagne and Rice (1995) propose that both

M AX [F] and DEP[F] are necessary to account for featural identity from the

perspectives of both deletion and insertion of features.

(30) M AX [F] and DEP[F]

MAX[F] : Every feature in the input has a correspondent in the output (no featural

deletion) (Lombardi 1995a, Lamontagne and Rice 1995)

DEP[F] : Every feature in the output has a correspondent in the input (no featural

insertion) (Lombardi 1995a, Lamontagne and Rice 1995)

45

M AX [F] and DEP[F], not IDENT[F], constrain featural deletion and insertion,

respectively. On the other hand, IDENT[F] requires that the corresponding segments

share the same value for some feature. IDENT[F] is, therefore, violated whether it is

due to deletion, due to insertion, or both , since in both cases the values for a feature

are different between the corresponding segments.

McCarthy (1996a, 1997a) introduces two constraints which prohibit adding

and deleting association lines. As McCarthy has pointed out, these two constraints

specifically prevent the features from moving freely to other features.

(31) No-Spread and No-Delink (definitions from McCarthy 1997a:203)

 No-SpreadS1-S2(τ , ς)

Let τi and ςj stand for elements on distinct autosegmental tiers in two related
phonological representations S1 and S2, where

τ1 and ς1 ∈ S1,

τ2 and ς2 ∈ S2,

τ1 R τ2, and

ς1 R ς2,

if τ2 is associated with ς2,

then τ1 is associated with ς1.
 (Do not add association line)

46

 No-DelinkS1-S2(τ , ς)

Let τi and ςj stand for elements on distinct autosegmental tiers in two related
phonological representations S1 and S2, where

τ1 and ς1 ∈ S1,

τ2 and ς2 ∈ S2,

τ1 R τ2, and

ς1 R ς2,

if τ1 is associated with ς1,

then τ2 is associated with ς2.
(Do not delete association line)

With these two constraints, a feature in the input cannot be spread to another

segment, nor can it be delinked from the segment to which it belongs.

Itô, Mester, and Padgett (1995) illustrate featural deletion, insertion, and

coalescence with constraints similar to those of Lombardi (1995a), Lamontagne and

Rice (1995), and McCarthy (1996a, 1997a).

(32) Feature Faithfulness (Itô, Mester, and Padgett 1995: 586)

Parse Feat: All input features are parsed.

Fill Feat: All output features are part of the input.

Parse Link: All input association relations are kept.

Fill Link : All output association relations are part of the input.

Causley (1997) tries to generalize featural faithfulness constraints based on

these previous studies. She argues that it is necessary for features to stand in a

correspondence relation with one another; hence, the set of faithfulness constraints

47

only for the segments are not sufficient to account for featural deletion, insertion,

fusion, skipping, and so on. She claims that a full set of correspondence constraints

for the segments are also multiplied for the features.

Table III: Correspondence Constraints for Features
(modified from Causley 1997:11)
Type of Constraint prohibits
MAX[F] Featural Deletion
DEP[F] Featural Epenthesis
(I,O)-CONTIGUITY[F] Featural Skipping (I-CONTIG[F])

 Feature Intrusion (O-CONTIG[F])
ANCHOR[F] Featural Misalignment

LINEARITY[F] Featural Metathesis
UNIFORMITY[F] Featural Coalescence
INTEGRITY[F] Featural Splitting
No-Spread Insertion of association line
No-Delink Deletion of association line

Let us summarize what we have observed in the previous studies on features

as entities. Since only deletion, insertion, and fusion of features will be discussed in

the typology, I will concentrate on the constraints relative to these phenomena. As

mentioned above, although McCarthy (1996a, 1997a) clearly indicates that features

must not be completely independent of the segments, several studies such as

Lombardi (1995a), McCarthy (1996a, 1997a), Causley (1997), Itô, Mester and

Padgett (1995) show that features must be treated as entities.

Let us examine what kinds of faithfulness constraints are involved when we

consider features as attributes. In Correspondence Theory, McCarthy and Prince

(1995) propose a faithfulness constraint in which features are dependent on

segments, i.e. IDENT[F]. This constraint is respected when the corresponding

segments have the same values for the feature. When a corresponding segment

48

deletes, then, the constraint is vacuously satisfied regardless of the absence or

presence of the feature. Thus, featural deletion and featural insertion can be

constrained iff the segments are present. In this sense, there is no constraint which

can prohibit featural fusion.

Now, what constraints restrict the featural deletion, insertion, or fusion, when

we treat the features as entities? Lombardi (1995a), and Lomontagne and Rice (1995)

propose MAX[F] which prohibits featural deletion, and DEP[F] which forbids featural

insertion. Both constraints can account for the featural deletion and insertion

regardless of the presence of the corresponding segment.

McCarthy (1996a, 1997a) also uses MAX [F] and DEP[F]. In addition, he

introduces NODELINK and NOSPREAD. These are the faithfulness constraints for

association lines between segments and features. The former prohibits deleting

association lines, and the latter prohibits adding them. I will actually introduce such

faithfulness constraints for association lines between the segments to account for

Japanese Rendaku in chapter 5.

These two constraints can also account for featural fusion, because in the case

of featural fusion, it is not the feature which deletes or spreads, but the association

line which changes. Itô, Mester, and Padgett's (1995) featural faithfulness constraints

are very similar to McCarthy's.

Causley (1997) argues that the full set of faithfulness constraints must be

instantiated. According to her, therefore, the segmental and the featural sets are

completely comparable. Hence, in her approach, MAX[F], DEP[F], UNIFORMITY[F],

etc. play the same roles as MAX , DEP, UNIFORMITY, etc. for the segments. For

instance, segmental coalescence can be explained by violating UNIFORMITY, not

49

MAX. In the same way, in the case of featural fusion, MAX[F] is not violated, but

UNIFORMITY [F] is.

Let us summarize what we have discussed so far with the following table.

The following table shows which faithfulness constraints are violated in which

featural alternations, and which researchers propose which constraints.

Table IV: Proposed Featural Faithfulness Constraints
constraints
when
features are
as attributes

 constraints
 when features are as entities

McCarthy
&
Prince
(1995)

Lombardi
(1995a),
Lamontagne
& Rice
(1995)

McCarthy
(1996a,
1997a)

Itô, Mester,
& Padgett
(1995)

Causley
(1997)

no
featural
deletion

 IDENT[F] MAX[F] MAX[F] Parse Feat MAX[F]

no
featural
insertion

 IDENT[F] DEP[F] DEP[F] Fill Feat DEP[F]

no
featural
fusion

 N/A NODELINK
 +
NOSPREAD

Parse Link
 +
Fill Link

UNIFORMITY
[F]

Judging from the summary in Table IV, features must be treated as entities especially

when featural deletion and insertion must be differentiated, and when featural fusion

must be accounted for. If featural insertion, deletion, and fusion were not explained,

then, the typology of the repair strategies for the OCP on features introduced in

section 2.2.1 could not be accounted for, either.

On the basis of the discussion of the necessity of independent set of

faithfulness constraints to account for the typology as mentioned above, and

50

following previous research, I treat features as entities in this dissertation. The

following section will discuss the constraint interaction that predicts each type of

repair strategy.

2.3.3 Constraint Interaction to Predict the Typology

In the previous section, I have stated that I will treat features as entities so that

a full set of correspondence constraints are instantiated for features. Now, I will

investigate a constraint ranking to predict each type of language in the typology

introduced in section 2.2.1.

There are slight differences among the previous studies on the kind of

constraint(s) to restrict featural insertion, deletion, and fusion. In this thesis, I will

use MAX[F] and DEP[F] for featural insertion and deletion, respectively, because they

have been widely used. Also, I will adopt Causley's UNIFORMITY [F] to constrain

featural fusion although McCarthy's (1996a, 1997a) NOSPREAD and NODELINK or

Itô, Mester, and Padgett's (1995) Parse Link and Fill Link also seems to work to

account for featural fusion. My choice is motivated by the devise to treat featural

fusion in a parallel way to segmental coalescence. Segmental fusion will result in

violating UNIFORMITY, while it will satisfy MAX-IO. Similarly, I consider that

featural fusion will violate UNIFORMITY[F], but will satisfy MAX[F].

Let us consider featural fusion with an actual structure:

(33)
/ R1 R2 / → [R1 R2]
 |α |β \α /β

 [cor]i [cor]j [cor]i,j

51

As illustrated in (33), when the two [cor] features are fused, none of the coronal

features and none of the association lines delete. Both of the coronal features i and j in

the input have the correspondents in the output; therefore, there is no MAX[cor]

violation in this alternation. Also, both of the association lines α and β have the

correspondents in the output; hence, there is no violation of the faithfulness

constraints for association lines. Consequently, only the constraint violated in this

structure is UNIFORMITY[F] which prohibits the output feature from having the

multiple correspondents in the output.

Thus, I use UNIFORMITY[F] to constrain featural fusion since the structure of

featural fusion is exactly parallel to the structure of segmental fusion: /R1 R2/ →

[R1,2].

The full range of featural faithfulness constraints (MAX [F], DEP[F],

UNIFORMITY[F] etc.) are crucial to analyze the effect of the OCP on features.

Particularly, I will focus upon the interaction of OCP[F], MAX [F], DEP[F],

UNIFORMITY[F], and MAX-IO to predict each type of language. Before going on to

the actual analysis, the definition of each constraint is reviewed below.

(34) Constraints for Typology:

(a) OCP[F] = [*FF]DOMAIN
Adjacent identical features are prohibited (Leben 1973; Goldsmith
1976; Mester 1986; McCarthy 1986).

(b) MAX[F]: Every feature of the input has a correspondent in the output (no
featural deletion) (Lombardi 1995a, Lamontagne and Rice 1995).

(c) DEP[F]: Every feature of the output has a correspondent in the input (no
featural insertion) (Lombardi 1995a, Lamontagne and Rice 1995).

(d) UNIFORMITY[F]: No feature of the output has multiple correspondents in
the input (no featural fusion) (McCarthy and Prince 1995,
Causley 1997).

52

(e) MAX-IO: Every segment of the input has a correspondent in the output.
(no segmental deletion) (McCarthy and Prince 1995).

2.3.3.1 Type 1 Language: OCP Violation

As discussed in section 2.2.1.1, OCP violation is observed in a Type 1

language. Let us establish which constraint ranking yields this type of language.

Since the OCP violation is preferable to any other alternations here, we assume that

all the faithfulness constraints must outrank the constraint for the OCP.

(35). Type 1
/t o t/
 | |
[cor][cor]

MAX
[cor]

DEP[lab] UNIFORM-
ITY[cor]

MAX-IO OCP[cor]

☞a. [t o t]
 | |
[cor][cor]
OCP violation

*

 b. [t o t]
 \ /
 [cor]
feature fusion

*!

 c. [lab]
 |
[t o p]
 |
[cor]
feature deletion
& insertion

*! *!

 d. [t o]
 |
[cor]
feature &
segment
deletion

*! *!

The tableau in (35) shows that the given ranking predicts a language in which an OCP

violation is observed. However, it is not crucial that all the faithfulness in tableau (35)

53

outrank the OCP to yield a Type 1 language. A Type 1 language will also result from

either the ranking, MAX [F], UNIFORMITY[F] >> OCP[F], or the ranking DEP[F],

MAX-IO, UNIFORMITY[F] >> OCP[F] as the following two tableaux show.

(36) MAX[F], UNIFORMITY[F] >> OCP[F] for Type 1:
/t o t/
 | |
[cor][cor]

MAX[cor] UNIFORMITY
[cor]

OCP[cor]

 ☞a. [t o t]
 | |
[cor][cor]
OCP violation

b. [t o t]
 \ /
 [cor]
feature fusion

*!

c. [lab]
 |
[t o p]
 |
[cor]
feature deletion
& insertion

*!

d. [t o]
 |
[cor]
feature & segment
deletion

*!

54

(37) DEP[F], UNIFORMITY[F], MAX-IO >> OCP[F] for Type 1:
/t o t/
 | |
[cor][cor]

DEP[lab] UNIFORM-
ITY[cor]

MAX-IO OCP
[cor]

 ☞a. [t o t]
 | |
[cor][cor]
OCP violation

*

 b. [t o t]
 \ /
 [cor]
feature fusion

*!

 c. [lab]
 |
[t o p]
 |
[cor]
feature deletion
& insertion

*!

 d. [t o]
 |
[cor]
feature & segment
deletion

*!

Thus, a Type 1 language is result from at least either {MAX[F], UNIFORMITY[F]} or

{D EP[F], MAX-IO, UNIFORMITY[F]} outranking OCP[F]. Therefore, the following

rankings are established for Type 1.

(38). Constraint Ranking for Type 1:

(a)

 MAX[F], UNIFORMITY[F]
 |_______|
 |
 OCP[F]

55

(b)

 DEP[F], UNIFORMITY[F], MAX-IO
 |_______|_____________|
 |
 OCP[F]

2.3.3.2 Type 2 Language: Feature Fusion

In this type of language, the two features are fused so as not to violate the

OCP constraint on features. Thus, we assume that only UNIFORMITY[F] is lower

ranked than the OCP constraint and the other faithfulness constraints in this type of

language.

(39) Type 2
/t o t/
 | |
[cor][cor]

MAX
[cor]

DEP
[lab]

OCP
[cor]

MAX-IO UNIFORM-
ITY[cor]

 a. [t o t]
 | |
[cor][cor]
OCP violation

*!

☞b. [t o t]
 \ /
 [cor]
feature fusion

*

 c. [lab]
 |
[t o p]
 |
[cor]
feature deletion
& insertion

*! *!

 d. [t o]
 |
[cor]
feature &
segment deletion

*! *!

56

In candidate (39b), MAX[cor] is not violated, because both input coronal features

have some correspondents in the output. Thus, it violates only UNIFORMITY[F].

The ranking given in (39) predicts a Type 2 language. However, not all the

faithfulness constraints in this tableau must be higher ranked than UNIFORMITY[F]. A

Type 2 language is predicted by either the ranking MAX[cor], OCP[cor], MAX-IO >>

UNIFORMITY[F] or the ranking DEP[lab], OCP[cor] >> UNIFORMITY[F] as the

following two tableaux show.

(40) DEP[lab], OCP[F], MAX-IO >> UNIFORMITY[F] for Type 2:
/t o t/
 | |
[cor][cor]

DEP[lab] OCP[cor] MAX-IO UNIFORM-
ITY[cor]

 a. [t o t]
 | |
[cor][cor]
OCP violation

*!

☞ b. [t o t]
 \ /
 [cor]
feature fusion

*

 c. [lab]
 |
[t o p]
 |
[cor]
feature deletion
& insertion

*!

 d. [t o]
 |
[cor]
feature & segment
deletion

*!

57

(41) MAX[F], OCP[F] >> UNIFORMITY[F] for Type 2:
/t o t/
 | |
[cor][cor]

MAX[cor] OCP
[cor]

UNIFORMITY
[cor]

 a. [t o t]
 | |
[cor][cor]
OCP violation

*!

☞ b. [t o t]
 \ /
 [cor]
feature fusion

*

 c. [lab]
 |
[t o p]
 |
[cor]
feature deletion
& insertion

*!

 d. [t o]
 |
[cor]
feature & segment
deletion

*!

Thus, the ranking in (40) or in (41) accounts for a Type 2 language.

(42) Constraint Ranking for Type 2:

(a)

 DEP[F], OCP[F], MAX-IO
 |_________|_________|
 |
 UNIFORMITY[F]

(b)

 MAX[F], OCP[F]
 |_________|
 |
 UNIFORMITY[F]

58

2.3.3.3 Type 3 Language: Feature Deletion and Insertion

In this type of language, one of the two adjacent features is simply deleted to

avoid the OCP violation. Moreover, a new feature is inserted to avoid an ill-formed

structure due to the feature deletion. This is illustrated in (43).

(43) Type 3
/t o t/
 | |
[cor][cor]

OCP
[cor]

MAX-IO UNIFORM-
ITY[cor]

MAX
[cor]

DEP[lab]

 a. [t o t]
 | |
[cor][cor]
OCP violation

*!

 b. [t o t]
 \ /
 [cor]
feature fusion

*!

 c.
actual winner

 [lab]
 |
[t o p]
 |
[cor]
feature deletion
& insertion

* *!

 d. [t o]
 |
[cor]
f e a t u r e &
segment deletion

*! *

*☞ e. [t o t]
 |
[cor]
only deletion of
feature

*

In (43), based on the ranking established thus far, candidate (e) in which only the

coronal feature deletes wrongly wins. To obtain the correct output, an additional

constraint: HAVEPLACE must be introduced and ranked above MAX[cor].

59

Padgett (1994, 1995a) indicates that a segment without Place or Manner is

ill-formed; therefore, he proposes a constraint against a placeless segment,

HAVEPLACE . Let us reanalyze the tableau (43) with the constraint HAVEPLACE.

(44) TYPE 3 with HAVEPLACE:
/t o t/
 | |
[cor][cor]

OCP
[cor]

MAX-
IO

UNIFORM
-ITY
[cor]

HAVE
PLACE

MAX
[cor]

DEP
[lab]

a. [t o t]
 | |
 [cor][cor]
OCP violation

*!

b. [t o t]
 \ /
 [cor]
feature fusion

*!

☞ c. [lab]
 |
[t o p]
 |
[cor]
feature deletion
& insertion

* *

d. [t o]
 |
 [cor]
feature &
segment
deletion

*! *

e. [t o t]
 |
 [cor]
only deletion of
feature

*! *

In tableau (44), the crucial ranking, HAVEPLACE >> DEP[cor] brings forth the

correct output.

As the analysis for type 3 above shows, an additional constraint such as

HAVEPLACE is necessary. Hence, the following ranking is established for Type 3.

60

(45) Constraint Ranking for Type 3:

OCP[F],UNIFORMITY[F], MAX-IO HAVEPLACE
 |_________|____________| gggd
 _____|_________ gggd

 | | gddd
 MAX[F] DEP[F]

2.3.3.4 Type 4 Language: Featural and Segmental Deletion

 In this type, the ill-formedness caused by featural deletion is repaired by

deleting the entire segment. Since we are using MAX[F], not IDENT[F], deletion of the

segment will not result in satisfying the constraint for featural deletion. Both

segmental and featural faithfulness constraints are violated.

61

(46) Type 4
/t o t/
 | |
[cor][cor]

OCP
[cor]

DEP
[lab]

UNIFORM
-ITY
[cor]

MAX
[cor]

MAX-IO

 a. [t o t]
 | |
[cor][cor]
OCP violation

*!

 b. [t o t]
 \ /
 [cor]
feature fusion

*!

 c. [lab]
 |
[t o p]
 |
[cor]
feature deletion
& insertion

 *! *

 d. actual winner

[t o]
 |
[cor]
feature &
segment deletion

* * !

 *☞
e.

[t o t]
 |
[cor]
only deletion of
feature

*

In (46), again, candidate (e) in which only feature deletion takes place incorrectly

becomes optimal. Therefore, HAVEPLACE also has to be higher ranked than MAX-IO

in this type of language. Also, it is not the violation of MAX[F], but rather of DEP[F],

which penalizes candidate (c) in Type 4.

Let us see the analysis with the additional constraint, HAVEPLACE.

62

(47) TYPE 4 with HAVEPLACE:
/t o t/
 | |
[cor][cor]

OCP
[cor]

DEP
[lab]

UNIFORM
-ITY
[cor]

HAVE
PLACE

MAX
[cor]

MAX-IO

a. [t o t]
 | |
 [cor][cor]
OCP violation

*!

b. [t o t]
 \ /
 [cor]
feature fusion

*!

c. [lab]
 |
[t o p]
 |
[cor]
feature deletion
& insertion

 *! *

☞ d. [t o]
 |
 [cor]
feature &
segment
deletion

* *

e. [t o t]
 |
[cor]
only deletion of
feature

*! *

Thus, in tableau (47), the crucial ranking HAVEPLACE >> MAX -IO correctly

accounts for the actual winner.

(48) Constraint Ranking for Type 4:

OCP[F], UNIFORMITY[F], DEP[F] HAVEPLACE
 |_________|____________| |
 _____|_______________ |

 | | |
 MAX[F] MAX-IO

63

Thus, all four types of languages are predicted on the basis of the constraint

interactions of OCP[F], UNIFORMITY[F], DEP[F], MAX[F], and MAX-IO.

In addition, I have introduced an additional structural constraint HAVEPLACE

needed for the correct analysis. Although the four constraint rankings given above are

the basic rankings for each type of language in the typology, we have to take the

interaction of other constraints into consideration to elucidate actual language data.

2.4 Summary

In this chapter, I discussed how we account for the typology of OCP effects

on features within the framework of Optimality Theory. In section 2.1, I first

reviewed the previous research on OCP both in the framework of autosegmental

phonology and of Optimality Theory, and considered the relevant constraints for the

effects of the OCP. Following the self-conjunction approach to OCP, I made clear my

position that OCP is derived from self-conjoined markedness constraints.

In section 2.2, I investigated the classification of languages with respect to the

effects of the OCP on features. Although my typological categorization of languages

were built on Yip's (1988) proposal, I reorganized her classification in order to

classify languages based on the OCP effects specifically on features. I eliminated

epenthesis from Yip's claim, and reconsidered dissimilation, assimilation, and

deletion.

In section 2.3, I discussed the kind of constraints interacting in each type of

language in the typology established in section 2.2. I especially focused on the

interaction among the featural faithfulness constraints, the OCP and the markedness

constraints. Through the discussion of the interaction of those constraints, I showed

that features must be treated as independent elements of segments so that a full set of

64

faithfulness constraints specific to features are instantiated in grammar. I showed that

all the introduced constraints in the discussion are needed to account for the typology

of the OCP effects on features, and none of the constraints are arbitrary. I clearly

demonstrated that the different rankings of those constraints represent the different

types of languages.

Thus, I delineated the classification of languages regarding the effect of the

OCP on features, and examined the tools, i.e. the constraints, crucial to account for

each type of the language. With the constraints examined in this chapter, the next

chapter will analyze the data of the actual languages. One from each type will be

examined in order to confirm the validity of the predicted rankings discussed in this

chapter.

